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Abstract. Most graph neural networks (GNNs) utilize approximations of the
general graph convolution derived in the graph Fourier domain. While GNN's
are typically applied in the multi-input multi-output (MIMO) case, the approxi-
mations are performed in the single-input single-output (SISO) case. In this work,
we first derive the MIMO graph convolution through the convolution theorem and
approximate it directly in the MIMO case. We find the key MIMO-specific prop-
erty of the graph convolution to be operating on multiple computational graphs,
or equivalently, applying distinct feature transformations for each pair of nodes.
As a localized approximation, we introduce localized MIMO graph convolutions
(LMGCs), which generalize many linear message-passing neural networks. For
almost every choice of edge weights, we prove that LMGCs with a single com-
putational graph are injective on multisets, and the resulting representations are
linearly independent when more than one computational graph is used. Our ex-
perimental results confirm that an LMGC can combine the benefits of various
methods.

Keywords: graph machine learning - geometric deep learning - graph convolu-
tions.

1 Introduction

Graph neural networks have emerged as an effective method for many challenging ap-
plications involving graph-structured data, e.g., molecular prediction [14]. These utilize
convolutional operations typically derived from the general graph convolution obtained
in the Fourier domain, as given by the convolution theorem [11,4]. Initially, approxi-
mations of the general graph convolution were based on polynomials, e.g., Chebyshev
polynomials [11]. The graph convolutional network (GCN) [16] approximates these
polynomials as a first-order localization. Many other message-passing approaches are
derived from the GCN [37,1]. However, these approximations are based on the single-
output single-input (SISO) case, where the input and output contain a single feature for
each node. GNNs are typically applied in the multi-input multi-output (MIMO) case,
where each node has multiple feature channels assigned, and the output also contains
multiple features. Extending from the SISO to the MIMO case is achieved by apply-
ing these methods for each input and output channel combination and learning distinct
parameters [4,6,16].

Instead of first approximating the graph convolution in the SISO and then extending
to the MIMO, we propose directly performing the approximation in the MIMO case to
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Fig. 1: Connections between the graph convolution, polynomial filters, and message-passing ap-
proaches in the SISO and the MIMO case. Parts in yellow ( ) indicate existing contributions,
parts in pink (i) our contributions.

benefit from MIMO-specific properties. We first derive the general graph convolution in
the MIMO case through the convolution theorem and the graph Fourier transform. We
find the key property that allows the MIMO-GC to represent arbitrary transformations
to be operating on multiple computational graphs or, equivalently, applying distinct
linear feature transformations between each pair of nodes. This form allows a direct
approximation in the MIMO case by localizing the aggregation step. The resulting lo-
calized MIMO-GC (LMGC) presents a general framework for linear message-passing
neural networks (MPNN) that inherits the beneficial properties for multi-channel learn-
ing. While we show that the LMGC can represent most MPNNs, the LMGC cannot
represent the graph isomorphism network (GIN) [39] due to its non-linear feature trans-
formation. However, we show that LMGCs are injective on multisets for almost every
choice of edge weights even for a single computational graph. When further utilizing
multiple computational graphs as motivated by the MIMO-GC, we prove that represen-
tations are linearly independent for almost every choice of edge weights. We summarize
our main contributions as follows:

— Based on the convolution theorem, we derive the MIMO graph convolution (MIMO-
GC) for node representations with multiple feature channels. A key property of
MIMO-GCs is to operate on multiple computational graphs, or equivalently, to ap-
ply distinct linear feature transformations for each pair of nodes (Section 3).

— We introduce the framework of localized MIMO-GCs (LMGCs) by localizing the
aggregation step of the MIMO-GC. It merges the key idea of operating on multiple
computational graphs with the efficient message-passing scheme (Section 4).
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— We prove that LMGCs are injective on multisets for a single computational graph
and produce linearly independent representations when more than one computa-
tional graph is used for almost every choice of edge weights (Section 4).

2 Preliminaries

Let G = (V, &) be a connected and undirected graph consisting of a set of n nodes V
and a set of edges £. Let A € {0,1}"*" be the corresponding adjacency matrix with
A; j =1if (4,j) € € and 0 otherwise. The diagonal degree matrix is D € N"*", The
symmetrically normalized adjacency matrix is given by Agym = D~1/2AD~1/2 and
the graph Laplacian by Ly, = I, — Agn. Its eigendecomposition is L = UAUT
where A € R"*" is a diagonal matrix containing its eigenvalues, and U € R™*" is
an orthonormal matrix containing the corresponding eigenvectors as columns. We refer
to a vector € R™ as a single-channel graph signal and to a matrix X € R™*? as a
multi-channel graph signal. These can be initial features or expressive and informative
node embeddings. In the graph domain, the Fourier base is given by the eigenvectors
U7 of the graph Laplacian. Thus, the Fourier transformation F' = U7 is performed by
projecting a graph signal onto the eigenvectors, and its inverse transformation is given
by F~! = U. We further refer to U; .z € R as the component of x corresponding to
vector U ..

2.1 Graph Convolutions

Given a graph signal, the graph convolution or a similar method derived from it are
designed to obtain a more informative graph signal. In the SISO case, the input and
output are single-channel graph signals, while in the MIMO case, they are multi-channel
graph signals. Graph neural networks (GNNs) are typically constructed by interleaving
these operations with non-linear activation functions. The following derivations and
approximations of the graph convolution are visualized in Fig. 1.

The general graph convolution is defined in the SISO case through the convolution
theorem using the graph Fourier transform as

0 x x = Udiag(w)U Tz (H

where w = UT0 € R™ [11,4]. As « and 6 * x are single-channel signals, we will refer
to this as the SISO graph convolution (SISO-GC).

Due to the runtime and memory complexity and inability to apply the same graph
Fourier transform across graphs, most GNNs utilize approximations of the SISO-GC.
Polynomials in Ay, (or equivalently Lyy,) provide a K -localized approximation

K
0xx~ Z w(k)Afymw (2)
k=0

of the SISO-GC where wy, € R are scalars for k& € [K] [11]. Examples of such approx-
imations are Chebyshev [11] and Cayley polynomials [20].
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Similarly, the graph convolutional network (GCN) [16] was derived as a first-order
localization

0xx~wAynx 3)

of SISO polynomials using a single parameter w € R.

The graph convolution has not yet been derived for the MIMO case. Instead, fol-
lowing Bruna et al. [4], the graph convolution and the described approximations are
extended to the MIMO case by applying it to each combination of input channel p € [d)
and output channel ¢ € [¢]. For the graph convolution, the output

d
X!, = Z Opq) * Xip 4
p=1

is obtained by defining distinct filters 6, ,) € R"™.

SISO polynomials are equivalently extended to the MIMO case by applying distinct
parameters W,Ekq) € R for each combination of input and output channels [6]. Based on
Equation 2, we have

Xl =22 Wi A X 5)
p=1k=0

where W (%) ¢ Réxc,

Equivalently, the GCN is applied in the MIMO case using distinct parameters W), , €
R for each combination of input channel p and output channel ¢ [16]. This led to the
typical form of

d
X!, = Z Wy g AsymX.p = [AgmXW]. ;. (6)

p=1

Most other message-passing methods were then further derived from the GCN. In this
work, we show the advantages of directly obtaining the graph convolution and approx-
imations in the MIMO case.

3 MIMO Graph Convolution

We now consider the MIMO case. Let X € R"*? be a multi-channel graph signal
with d channels for each node. The multi-channel output signal Y € R™*¢ can have
a different number of channels c. We first derive the general graph convolution for the
MIMO through the convolution theorem [24] and the graph Fourier transform. The filter
© < R™***4 contains the necessary element-wise mappings from d to ¢ dimensions.
To the best of our knowledge, this has not yet been derived.

Theorem 1 (MIMO Graph Convolution (MIMO-GC)). Let X € R™*% @ ¢
R™*xd " and the Fourier transform F' = UT € R™ ™ be given by the eigenvectors
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of the graph Laplacian A. Then, their convolution is given as

(@ X)(i) = lz AR x W) (7a)
k=1 1,
=> W; ;X €RC (7b)
j=1

where A(k) = U:,k(Uzyk)T € Rnxn, W(k;) _ (F(e)k,:,:)T c RIXC and W(LJ) _
(O Ui U s WENT ¢ Rexd,

We provide all detailed proofs as supplementary material. The MIMO-GC is unique
because it does not require additional definitions from us. As such, MIMO operations
on graphs should closely approximate the MIMO-GC. We note that the MIMO-GC is
equivalent to extending the SISO-GC to multi-channel signals by applying it to every
pair of input and output channels, as introduced by Bruna et al. [4]. The MIMO-GC can
be interpreted in two ways.

Based on Eq. (7a), each A(¥) € R™*" can be seen as a fully connected compu-
tational graph with edge weights Agff») = U; 1 - Ujr € R given by the corresponding
Fourier basis vector U. ;. This form is also similar to multi-head self-attention [36].
However, they normalize edge weights by the softmax activation, preventing them from
being orthogonal across heads. The corresponding parameter matrix W (*) specifies
how much this component is amplified or damped from each input channel to each out-
put channel. Utilizing n computational graphs allows the MIMO-GC to amplify distinct
components for each output channel. Assuming all components are present in the input
signal, the MIMO-GC can produce any output signal:

Proposition 1 (Universality of the MIMO-GC). Forany X € R"*IwithUT X #.,,
0 element-wise non-zero and any Y € R™ ¢, there exists a © € R™"**? such that

O+xX =Y. 8)

Based on Eq. (7b), the MIMO-GC can also be interpreted as applying distinct fea-
ture transformation W(; ;) for each pair of nodes. Each W(; ;) is a unique linear com-
bination of a shared set of n feature transformations. Relatedly, utilizing distinct fea-
ture transformations was recently popularized as Neural Sheaf Diffusion [12,2]. The
MIMO-GC provides an additional theoretical justification for such methods.

However, computing the MIMO-GC exactly is typically not desirable, as with the
SISO-GC. It is inherently transductive, as the graph Fourier transform is graph-dependent,
and thus, a learned filter cannot be applied to novel or changed graphs. Most impor-
tantly, the computational complexity of the graph convolution scales quadratically with
the number of nodes:

Computational Complexity. Equivalently to computing the SISO-GC exactly, the total
complexity of the MIMO-GC is dominated by the graph Fourier transform as it requires
dense matrix multiplications. The overall complexity is thus O(n? - ¢ - d).
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Benefiting from the MIMO-GC. Instead of directly computing the MIMO-GC, we aim
to improve the approximations previously derived from the SISO-GC, which were then
extended to the MIMO case. We first confirm that these MIMO polynomials are also
approximations of the MIMO-GC with constraints on the allowed filters ©:

Proposition 2 (Every MIMO polynomial filter is a MIMO-GC with a specific fil-
ter). Let X € R™*? for some d € N. Forany VO ... V) ¢ RI%¢ with ¢, K € N,
there exists a © oy € R™*e*d such that

K
Z AfmeV(k) = Bpoy ¥ X ©
k=0

As one such example of a first-degree polynomial, the GCN is a MIMO-GC with
specific constraints on ©:

Example 1 (GCN is a MIMO-GC). Let X € R™*% V € R4*¢, Then,

Ay XV =Y NU. U)XV
k=1

n 10
= Ui(U.) " Xw® 1o

k=1
= GGCN * X

where W) = A;V and corresponding @gen € R™¥¢*4,

As a first step, the MIMO-GC helps us with the understanding of properties of var-
ious approximations and can consequently improve these approximations. Based on
Example 1, the GCN utilizes a single shared parameter matrix V' across all compo-
nents. Each component is then amplified according to its respective eigenvalue, which
is shared across all combinations of input and output channels. Other message-passing
operations may utilize a different matrix A instead of Agym. However, as using any
single computational graph A can be similarly decomposed, the amplification of com-
ponents is fixed and shared across all feature channels for any given A. We refer to
this phenomenon as shared component amplification (SCA) When repeatedly applying
such filters or message-passing operations, SCA leads to the well-known phenomenon
of over-smoothing and, more generally, rank collapse [23,30]. We provide further de-
tails on this phenomenon in our appendix.

Contrarily, the MIMO-GC requires multiple computational graphs to amplify differ-
ent components across feature channels. Equivalently, applying distinct feature trans-
formations for each node pair can improve approximations. Developing approximations
with these properties can lead to more effective learning on graph-structured data.

4 Localized MIMO Graph Convolutions

Based on Eq. (7b), we localize the MIMO-GC by aggregating over the neighboring
nodes instead of all nodes of a given graph:
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Definition 1. We define the Localized MIMO Graph Convolution (LMGC) as:

= D Wiyeg) (11a)
UjGN,,
= Z A x Wk (11b)
ke[K] i
where K € N and each W; ;) = Zke (K] oz(l’J)W € R*4 js linear combination
based on agi’)j), . .ag%) e R and WO ,...,W(K € RIX¢. The entries AEZ) =

O‘EZ)J ) are given by the corresponding coefficients.

In this definition, the number of terms K and the coefficients or edge weights aE )J )
can be freely chosen, which allows methods that do not use the expensive eigenvector
computation. The LMGC is permutation equivariant if the coefficients a(Z’] ) are also
equivariant, for example, when derived from a function of the nodes v; and v;. The
LMGC can also be applied across different graphs and for directed graphs. As with

MIMO-GCs, the LMGC can be equivalently restated as operating on K computational

graphs. The edge weights of the k-th computational graph are given by ag k)] ). Conse-

quently, the LMGC can represent many linear MPNNSs for different values for agk’)] ),

We provide three examples below:

Example 2 (GCN [16]). Let V € R¢*“ be a feature transformation. The update step

12)

P ik

: : _ (1) (4,3) _
is an LMGC with K = 1, W% =V and ) \F\F

where d;,d; € N are the
degrees of nodes v; and v;, respectively.

As the MIMO-GC is similar to multi-head self-attention, the LMGC is related to
local multi-head attention-based methods while allowing for more flexible attention
scores, i.e., scores do not need to sum to one for every node:

Example 3 (GAT [37]). Let H be the number of heads, V(") the linear transformation
of head h € [H], and aE;’)J ) € R the attention score between nodes v; and v;. The

update step
_ (0:3) v/ (h
2= 2 e VW) (13)
he[H] v;EN;
is an LMGC with K = H, W® = V® and o} = o},
The LMGC can also represent gating mechanisms, e.g., the GatedGCN [7] or neural
sheaf diffusion [12].

The general form of the LMGC allows for a more focused development of novel and

powerful methods. With specific choices of aE k)] ) the LMGC can model a symmetric

or directed flow of information and can construct anisotropic or isotropic messages.
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Theoretical Properties. Studying theoretical properties of LMGCs reduces to studying
the effects of coefficients a(:] ). For example, the LMGC cannot represent non-linear
feature transformations, which are typically used to ensure injectivity, e.g., by GIN [39].
This allows GNNs to match the expressivity of the Weisfeiler-Leman graph isomor-
phism test [19], a key property for graph-level tasks. However, we find that any LMGC
with K > 0 computational graphs is also injective for almost every choice coefficients
aE;’f ) without requiring a non-linear feature transformation:

Proposition 3 (Injectivity). Let f(x(;), N;) = Za:(]-)eNi Wi T be an LMGC
with K > 1 and X a countable set. Then, f(x ), X)) is injective for finite multisets
Xy C X and elements T,y € X for a.e. choice of coefficients O‘EZ)J) and a.e. W) for

allk € [K).

Different components can be amplified across feature channels when further using
K > 1 computational graphs. The resulting node representations are linearly indepen-
dent for almost every choice of coefficients aEZ)J ). This prevents the shared component
amplification of methods utilizing a single computational graph.

Proposition 4 (Linear Independence). Let f(x(;), N;) = me en, Wi j)x(j be
an LMGC with K > 1 and X a countable set. Then, f(x;), X1) is linearly independent
to f(xjy, Xz) for all finite multisets Xy, Xy C X with Xy # c - X for any ¢ € N and

elements x;), ;) € X for a.e. choice of coefficients ang) and a.e. W®) for all
k e [K].

This result aligns with previous findings that identified cases where multiple compu-
tational graphs can ensure linearly independent representations [28]. Importantly, each
a&’)]) can be independently obtained, e.g., by a function a&’)]) = ¢r(z), T(;) € R
of the corresponding node states. Many functions ¢y, satisfy Proposition 3 and Proposi-
tion 4. A neural network can then approximate such a function. As a negative example
of such a functions, softmax-activated attention scores do not satisfy the a.e. condi-
tion as the space of scores forms a measure-zero set, e.g., for GAT [37] and the more
powerful GATv2 [3]. As has been pointed out by several works [39], such methods
cannot distinguish multisets of different multiplicities, e.g., when X; = {{x1}} and
Xy = {{x1, z1}}. Other methods, such as FAGCN [1] and GGCN [41], proposed to
apply the tanh activation function instead, which does not constrain the outputs to a
measure-zero set.

Thus, an LMGC can incorporate the advantages of attention-based by filtering in-
coming messages and preventing the shared component amplification across feature
channels by utilizing multiple computational graphs. At the same time, it applies linear
feature transformations and can be injective on multisets, as in GIN.

An LMGC Instantiation. When constructing an LMGC instantiation, only the number
of computational graphs K and the coefficients a&’f ) forall k € [K] need to be defined.
For our empirical study, we define a simple LMGC instantiation as a mix of GATv2 and
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Method Basic + LapPE + Jumping Knowledge + Residual + All three
GATv2 0.377+£0.024 0.341 4+ 0.040 0.388 +0.017 0.3114+0.016 0.294 £+ 0.019
FAGCN 0.365 £ 0.018 0.349 +0.038 0.352 £0.042 0.289 +£0.019 0.232 £ 0.012
ACM  0.278 £ 0.006 0.281 +0.019 0.288 + 0.008 0.266 4+ 0.017 0.238 £ 0.006
GIN 0.272 £ 0.009 0.259 4+ 0.012 0.267 £0.020 0.240 £ 0.005 0.228 +0.014
LMGC 0.241 £0.018 0.234 £+ 0.009 0.233 +0.019 0.215 £ 0.006 0.203 £ 0.004

Table 1: Test MAE results on ZINC12k. LapPE indicates that a Laplacian position encoding is
concatenated to the initial features. For Jumping Knowledge, the channel-wise maximum value
after each iteration is used for each after the message-passing steps. Residual indicates that the
input to each message-passing step is added to its output. With + All three, these three techniques
are simultaneously applied. Best scores in bold, second-best underlined.

Method Texas Cornell Wisconsin Film Chameleon  Squirrel

GATv2 71.6+£1.0 66.1+0.6 79.1£2.0 35.1+0.2 47.1+£0.3 35.1+0.2
FAGCN 73.5+1.8 68.1+1.9 80.2+1.8 36.0+0.3 46.9+£0.5 34.6 +0.3
ACM 723404 65.1+0.7 74.2£09 35.8+0.3 45.5+0.9 34.5£0.1
GIN 70.5+1.1 66.1£1.0 79.0+£0.6 34.1£0.3 46.1+0.4 346=£0.5
LMGC 74.2+22689+22814+1.1363+0449.8+0.8359+0.5

Table 2: Test accuracy on heterophilic node classification tasks. Best scores in bold, second-
best underlined. All models contain at most 100 000 parameters and the same hyperparameter
optimization was applied.

FAGCN. We define the coefficients as

O‘EZ{) = ¢r(@(i), 2(5)) = 02(v{ o1 (WP ||

W B (WD) |[W ) (14)

where v(y) € R2 K¢ are learnable vectors for k € [K], o is the LeakyReLU activation
and o is the tanh activation function. The execution time is slightly favorable compared
to GATV2, as we do not normalize the messages.

5 Related Work

We now describe previous works related to various parts of the MIMO-GC and the
LMGC.

Graph Convolutions. Bruna et al. [4] extend the SISO-GC to the MIMO case by utiliz-
ing a filter between all pairs of input and output channels. This extension is equivalent
to the MIMO-GC directly derived through the convolution theorem. Approximations
are derived in the SISO case and mapped to the MIMO case using the same procedure
afterward. Hammond et al. [11] propose to approximate the SISO-GC using Cheby-
shev polynomials in the SISO case. Defferrard et al. [6] employ separate filters for pairs
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of input and output channels to extend Chebyshev polynomials to the MIMO case.
Sandryhaila [32] define general polynomial graph filters for the SISO case. Using the
same procedure, Gama et al. [10] extend these polynomial graph filters to the MIMO
case. Kipf and Welling [16] derive the GCN as a 1-localized approximation of the SISO
Chebyshev polynomials. They equivalently extend it to the MIMO case afterward by
applying separate parameters for each combination of input and output channels. Most
other MPNN s are derived from the GCN to mitigate various shortcomings [37,39,29].
Directly approximating the MIMO-GC allows us to benefit from MIMO-specific prop-
erties of the graph convolution.

MIMO Improvements. While most MPNNs are applied to the MIMO case, many of
these are well-known to be unable to amplify distinct components across channels, a
phenomenon known as over-smoothing [23], over-correlation [15], or rank collapse [30,27].
Various methods have been proposed to improve multi-channel learning within MPNNs.
Luan et al. [22] propose to apply separate graph filters for different feature channels. In
ADR-GNN:Ss [9], feature channels are separately aggregated using channel-specific edge
weights. Other works similarly propose to apply distinct filters across channels [21].
Zhou et al. [42] propose the multi-channel graph neural network that obtains multi-
ple computational graphs through a pooling operation and learns interaction scores be-
tween graphs. Utilizing multiple computational graphs has been extensively studied in
mitigating over-smoothing and representational rank collapse [28]. Applying different
linear transformations between pairs of nodes has also been derived within neural sheaf
diffusion [12,2]. As the MIMO-GC and LMGC naturally allow multi-channel learn-
ing, these frameworks can be closer aligned as approximations of the MIMO-GC. The
LMGC can equivalently be interpreted as message-passing on multigraphs. Butler et
al. [5] introduced convolutional multigraph neural networks that utilize polynomial fil-
ters on multigraphs.

Approaches Related to the LMGC. The LMGC is closely related to several existing
methods. As described in Example 3, multi-head attention-based methods like GAT [37]
and GATV2 [3] are LMGCs with constraints on the attention scores by applying the soft-
max activation. By lifting this constraint, LMGCs can be injective on multisets (Propo-
sition 3). Several other methods have been proposed to replace the softmax activation.
The FAGCN [1] instead applies the tanh activation function to amplify high-frequencies
or low-frequencies. Similarly, the GGCN [41] allows learning of signed edge weights.
Other studies considered replacing the softmax activation function within transformers
and self-attention modules. Wortsman et al. [38] apply the ReLLU activation in vision
transformers. Saratchandran et al. [33] found empirical success using polynomial acti-
vation functions for self-attention. However, as self-attention typically considers a fully
connected graph, these works did not study distinguishing structural differences. Con-
trarily, Proposition 3 shows that differences in the number of neighbors can be distin-
guished without the softmax activation.
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6 Experiments

We now want to confirm the beneficial properties of LMGCs. As the LMGC can match
the expressive power of GIN, we want to evaluate whether it can match the perfor-
mance of GIN for graph-level tasks. We also evaluate whether the LMGC can match
the performance of attention-based methods for node-level tasks. All experiments are
run on an H100 GPU. Additional details on all models, datasets, and hyperparameters
are provided as supplementary material.'

6.1 Methods

We consider the following four message-passing methods across all experiments. We
conduct all results ourselves using the same hyperparameter ranges across methods.

GATv2. This method [3] corresponds to an LMGC with agz)j) =09 (’0(7;1,)01 (W(k)a:(i) +
W(k)x(j))) where o4 is the LeakyReLU activation function and o5 is the node-wise
softmax activation function and v(®) € R¢ is a learnable vector. We set the number of

heads to K = 4 for all experiments.

FAGCN. This method was designed for heterophilic node classification tasks by al-
lowing for negative edge weights [1]. Stated in the LMGC framework, we evaluate a

method that sets KX = 1 and agllf ) — %&Zw where o is the tanh activation
\/d;

function, v € R%? is a learnable vector and d;, d; are the degrees of nodes v; and v;,
respectively. FAGCN is not always injective due to the degree normalization.

ACM. Written in the LMGC framework, the adaptive channel mixing (ACM) [22] pro-
poses to utilize AN = Agyy for amplifying low-frequency components and A®?) =
Ly, for amplifying high-frequency components. They further propose a third compu-
tational graph A®) = I, which we utilize whenever residual connections are used.

GIN. For graph-level tasks, the GIN [39] is particularly effective as it can match the
expressivity of the WL-test due to the non-linear feature transformation. As the non-
linear feature transformation, we apply a two-layer MLP with ReLU activations.

LMGC. Asthe LMGC can combine the favorable properties of the other three methods,
we utilize the instantiation of the LMGC as described in Eq. (14). As with GATV2, we
set the total number of heads to K' = 4 for all experiments.

6.2 Graph-Level Prediction

GIN is typically used for graph-level tasks due to its expressive power. Based on Propo-
sition 3, we now want to validate that the LMGC can match these results empirically.

! Our implementation is available at https://github.com/roth-andreas/mimo-graph-convolutions.
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We consider the challenging ZINC12k dataset [34]. It consists of around 12 000 molec-
ular graphs, with the task being to predict the constrained solubility of each molecule.
We integrate all models into the implementation of GraphGPS [26] and the Long Range
Graph Benchmark [8]. Based on Toenshoff et al. [35], we optimize the number of layers
in {6, 8,10} and the learning rate in {0.001, 0.0003, 0.0001} using a grid search. Each
model utilizes at most 100 000 parameters to ensure fairness.

In Table 1, we present results of a detailed study in which we combine these base
message-passing methods with various other established techniques. These techniques
are Laplacian positional encoding (LapPE) [18], jumping knowledge [40] and residual
connections [13]. We find all methods to benefit from these techniques, with the LMGC
achieving the best results in all cases. We provide additional results, including runtimes
and training losses, as supplementary material.

6.3 Node Classification

While expressivity is a key property for graph-level tasks, attention-based methods typ-
ically outperform GIN on node-level tasks due to their ability to filter messages [3].
Thus, we also evaluate whether the LMGC can match the performance of GATv2
and FAGCN on these tasks. We consider six heterophilic benchmark datasets for node
classification: Texas, Cornell, Wisconsin, Film, Chameleon, and Squirrel. We use the
ten splits into train, validation, and test sets proposed by Pei et al. [25]. We inte-
grate all models into the implementation from Rusch et al. [31]. As with ZINC, each
model uses at most 100 000 parameters. For each method, we tune the learning rate in
{0.01,0.003,0.001} and dropout ratio in {0.0,0.25,0.5} using a grid search, as these
affected the results the most. Based on the optimal hyperparameters for the validation
set, we rerun each method five times for all ten splits and report average test results.
These average test accuracies are presented in Table 2. GIN achieves the lowest
accuracy, and LMGC achieves the highest accuracy across all tasks. While the differ-
ences are only a few percentage points, these experiments confirm that the LMGC can
combine the benefits of GATv2, FAGCN, GIN, and the MIMO-GC into a single model.

7 Conclusion

This work derives the MIMO graph convolution (MIMO-GC) using the convolution
theorem and emphasizes the advantages of approximating the graph convolution in the
MIMO case rather than the SISO case. A key property of the MIMO-GC is operating on
multiple computational graphs or equivalently applying distinct linear transformations
for each node pair. We have proven that the localized form is injective and results in
linearly independent representations for almost every choice of edge weights. Due to
our direct theoretical derivation from the MIMO-GC and the generality of the LMGC
framework, studying properties of message-passing operations can now focus on ana-
lyzing the coefficients a(z] ). This allows the development of more effective methods
within a well-defined framework. While we have confirmed the advantages and poten-
tial of the LMGC framework, identifying optimal instantiations of LMGCs for specific
tasks remains open.
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Fig. 2: Examples of random filters F'(@) in the graph Fourier domain.
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Fig. 3: Spectral filters based on Chebyshev polynomials F'(0) = Zszo wiTk(A) of different
degrees K.

x) = F(0) ® F(x), we visualize the spectral filter F'(6) for the general graph con-
volution, polynomial approximations, and the GCN as a first-order approximation. In
Figure 2, we visualize F'(#) for random filters 6, as is allowed for the general graph
convolution (Equation 1). Polynomial filters define F'(f) as a polynomial function of
the eigenvalues of the normalized adjacency matrix or the corresponding graph Lapla-
cian (Equation 2). We visualize random such filters based on Chebyshev polynomials
of different degrees in Figure 3 and visually observe this polynomial structure.

The GCN as a first-order polynomial (Equation 3) can similarly be described as a
spectral filter F'(f) = wX where w € R is the sole parameter. We visualize this filter

o A al
;_Z mmﬂm HHHH“H ;::: HHHNTm WHHH ;: WMMM

Fig. 4: Filters of the GCN for F'(0) = wA with different values for w.
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Fig.5: Combination of k repetitions of random GCN filters F/(8) = wrA ©@ --- ® w1 A with
random values for w1, . . ., wg.

Task Graph Regression Node Classification
Dataset ZINC ZINCI12k Texas Cornell Wisconsin Film Chameleon Squirrel
# of graphs 249456 12000 1 1 1 1 1 1

avg. # of nodes ~232 ~232 183 183 251 7600 2277 5201
avg. # of edges ~498 ~498 325 298 515 30019 36101 217073
avg. node degree ~2.1 ~21 ~18 ~16 ~21 ~39 ~159 ~41.7
# of node features 1 1 1703 1703 1703 932 2325 2089
# of classes 1 1 5 5 5 5 5 5

Table 3: Statistics of all utilized datasets.

for different values w in Figure 4. As all filters wA are equivalent up to scaling, we also
observe the visual equivalence of such filters. For any parameter w, each component
gets amplified in the same way. For any other fixed A, any parameter w would still lead
to the same amplification of components. In the MIMO case, such a filter w; jA is
applied for each combination of input channel ¢ and output channel j. As for any w; j),
the components are amplified in the same way based on the given A, we refer to this
phenomenon as shared component amplification.

When such a filter is applied repeatedly for random GCN filters, the component
corresponding to the maximal absolute value in A dominates all other components ex-
ponentially. Repeated applications of GCN filters F'(0x ) ®- - -© F'(01) are visualized in
Figure 5. We refer to this as component dominance. In the MIMO case, when we have

Method Plain + LapPE + Jumping Knowledge + Residual + All three

GATv2 8/0.001 6/0.001 10/0.001 10/0.001 10,/0.001
FAGCN 8/0.001 8/0.001 10/0.001 10/0.001 10,/0.001
ACM  8/0.001 8/0.001 10/0.001 10/0.001 10/0.001
GIN  8/0.0003 6/0.001 8/0.0003 10/0.0003 10/0.001
LMGC  6/0.001 8/0.001 8/0.001 10/0.001 10/0.001

Table 4: Optimal hyperparameters for the experiments presented in Table 1. Each entry describes
the optimal 'number of layers / learning rate’.
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Method Texas Cornell Wisconsin Film Chameleon Squirrel

GATv2 0.01/0.25 0.01/0.25 0.01/0.25 0.01/0.5 0.01/0.25 0.01/0.0
FAGCN 0.003/0.5 0.01/0.25 0.01/0.25 0.001/0.5 0.001/0.25 0.01/0.25
ACM  0.01/0.25 0.01/0.250.003/0.25 0.01/0.5 0.01/0.25 0.01/0.25
GIN  0.01/0.25 0.01/0.25 0.01/0.25 0.01/0.5 0.003/0.25 0.01/0.25
LMCGC 0.01/0.25 0.003/0.25 0.003/0.25 0.001/0.5 0.003/0.0 0.001/0.5

Table 5: Optimal hyperparameters for the experiments presented in Table 2. Each entry describes
the optimal ’learning rate / dropout rate’.

ZINC ZINC12k
Method Train Test Time per Epoch (s) Train Test Time per Epoch (s)
GATv2 0.077£0.001 0.114 £ 0.004 52.74+0.0 0.005=+0.003 0.377 +0.024 2.5£0.1
FAGCN 0.093 +0.008 0.130 & 0.003 52.9+1.1 0.016 £0.006 0.365 % 0.018 2.5£0.0
ACM  0.109 £ 0.003 0.128 £ 0.001 73.1£0.9 0.019 £ 0.005 0.278 £ 0.006 3.44£0.0
GIN 0.068 + 0.001 0.088 + 0.002 35.5+1.0 0.018 £0.009 0.272 + 0.009 1.7+0.0
LMGC 0.054 £ 0.001 0.080 + 0.001 47.5+0.5 0.002 £ 0.001 0.241 £+ 0.018 24+£03

Table 6: MAE results on ZINC and ZINC12k. Optimal hyperparameters for train and test results
are independently obtained. Best scores in bold, second-best underlined. Each model uses at most
100 000 parameters.

shared component amplification, the same component also dominates each combination
of input and output channels with increasingly many repetitions. This combination is
equivalent to rank collapse and over-smoothing when a smooth component is amplified.

B Mathematical Details

In this section, we provide the proofs for all statements in the main paper.

B.1 Proofs for Section 3.
Proof of Theorem 1.

Proof. We use the vectorized signal & = vec(X) € R™¢ by stacking its columns. The
graph Fourier transform on matrices and tensors is applied along the node dimension,
i.e., independently on each channel. For matrix X this results in

F(X)=UTX ¢ R
and for tensor W in .
W=FW)=U" x; W R*x4

where X is the 1-mode tensor matrix product [17] that performs the desired broad-
casted matrix multiplication. With this, we state the multi-channel graph convolution in
the Fourier domain as
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ZINC ZINC
Method Train Test  Train Test

GATv2 10/0.001 10/0.001 8/0.001 8/0.001
FAGCN 8/0.001 8/0.001 6/0.001 8/0.001
ACM 6/0.001 6/0.001 8/0.001 8/0.001
GIN  6/0.0003 6/0.0003 6/0.001 8/0.0003
LMGC 8/0.001 8/0.001 6/0.001 6/0.001

Table 7: Optimal hyperparameters for the experiments presented in Table 6. Each entry describes
the optimal number of layers / learning rate’.

WX =UU" x,WoU'X)=UWoU”X).

The element-wise product Wk(U T X);, is a matrix-vector product. Similarly to the
SISO-GC, we simplify this expression using matrix multiplications. Equivalently to the
SISO-GC, this can be achieved by diagonalizing W into a block matrix of diagonal
blocks

_Wl,O,O 0 0 W1,o,d 0 0
o . 0 ... 0 . 0
0 0 Waoo 0 0 Wod
D = E '.. E
Wico 0 0 Wica 0 0
o . 0 ... 0 . 0
0 0 Wn,c,O 0 0 Wn,c,d i

€ Rnexnd where VAV;“ ; € R. This simplifies the equivalent vectorized form into
vec(W® UTX) = Dvec(UTX) = D (I, @ UT) vec(X)

by utilizing the Kronecker product ®. The matrix D can further be decomposed into
a sum of Kronecker products D = Y ', W, @ I, where for each I\") € Rm*"
all entries are zero, apart from position k, k which is one. This lets us state the full
vectorized multi-channel graph convolution as

vec(W x X) = (I, ® U) (i: W, @ Iflk)> (I, ®UT) vec(X)
k=1

= (i W, ® U;,k(U:,k)T> vee(X)

k=1

- T
by using the fact that UISVUT = U, ,(U.)T. We define W) = W, e Réxe,
Inverting the vec operation allows us to avoid the Kronecker product and state the exact
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multi-channel graph convolution as
WX = Z U;7k(U;7k)TXW(k) )
k=1

This concludes the proof.

Proof of Proposition 1.

Proof. We decompose X and Y as a sum of n rank-one matrices based on U. We have
X =Y U a® e R
k=1
fora®) = (U, ;)T X € R and
Y = Z U:’kb(k) c Rnxe
k=1

for b*) = (U. ;)TY € R'*¢. Thus,
n
O+ X =) U ,(U)"U ra®W®

k=1

=Y U ya®w® (15)
k=1

=> UM =Y
k=1

(k)
for (W®H)),, ,, = % By our assumption we have that a') # 0 for all k € [n] and

m € [d]. o

Proof of Proposition 2.

Proof. We utilize the eigendecomposition

n
AF =3 "NU. ;U )T
j=1
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We then reformulate the polynomial filter as

K n

K
S ArxvE =N Nu. U )" xXv®

k=0 k=0 j=1

K
U.,;(U.;)" XY Mv®
k=0

I
M=

(16)

<.
I
—

U.,;U )XW

I
M=

<.
Il
a

= G)poly * X

where W) = ZkK:O )\?V(k) and the corresponding © 1y

B.2 Proofs for Section 4

We now prove the injectivity and linear independence properties of the LMGC stated
by Proposition 3 and Proposition 4. We first state and prove a helpful lemma:
Lemma 1. Let X be a countable set, K > 1, and agz)j)
K],z x;) € X. Let all aEZ’)j) be chosen such that for any two finite multisets
X1, Xy C X and any xp,, ¢y € X with Xy # Xy or x, # x4, there exists a k € [K]|
(p.3) (a,9)

such that Zw(j)EXl a([l;)j L(j) 7& Zw(j)E.Xz Q(Z)j L(j)-

Then, mee){p Wi &) is injective on finite multisets X, C X and elements
x;, € X forae. WO . WE) ¢ Rixe,

€ R a scalar for all k €

Proof. We want to show that for any two distinct pairs &1 € X, X7 C X and x5 €
X, Xy C X, their difference expressions

S Wapm,— Y, Wogmg #0 amn
TpEX TqEX2

is nonzero. Substituting the definitions of W, ,,y and W5 ,, we obtain:

K
ZW(k)( Z agllg’)p):cp — Z agi’)q)mq) #0. (18)
k=1 T, €EX T EXo

For a.e. W(l), el W) this is zero only when all differences are zero. As such, we

require all terms to be zero:

1, 2,
Z aEl)p):l:p — Z agl)q)wq #0

x, €EX x EXo
SRV 048(”)));1:,,7 > agg)mﬁéo. (19)

T, €A x  €EX2

As X is countable, a countable union of measure-zero sets has measure zero. This
concludes the proof.
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Proof of Proposition 3.

Proof. Continuing with the proof of Lemma 1, we need to show that

> ag,ﬁf’)mp -y agi’)q)wq £0 (20)

x, €EX T EXo

for some k € [K] for any ®1,x2 € X and X}, Xy C X with either &1 # @2 or
X1 # X3. We can equivalently state Equation 20 in matrix notation X o, # 0 where
the matrix

X, =[®p, - Ty gy o Ty,
e R¥*(IX11+*20) i defined as the concatenation of all elements in Ty, Ty, €
_ |,,@p1) (Lpi2y ) (1,q1)
X7 and wa,...,waxﬂXg,andthe VeCtor () = {O‘(k) Cag) 1 —agy™ ... -

€ RIMIHIXl for k € [K].

Xsap, = 0 is true if and only if o, € ker(Xy). As ker(X) spans a lower-
dimensional subspace, and thus X oy, # 0 is satisfied for a.e. choice of aEZ)J ),

Proof of Proposition 4.

Proof. Similar to the proofs for Lemma 1 and Proposition 3 we need to show that for
any element ¢y x, € X and multisets X1 X5 C X with either &1 # x5 or X1 # b - Xy,
we have

S Wapa,—co Y. Wegzg #0 @1)

T, X T EXo

for any ¢ # 0 and a.e. agz)j) and a.e. W) for all k € [K]. This is equivalent to

K
Z w k) Z agllc’)p)wp —c- Z agi’)q)wq #£0 (22)
k=1 T, EX T EX

We proceed with a proof by contradiction. Assume that the representations are lin-
early dependent. Then, there exist a constant ¢(1:2) = 0, such that

Z aE,lc’)p)wp —c1:2) . Z agi")q):cq =0 (23)

x, X T EXo

holds for all k € [K]. This equality can only be satisfied for a.e. choice of coefficients

(i,j
Soa, - Y oz =0 (24)

)
« when
(k)
mp€X1 xTq EXo

(Lqyxy)) T
(k)
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for some c,(gm) € R, i.e., the sum of the elements is linearly dependent. In this case, the

value of ¢(1?) is

(L,p)
) _ e, ex ) ol

2,
1, e 00 24

(1,2)
xr —C . g
_ (Hza:pGXl p” k HZZ,ZGXQ QH) . (25)

2,
1, s ) 4

If X; = b- X, for some scalar b # 0, then c"® = 1 for all k¥ € [K], and thus also
12 = 1. As we assumed X; # b - X, this case cannot occur. Under the assumption
X1 # b - Xs, Equation 25 can only be satisfied for a single value of k& simultaneously
for a.e. aEL’J ). This contradicts the assumption of linear dependence. Thus, for K > 1,

representations are linearly independent.

C Experimental Details

All experiments were executed on an Nvidia H100 GPU with 96GB memory.

C.1 Model Architectures

Graph-Level Prediction We evaluate a model that first applies a linear feature en-
coder that maps the feature dimension onto a hidden dimension d. Then, k iterations
of message-passing are applied, each followed by a GELU activation. For cases with
residual connections, the input to each message-passing layer is added to the output of
the GELU activation. This output is stored for all message-passing steps for jumping
knowledge. After message-passing, the channel-wise maximum value per node is used
when jumping knowledge is allowed. Otherwise, the output of the last layer is used. As
a decoder, we use a two-layer MLP with a linear layer followed by a GELU activation
and another linear layer.

Node Classification The employed model first applies a linear encoder, ReLU activa-
tion, and a dropout layer. Then, k layers of message-passing with a residual connection
are applied, each followed by a ReLLU activation and a dropout layer. As the last oper-
ation, a single linear layer is applied. The number of channels for all layers is set to a
shared d, apart from the initial and final dimensions. For these experiments, k is set to
2. The number of channels is reduced so that the total number of parameters is maximal
but below 100 000.

C.2 Hyperparameters

For the experiments in Section 6.2, we optimize the learning rate in {0.001,0.0003, 0.0001}
and the number of layers in {6, 8, 10} using a grid search. Each experiment is repeated
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for four fixed seeds. Average train and test loss are reported. Optimal hyperparameters
are shown in Table 7 and Table 4.

For the experiments in Section 6.3, we optimize the learning rate in {0.01, 0.003, 0.001}
and the dropout ratio in {0.0,0.25,0.5} using a grid search. Each experiment is run for
ten splits into train, validation and test sets. Based on the best accuracy on the validation
set, we reuse the optimal hyperparameters and run all ten splits for five times and report
average test scores. Optimal hyperparameters are shown in Table 5.

C.3 Additional Results

We provide additional results on the full ZINC dataset that contains around 250 000
molecular graphs, training errors, and runtimes. Average train and test errors are pre-
sented in Table 6. Similarly to the experiment on universality, the LMGC achieves the
lowest training error. The difference is more significant on the ZINC12k subset as it
is easier to overfit on less data. This improvement also leads to the LMGC having the
lowest test loss for ZINC and ZINC12k. Compared to GATv2 and FAGCN, the LMGC
improves the test results by at least 40%. This confirms the ability of the LMGC to
match the expressivity of GIN. The training time per epoch of the LMGC is increased
compared to GIN by around 35% but slightly reduced compared to GATv2 and FAGCN
as the LMGC does not require the normalization step.
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