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Abstract. In this work, we explore the use of untrained message passing
layers in graph neural networks for link prediction. The untrained message
passing layers we consider are derived from widely used graph neural
network architectures by removing trainable parameters and nonlineari-
ties in their respective message passing layers. Experimentally we find
that untrained message passing layers can lead to competitive and even
superior link prediction performance compared to fully trained message
passing layers while being more efficient and naturally interpretable, es-
pecially in the presence of high-dimensional features. We also provide a
theoretical analysis of untrained message passing layers in the context
of link prediction and show that the inner product of features produced
by untrained message passing layers relate to common neighbour and
path-based topological measures which are widely used for link prediction.
As such, untrained message passing layers offer a more efficient and inter-
pretable alternative to trained message passing layers in link prediction
tasks.
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1 Introduction

Graph neural networks (GNNs) are a powerful class of machine learning models
that can learn from graph-structured data, such as social networks, molecular
graphs, and knowledge graphs. GNNs have emerged as an important tool in the
machine learning landscape, due to their ability to model complex relationships
and dependencies within data and have found applications in a variety of fields
where data exhibits a complex topology that can be captured as a graph. This is
shown by a multitude of studies, including [4} 14}, 20l 37, [44], which highlight the
versatility and adaptability of GNNs for machine learning tasks across a range of
fields.

One of the key concepts underlying GNNs is Message Passing (MP) [15],
which operates by propagating and aggregating information between nodes in the
graph, using message and update functions possibly with learnable parameters.

* Equal contribution
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However, designing effective GNNs can be challenging, as they can suffer from
issues such as over-smoothing or over-parameterization, and because training
GNNs can be computationally demanding. In order to address these shortcomings
recent efforts have concentrated on finding simplified architectures that are both
more interpretable and easier to optimize.

With our work, we aim to complement existing works on simplified and
untrained MP architectures, previously formulated in the context of node clas-
sification, from the perspective of link prediction [51]. Link prediction is an
important task in graph ML with many applications such as recommender sys-
tems, spam mail detection, drug re-purposing, and many more [51]. Current
state of the art LP methods [45] in general rely on a combination of GNNs and
structural features hence formulating effective, efficient and interpretable MP
architectures has the potential to further improve current LP methods in these
regards. Therefore we focus our analysis on MP layers rather than trying to
formulate a novel end-to-end LP method.

In this work, we explore the use of untrained message passing layers for link
prediction in graph datasets with high dimensional features. By formulating
Untrained Message Passing (UTMP) layers, we follow an approach similar to that
of Simplified Graph Convolutional Networks introduced by [47]. This approach
simplifies GNN architectures by removing trainable parameters and nonlinearities
resulting in an architecture that can be clearly separated into two components:
an untrained message passing/feature propagation steps followed by a linear
classifier. In addition to these we also consider fully untrained architectures based
on simple inner products of features obtained after [ iterations of UTMP layers
as a baseline and find that these features produced by UTMP layers are already
highly informative leading to surprisingly high link prediction performances.

We base our analysis on untrained versions of four widely used MP architec-
tures, namely Graph Convolutional Networks (GCN)[26], SAGE [16], GraphConv
[33] and GIN [48]. We test these untrained message passing layers on a variety
of datasets that cover a wide range of sizes, node features, and topological char-
acteristics ensuring a comprehensive evaluation of the models. We test UTMP
layers on a variety of datasets that cover a wide range of sizes, node features, and
topological characteristics ensuring a comprehensive evaluation of the UTMP
layers. Mirroring the results reported by [47] for node classification we find that
UTMP layers in many cases outperform their fully trained counterparts in LP
tasks while being highly interpretable and easier to optimize.

We also show that link prediction provides a complementary perspective for
the theoretical analysis of UTMP layers [9] 54]. In our theoretical analysis we
establish a direct connection between features produced by UTMP layers and
various path based node similarity measures. Path based measures capture the
indirect connection strength between node pairs nodes in the absence of a direct
link connecting the nodes. Consequently, path based measures and methods have
been widely used in traditional link prediction methods [28, BI] and also play a
key role in many state of the art methods [511 [55].
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Our theoretical analysis relies on the assumption that initial node features are
orthonormal which covers widely used initialization schemes such as as one-hot
encodings and high dimensional random features, and also holds approximately for
many empirical data sets with high dimensional features. Hence, our theoretical
findings also provide new insights into the effectiveness of the widely used
initialization schemes of one-hot encodings and high dimensional random features
in graph representation learning. More generally our results show that untrained
versions of message passing layers are highly amenable to theoretical analysis
and hence could potentially serve as an general ansatz for the theoretical analysis
of GNNs including settings beyond link prediction.

The main contributions of the paper are as follows:

— We show that untrained versions of widely used MP layers often outperform
their fully trained counterparts in LP tasks.

— We establish a direct connection between MPNNs and path based node
similarity measures both of which are widely used in LP methods.

— Our theoretical analysis further provides insights in to the effectiveness of
widely used node initialization schemes such as one-hot-encodings and random
features in graph neural networks.

2 Related Work

Our work is motivated by recent works that investigate simplified and untrained
GNNs from different perspectives. We formulate UTMP layers following the
approach of [47] which simplifies GNNs by successively removing trainable param-
eters from layers and nonlinearities between consecutive layers. [47] also provide
a theoretical analysis of simplified models in the context of node classification
reducing the model to a fixed low-pass filter followed by a linear classifier. The pa-
per also empirically evaluates the simplified architectures on various downstream
applications and shows that simplified architectures do not negatively impact
accuracy while being computationally more efficient than their fully trained
counterparts.

Other works have focused on finding untrained subnetworks. For instance
[19] explores the existence of untrained subnetworks in GNNs that can match
the performance of fully trained dense networks at initialization, without any
optimization of the weights. The paper leverages sparsity as the core tool to
find such subnetworks and shows that they can substantially mitigate the over-
smoothing problem, hence enabling deeper GNNs. The paper also shows that the
sparse untrained subnetworks have appealing performance in out-of-distribution
detection and robustness to input perturbations. Similarly, in [7] the authors
demonstrate that GNNs with randomly initialized weights, without training, can
achieve competitive performance compared to their trained counterparts focusing
on the problem of graph classification. In [II] the authors show that certain
common neighbour measures can be approximated by MPNNs initialised with
random weights and node features without training. Other more recent works
on untrained GNNs include [I2] where the authors propose a training free linear
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GNN model for semi supervised node classification in text attributed graphs and
[40] that defines training free GNNs for transductive node classification based on
using training labels as features.

Link prediction is widely studied problem with a multitude of available
methods. UTMP layers are related to a both GNN based methods such as
Variational Graph Autoencoders (V-GAE) [27] and more traditional methods
that are rely on path and random walk based measures for link prediction [28].
On the other hand state of the art methods such as SEAL [51], NBFnet [55],
BUDDY [9], Neo-GNN [50] and NCNC [45] in general rely on combining GNNs
and structural features. Some methods such as SEAL [51] and WalkPool [36] are
based on extracting and performing MP on local subgraphs around target links
effectively framing link prediction as a graph classification problem. Although
subgraph extraction based methods can out perform purely GNN based methods
in link prediction tasks the subgraph extraction process can be resource intensive
for large networks negatively affecting the scalability of these methods. NBFnet
[65] is another state-of-the-art method that is motivated by the Bellman-Ford
algorithm. NBFnet is based on learning representations of paths between target
nodes and aggregation functions for these representations. While NBFnet scales
more favorably compared to subgraph extraction based methods it still needs to
compute representations for large numbers of paths to predict links and hence has
worse scaling behavior compared to purely GNN based link prediction methods
[55]. Neo-GNN [50] and BUDDY [9] circumvent these difficulties by using pairwise
similarity measures between higher order neighbourhoods of nodes, which are
then used together with GNN based node features for LP. Notably BUDDY
includes a feature propagation step that can be seen as a special case of UTMP
(see UTSAGE in Section . In [45] the authors propose a GNN based approach
that in addition to using node level features also aggregates features of common
neighbours for link prediction and further propose Neural Common Neighbour
Completion (NCNC) to counteract the negative effects of graph incompleteness
on LP performance.

As detailed above GNNs are widely employed as sub-components in LP meth-
ods. Hence rather than proposing a new method for link prediction we consider
the advantages of using untrained MP layers over their trained counterparts in
existing LP methods. Moreover, our theoretical results establish a link between
MP based approaches and structural features by showing that features resulting
from UTMP implicitly encode neighbourhood information that underlies many
widely used common neighbour and path based structural features used in LP.

From a theoretical perspective, our results also relate to recent works on the
effectiveness of random node initializations and one-hot encodings. For instance
[41] and [I] focus on the effect of random node initializations of the expressivity of
GNNs in the context of graph classification while [I0] explores various encodings
for the task including node and graph classification. Our analysis complements
these works from the point of view of LP and establishes a link between features
derived from random and one hot initializations and, path based topological
features.



Link Prediction with Untrained Message Passing Layers 5

Finally, in our theoretical analysis we rely on the fact that collections of high
dimensional vectors tend to be mutually orthogonal. This is a widely know fact
that has wide raging applications in ML more broadly given the pervasive use of
high dimensional vector representations in modern ML methods [22] 23].

3 Message Passing Architectures

Prior to introducing the message passing architectures investigated in our work, we
first clarify the notation used throughout the paper. Let G(V, E') be an undirected
graph with vertex set V = {vy,vs...vx}, edges E CV x V and no self-loops,
ie. (v,v) ¢ E Yuv € V. We denote the adjacency matrix of the graph as A and
define A := A + I, where I is the identity matrix, i.e. A denotes the adjacency
matrix of the graph G that explicitly includes all possible self-loops. We use
N (v) to denote the neighborhood of a node v, i.e. the set {w € V : (v,w) € E},
and use N (v) := N(v) U {v} to denote the neighborhood of v in the graph with
self-loops. Similarly, we denote the degree of a node v as d(v) and d(v) = d(v) + 1.
The initial feature vector of node v is denoted as A% and we use A" to denote
the updated feature vector of node v after [ rounds of message passing. Although
we restrict our discussion to undirected and unweighted graphs the generalization
of our definitions and results to weighted graphs is straightforward.

Prior to defining untrained versions, we first introduce the message passing
rules of the four GNN architectures considered in our work, using a unified
notation above.

Graph Convolutional Networks [26] GCNs were introduced as a scalable approach
for semi-supervised learning on graph-structured data. GCNs are based on an
efficient variant of convolutional neural networks which operate directly on graphs.
The MP layer of GCN is given by: Y = wo . ZueN(v) 1 hq(ffl), where

dud,

WO is the weight matrix for layer [.

GraphSAGE [16] GraphSAGE is a type of Graph Neural Network that uses
different types of aggregators such as mean, gcn, pool, and Istm to aggregate
information from neighboring nodes. The MP layer in GraphSAGE uses the

following formula: A = Wl(l) CRY 4 WQ(Z) ~AGGueN(U)h§f‘1), where W{(ll)z}
are learned weight matrices at layer [, AGG is an aggregation function (such as
mean, Sum, max).

Throughout this paper use the following slightly modified version of the SAGE

layer : th) = Wl(l) . di ZMEN(”) hg_l), which we found to produce superior results
for link prediction.

GIN [48] The Graph Isomorphism Network Convolution (GIN) is a simple
architecture that is provably the most expressive among the class of GNNs and
is as powerful as the Weisfeiler-Lehman graph isomorphism test. The MP step of

GIN is as follows: AY) = O((1+e)- hi—Y T2 ueN() hgil)), where © denotes an
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MLP after each message passing layer, which in our implementation includes two
Linear layers and a Rectified Linear Unit (ReLU) activation function following
each Linear layer (code adapted from [7], 32]).

GraphConv [33] GraphConv is a generalization of GNNs, which can take higher-
order graph structures at multiple scales into account. The mathematical for-

mulation of this is as follows: hi = Wl(l) Y 4 Wz(l) D ueN () hY where

W{(i)% are learned weight matrices.

3.1 Untrained MP Architectures

For the purpose of our theoretical and experimental evaluation, we now define
the untrained counterparts of the four Message Passing Neural Network (MPNN)
architectures introduced in the previous section. Following [47] we eliminate all
learnable components and replace them with identity matrices. Here our objective
is to obtain the simplest form for the update function that retains the general
message passing strategy, which includes the predefined update message passing
functions and aggregation methods while removing all learnable parameters and
nonlinearities. We obtain the following functions that capture the aggregation
and update step in the untrained versions of the message passing layers:

ch =3 oL p(h
UTGCN: hy’ =3, i) Vi,

o ) (1-1)
UTSAGE: hy’ = 3-3 () hu

UTGIN: 1) = (1 + )hl ™ + 3 prey Y
UTGraphConv: 1) = D ueN () Ry

In general, we consider the case where all nodes have self-loops, i.e. the features
of the node itself are included in the aggregation step. Further setting ¢ = 0 for
GINSs results in a uniform formula across both models: S = DN () hi.
Henceforth we will refer to both models as UTGIN.

The simplified message passing layers can also be expressed in matrix form:
HO =SH(-D = S'H®) | where H(®) € R"*? is the initial feature matrix, and
H® the feature matrix after [ iterations of message passing. Following, the
definitions of UTMP layers above we have S = D~'/2AD~1/2 for UTGCN and
S = D 'A for UTSAGE, where D is the degree matrix with diagonal entries
Dy, = Do A,,. Similarly, for UTGIN we have S = A. The generalization of
UTMP layers to undirected weighted graphs can be obtained by simply replacing
the adjacency matrix and related quantities with their weighted counterparts in
the formulation of S.

3.2 Simplified architectures

Following the construction of [47] for the case of node classification we add a final
trained linear layer before the final dot product. We refer to such architectures
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that include a final trained linear layer after the UTMP layers as ’simplified’ in
accordance with [47] and include an ’S’ in the abbreviations of these models, e.g.
SGCN. This results in an architecture where the final node features are given
by: HO = 0S'H() | where O is the learned weight matrix of the linear layer.
In the case of simplified GNN architectures, the trained linear layer can also
be interpreted as a modified positive semi-definite inner product in the form of
(Ohl,Oh!) where O is the weight matrix of the linear layer.

In the case of link prediction features produced by UTMP layers can actually
be used to construct fully untrained architectures that only consist of feature
propagation steps followed by an inner product. In practice, we found that such
architectures based solely on UTMP layers can do surprisingly well in terms of
LP performance showing that UTMP layers produce highly informative features.

3.3 UTMP layers and path based measures

Building on the formulations of the untrained layers above, in the following
we provide a theoretical analysis that relates the inner products of features
resulting from untrained message passing layers to pair-wise measures of node
similarity that are based on characteristics of paths in the underlying graph.
Such path based measures offer a way of quantifying the indirect connection
strength between node pairs in the absence of a direct link connecting the nodes.
In order to relate path based measures and UTMP layers we will assume that
initial feature vectors are pairwise orthonormal i.e. <h50), h&o)) = Oyv-

A path of length [ is defined as a sequence of [ 4 1 vertices (vo,v1 ...v;) such
that (v;,v;41) € F for all 0 < i < I. We denote the space of a set of all paths of
length | between nodes u and v as P, . The number of paths of length | between
any u and v is given by the I** power of the adjacency matrix i.e. |P., | = Al,.
Note that since we assume self-loops on all vertices P!, implicitly also includes
shorter paths between u and v. Similarly, paths of length [ between vertices u
and v also determine the probability of a random walk starting at u reaching

v which is given by P(u 4 v) =2 pept [Licp—p %, where p — [v] denotes that
the last vertex (v) is not included in the product. The random walk probability

can also be expressed in matrix form P(u KN v) = (D 'A)L,.

Now we consider inner products of features after [ iterations of message
passing which is given by (b, h{") = (STHOHOT(S)T),,. For orthonormal
features the inner products of features reduces to HOH©T =T and we obtain
the following expression for the inner product of the features after [ iterations of
UTMP layers: (h{”, ") = (SY(S1) 7).

For UTGCN we have S = D~1/2AD /2 and the inner product after [ layers
can be expressed in terms of paths of length 2] between u and v as: <h5f), hg,”) =
\/ﬁ Zpeng, [Licp d%, where [p] denotes the path p with the first and last
vertices removed. The above expression is equivalent to \/ P(u 2, v)P(v 2, u)
i.e. the geometric mean of the probabilities that a random walk starting at
either u or v to reaches the other in 2/ steps. Similarly, for UTSAGE we have
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S = D !A and the inner product can be expressed in terms of paths in P2
as: <h7(f)7 hgl)> =2 perz icp—mm) %, where m(p) is the midpoint of the path

p. The above expression is equivalent to (hg), hfjl)) =>,Pu 4 i)P(v LN i)
and hence corresponds to the probability that two simultaneous random walks
starting at v and v, respectively, meet after [ steps at some midpoint. Finally,
for UTGIN we have S = A and hence: <h§}), hi”) = |P2|.

Although the condition of orthonormality might seem quite restrictive at
first glance it applies in many practical settings, though in some cases only
approximately. Moreover, for the above result to hold orthogonality only needs
to be satisfied in the common [-neighbourhood of the nodes. One example of
orthonormal features that are widely used in practice are one hot encodings and
orthonormality also applies in the case of high dimensional random feature vectors
since for sufficiently large dimensions any set of k independent random vectors
is quasi orthogonal [I3]. Similar results also hold for random high dimensional
binary features that are sparsely populated for which the expected value of the
inner product of two vectors scales as O(1/k) for dimension k.

High dimensional features of empirical data sets also show similar charac-
teristics to their random counterparts. For instance, empirical feature vectors
of randomly selected node pairs tend to be approximately orthogonal, notwith-
standing the fact that features of connected node pairs can be highly correlated
I35], as can be verified experimentally (see Sec|DJ).

As mentioned before in the case of simplified GNN architectures, the final
trained linear layer can be interpreted as a modified positive semi-definite inner
product and the orthogonality results for high dimensional random features also
apply to such more general inner products. However, note that normality is no
longer guaranteed i.e. (Oh,,Oh,) ~ 5u,U|hu|2@.

We would like to note that the assumption of orthogonality is a mathematical
assumption we use to establish the connection between UTMP layers and path
based measures. However, this does not imply that UTMP require orthogonal
features to perform well at LP tasks. On the contrary deviations from orthogo-
nality can enhance the LP performance of UTMP for instance when connected
nodes tend to have more similar features which holds for many LP benchmarks
(e.g. see Figure [1f).

3.4 Triadic closure and other path based measures

Triadic closure, also known as transitivity, refers to the tendency for nodes in
real-world networks to form connections if they share (many) common neighbors.
As such triadic closure has been widely studied as a mechanism that drives link
formation in complex real-world networks [I7], [39]. Moreover, node similarity
measures that build on triadic closure in social networks have been used for
similarity-based link prediction algorithms [30].

Given a pair of nodes (u,v), the tendency of them to be connected due to
triadic closure can be quantified by simply counting the number of common neigh-
bours between the two vertices i.e. T'(u,v) = |N(u) N N(v)| which corresponds
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to [ = 1 for UTGIN, assuming that u and v are not connected in the graph as
is typically the case in an LP setting. In practice, one might further want to
account for the fact that in general nodes with higher degrees also have a larger
probability of having common neighbours, for instance by normalizing by the
degrees, i.e.: Ty(u,v) = |N(u) N N(v)|/d(u)d(v), which corresponds to [ = 1 for
UTSAGE. One can go one step further and also take into account the degrees
of the common neighbours themselves since high degree nodes are by definition

common neighbours of more node pairs, for instance by weighing common neigh-

bours according to their degree T,,(u,v) = m 2N ()N (v) d% which in

our case corresponds to UTGCN with [ = 1.

Our results also link UTMP layers to other topological similarity measures
that are widely used in link prediction heuristics such as the Adamic-Adar
(AA) index [3], Resource Allocation (RA) [53], the Katz index [24], rooted

PageRank [8] and SimRank [2I]. For instance the AA index, given by AA(u,v) =

DN ()N (v) bgﬁ’ and RA(u,v) = 3 ;e n(w)nn(w) d% differ only slightly from

the triadic closure measures we obtained for UTMP layers. Similar results also
hold for other path based measures such as rooted PageRank, the Katz index and
SimRank which can be defined in terms of power series over paths of different
lengths. For instance, SimRank similarity between nodes v and v is defined as
s(z,y) = >, Puw (1)y" where P,, (1) is the probability that two random walks
starting at v and v meet after [ steps and 0 < v < 1 is a free parameter. Similarly
the Katz index is defined as Katz(u,v) = > ; Al 4! and rooted PageRank is

l l
defined as PR(u,v) = (1 —7) Y, w'yl again with 0 < v < 1 being
a free parameter. Hence, the Katz index is closely related to UTGIN and rooted
PageRank is closely related to UTGCN, the main difference being that these
measures also include paths of odd length which UTGIN and UTGCN include
only indirectly through the inclusion of self loops in their formulation.

4 Experiments and Results

In the following, we provide details on our experimental setup. We evaluate GNN
architectures on a variety data sets that cover both attributed graphs where
nodes have additional high-dimensional features (Cora small, CiteSeer small,
Cora, CoraML, PubMed, CiteSeer, DBLP) and non-attributed graphs that do
not contain any node features. Data sources and summary statistics of the data
sets can be found in the Appendix Table [3] We use the area under the Receiver
Operator Characteristic curve (ROC-AUC) for the non-attributed datasets and
Hits@100 and ROC-AUC for the attributed datasets as our main performance
measures []

! The code for replicating the results is available at: https://doi.org/10.5281/zenodo
15019863
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4.1 Experimental Setup

To ensure a fair comparison among models we maintain the same overall architec-
tures across all experiments and MP layers. For trainable message passing layers,
each layer is followed by an Exponential Linear Unit (ELU) and the optimal
number of layers for models is determined via hyperparameter search. Upon
completion of the message passing layers, we introduce a final linear layer for
both trained and simplified models. We also consider untrained (UT) models
that do not include this final linear layer and directly take the inner product
between the propagated features of the source and target nodes resulting in a
parameter-free and hence fully untrained model. Since the simplified architectures
consist of UTMP layers followed by a trainable linear layer, the consideration of
UT models which do not include the linear layer also covers all possible ablation
studies.

In principle any LP method that uses GNNs as one of its sub-components
can also be formulated using UTMP layers. However, in general state of the
art methods consist of many sub-components resulting in more complex and
computationally demanding experimental setups where the effect of switching
from trained to untrained MP layers is difficult to isolate. Therefore, we focus
mostly on graph auto encoders in our experiments due their simplicity, but also
consider two versions of NCNC [45]: one in which uses trained GNN layers for
MP and another that uses UTGNN layers instead, which following our naming
convention is denoted as SNCNC.

For the simplified models we precompute node features corresponding to the
untrained message passing layers, as these do not change during training. We
use one-hot encoding as initial node features for the non-attributed datasets.
Further details about the experimental setup can be found in the supplementar
material (Sec. [C]) along with results based on HeaRT [29] evaluation setting (Sec.
which samples hard negative samples via multiple heuristics.

Table 1. Link Prediction accuracy for attributed networks as measured by Hits@100.
Red values correspond to the overall best model for each dataset, and blue values
indicate the best-performing model within the same category of message passing layers.

Models  Cora (small) CiteSeer (small) Cora Cora ML PubMed CiteSeer DBLP

Hits@100 Hits@100 Hits@100  Hits@100  Hits@100  Hits@100  Hits@100
GCN 80.5 £ 1.59 83.0 £ 1.57 79.75 £ 0.74 82.92 £ 1.44 73.64 £ 2.04 81.06 £ 1.3 69.72 & 1.71
SGCN 84.73 £ 1.46 88.69 £+ 0.57 83.93 £ 0.8 87.31 £ 1.23 69.11 £ 1.25 86.02 £+ 1.11 64.81 & 2.09
UTGCN 64.24 + 3.4 81.07 £ 1.5 375 £ 1.5 58.1 4 1.74 25.35 £ 2.04 69.39 £ 2.22 31.46 + 1.04
SAGE 75.67 £ 1.29 80.23 £+ 1.09 69.07 £ 1.05 78.33 &£ 0.85 56.25 £ 0.7 77.14 + 2.93 64.81 £ 1.66

SSAGE 80.42 + 1.71 87.22 +£ 1.19 74.16 £ 1.47 79.61 £ 1.75 42.14 £ 1.85 83.78 £ 1.61 56.49 + 2.64
UTSAGE  57.76 &+ 1.51 61.85 + 3.23 30.51 4+ 1.57 51.13 £ 1.27 6.6 + 0.75 69.88 £ 2.15 19.04 + 2.2

GIN 74.66 £ 1.63 71.16 £ 1.67 69.83 £ 1.07 78.61 £ 1.07 65.3 £ 1.3 74.64 £ 1.61 64.81 £ 1.66
GraphConv 747 +114 7489+ 150 6237 + L8T 78,66 + 157 6281 + 21 77.60 & 132 66.59 & 1.25
SGIN 74.54 £ 1.69 78.71 £ 2.15 73.11 £ 1.03 77.46 £ 1.77 46.21 + 0.85 78.56 + 1.31 66.59 + 1.15
UTGIN 46.73 £+ 2.36 61.85 £+ 3.23 22.65 + 1.1344.79 £+ 1.44 22.01 £+ 1.71 58.8 &+ 6.18 34.29 + 1.02
NCNC 83.69+3.13 76.371+2.90 84.55+1.14 87.36+1.83 80.724+0.91 87.2243.61 73.77+0.75

SNCNC 88.72+1.20 93.42+0.78 84.69+1.39 89.81+0.86 81.26+£1.59 89.79+1.51 74.234+0.117
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4.2 Experimental Results

In the following section, we discuss the results of our experiments for link
prediction in graphs with node attributes (i.e. in graphs where nodes have
additional features) and non-attributed graphs separately. This diverse selection
of data sets allows us to thoroughly evaluate the capabilities of the models for
graphs from different application scenarios, with different sizes, and different
topological characteristics.

Results for attributed graphs are given in Table [I] where we find that in
general replacing trained MP layers with their untrained counterparts increases
LP performance on most datasets with the exception of PubMed and DBLP
data sets where architectures based on UTMP layers perform worse in terms of
Hits@100. In general, we find that GCN based architectures have the best overall
performance. Finally, we observe that replacing trained GCN layers with their
untrained counterpart also improves the LP performance of NCNC. Indeed, some
of the results reported in [45] seem to be obtained using UTGCN layers. Although
we focus is on MP layers rather end-to-end LP methods, we find that simple
GAE type architectures based on UTMP layers can in many cases outperform
more sophisticated state-of-the-art models such as SEAL, NBFnet and Neo-GNN
(Sec. |G)).

We also find that the fully untrained (UT) architectures already provide a
very good baseline and some cases even outperform fully trained versions in terms
of ROC-AUC (Table [4]). This demonstrates that the raw features produced by
UTMP layers, which the simplified models are trained on, are already highly
informative for link prediction in accordance with our theoretical results. Note
that, the fully untrained (UT) models can be computed efficiently via sparse
matrix multiplication.

In our analysis of the OGB datasets, we found that NCNC (GIN) outperforms
other models in two out of three datasets. In the remaining dataset, SNCNC
(SGIN) showed superior performance compared to the other models. Additionally,
we observed that SNCNC models are highly competitive with fully trained models
and, in some cases, are less memory-intensive. For instance, while the NCNC
(GCN) model ran out of memory, the SNCNC (SGCN) model produced very
good results without encountering this issue.

In the case of non-attributed graphs (Table [2)) we observe that models based
on UTMP layers achieve the highest score on 6 out of 8 datasets, with the
exceptions being NS and Router datasets. Moreover, we find that the fully
untrained UTGCN model performs best on the 'Celegans’, 'PB’, "USAir’, ’E-coli’
which can be attributed to the reduced dimension of the learned features that
come with the linear layers present in the simplified and fully trained models.
Furthermore, as we used one hot encodings as initial node features for the
unattributed datasets orthonormality is satisfied exactly and therefore there is a
one-to-one correspondence between the UT models and path based topological
measures.

Finally, we also examine the effect of increasing the number of UTMP layers
using fully untrained (UT) models. Our results in Fig indicate that, in general,
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Table 2. Link Prediction for non-attributed networks as measured by ROC-AUC.

Models NS Celegans PB Power Router USAir Yeast E-coli

GCN 95.22 £ 1.8 87.98 + 1.45 9291 + 0.3 74.68 £ 2.67 91.42 £ 0.44 93.56 £ 1.53 94.49 & 0.61 98.48 + 0.22
SGCN 95.17 £ 0.96 89.38 & 1.42 93.86 £ 0.42 81.08 £ 1.2 77.51 £ 1.85 94.08 & 1.43 95.74 £ 0.33 98.32 £ 0.2
UTGCN  94.76 + 1.03 91.47 + 1.4 94.49 + 0.38 72.97 &+ 1.27 61.68 £ 1.01 94.81 + 1.1 94.0 + 0.43 99.37 + 0.1
SAGE 95.9 = 0.86 87.32 & 1.61 92.94 £+ 0.57 74.17 £2.03 62.6 = 3.3 93.37 & 1.2 94.43 &+ 0.67 98.22 + 0.13
SSAGE 95.21 £ 1.09 88.05 £ 1.8 91.66 £ 0.43 81.84 4 1.49 70.1 £ 1.3 92.25 £ 1.45 95.72 £ 0.31 93.59 £+ 0.14
UTSAGE 94.72 + 1.07 84.48 + 1.87 86.46 + 0.64 72.96 4+ 1.26 61.47 £ 0.99 87.94 & 1.58 93.45 + 0.45 85.56 + 0.37

GIN 95.24 4+ 1.22 86.74 + 2.3 93.04 = 0.99 71.97 + 2.3 87.84 £+ 3.05 92.14 £ 0.98 94.7 4 0.45 98.43 + 0.24
GraphConv 95.73 & 1.4 86.61 + 231 92.90  0.87 7481 & 1.93 8084 & 1.28 9116  1.76 94.94 038 98.32 + 022
SGIN 95.48 + 0.88 88.31 + 1.3 93.72 + 0.48 73.73 £ 1.69 72.83 £+ 1.28 93.02 £ 1.37 95.63 + 0.49 97.68 £+ 0.2

UTGIN 94.62 4+ 1.05 86.48 & 1.29 92.77 £ 0.51 72.93 & 1.27 61.67 £ 1.02 93.44 + 0.84 92.94 + 0.41 95.81 + 0.22
NCNC 92.66 & 1.94 86.01 £ 3.13 95.27 £ 0.26 61.63 & 2.18 73.06 £ 2.96 91.10 £ 2.14 93.41 £ 0.46 99.53 £ 0.09
SNCNC 91.28 4 2.97 88.18 4+ 2.65 95.77 £ 0.22 68.41 & 1.46 87.29 & 1.20 93.95 £ 1.36 95.42 &+ 0.4 99.62 £ 0.05

UTGCN and UTSAGE maintain their performance as the number of layers is
increased whereas the performance of UTGIN decreases sharply with more layers.
This behavior can be attributed to the lack of degree based normalization in the
formulation of GIN (see Sec which leads UTGIN to be dominated by longer
paths, and hence longer distance correlations, as the number of layers increases.
In general however we find that UTMP layers do not suffer from over-squashing
when equipped with proper degree based normalisation which can be attributed
to the absence of nonlinearities and mixing between feature dimensions in UTMP
layers.

5 Conclusion

In this work, we explored the application of graph neural networks with un-
trained message passing layers for link prediction. Interestingly, our experimental
evaluation shows that simplifying GNNs architectures by eliminating trainable
parameters and nonlinearities not only enhances the link prediction performance
of GNNs, but also improves their interpretability and training efficiency. As such
untrained message passing layers offer a computationally efficient alternative to
their fully trained counterparts that naturally scales to large graphs. To comple-
ment our experimental results, we offered a theoretical perspective on untrained
message passing, analytically establishing links between features generated by
untrained message passing layers and path-based topological measures. We found
that the link prediction offers a complementary perspective for analysing MPNNs
and provides insights into the topological features captured by widely used
initialization schemes such as random features and one-hot encodings.

In future work, we hope to extend our study to other classes of graphs, such
as directed, signed, weighted, and temporal networks. The conceptual simplicity
of untrained message passing layers might also be a useful guide in designing
new graph neural network architectures or adapting existing architectures to
directed or temporal networks. We thus believe that our work is of interest both
for the community of researchers developing new machine learning methods, as
well as for practitioners seeking to deploy efficient and resource-saving models in
real-world scenarios.
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A Dataset details

Summary statistics and sources of data sets are given in Table

Table 3. Overview of the datasets, sources, and node features for attributed graphs
(top group) used in our experimental evaluation.

Dataset V| |E| Features
Cora small [49] 2,708 10,556 1,433
CiteSeer small [49] 3,327 9,104 3,703
Cora [6] 19,793 126,842 8,710
Cora ML [6] 2,995 16,316 2,879
PubMed [6] 19,717 88,648 500
CiteSeer [6] 4,230 10,674 602
DBLP |6] 17,716 105,734 1,639

OGBL-Collab [18] 235,868 1,285,465 128
OGBL-PPA [18] 576,289 30,326,273 58
OGBL-DDI [18] 4,267 1,334,889 -

NS [34] 1,461 2,742 -
Celegans [46] 297 2,148 -
PB 2] 1,222 16,714 -
Power [46] 4,941 6,594 -
Router [42] 5022 6,258 -
USAir [5] 332 2,126 -
Yeast [43] 2,375 11,693 -

E-coli [52] 1,805 15,660 -
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B Additional Results

In this section, we present additional results for the attributed datasets measured
using ROC-AUC, and we also include the results for the OGB datasets.

Table 4. Link Prediction accuracy for attributed networks as measured by ROC-AUC.
Red values correspond to the overall best model for each dataset, and blue values
indicate the best-performing model within the same category of message passing layers.

Models  Cora (small) CiteSeer (small) Cora Cora ML PubMed CiteSeer DBLP

ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC ROC-AUC
GCN 92.82 £+ 0.83 91.67 £ 1.14 97.87 £+ 0.18 94.67 £ 0.51 97.54 £ 0.09 94.22 + 0.77 96.63 £ 0.12
SGCN 95.3 £ 0.68 96.22 £ 0.4 98.6 £ 0.07 96.82 + 0.43 97.94 + 0.16 95.9 £ 0.77 97.1 &+ 0.14
UTGCN 93.82 £ 0.68 96.0 & 0.24 95.72 £ 0.12 93.93 £ 0.45 94.29 + 0.24 92.74 + 0.81 94.91 + 0.32
SAGE 91.41 £ 0.38 90.78 £ 1.79 97.7 £ 0.08 94.38 £ 0.58 95.6 + 0.18 93.58 £ 0.87 96.16 & 0.25

SSAGE 94.47 £ 0.64 95.75 £+ 0.29 98.23 £ 0.1 95.74 + 0.6 95.88 £+ 0.22 95.14 £ 0.9 96.29 + 0.12
UTSAGE 92.77 +£ 0.5 96.07 £+ 0.43 96.85 4 0.13 93.45 £ 0.81 88.12 £ 0.29 91.78 + 0.85 93.36 + 0.31

GIN 91.65 £ 0.73 90.62 £ 1.17 97.69 £ 0.13 94.54 £ 0.32 96.27 £ 0.13 92.88 £ 0.87 96.11 £ 0.25
GraphConv 9206 & 0.67 9124032 97.94 £ 0.11 95,34 £ 0.25 96.89 & 0.15 92.7 + 0.73 96.09 & 0.23
SGIN 92.87 £ 0.37 93.6 £ 0.48 97.82 £ 0.11 95.26 £ 0.41 96.37 £ 0.23 94.13 = 0.4 95.85 £ 0.11

UTGIN 85.45 + 1.28 85.7 + 0.82 88.93 £ 0.35 86.86 £ 0.98 88.76 & 0.25 91.11 + 0.93 92.25 £ 0.29

Table 5. Link Prediction accuracy for OGB datasets. Red values correspond to the
overall best model for each dataset, and blue values indicate the best-performing model
within the same category of message passing layers.

Models ogbl-collab ogbl-ppa ogbl-ddi
Hits@50 Hits@100 Hits@20
GCN 55.58 + 3.84 30.84 £+ 1.78 48.58 £+ 7.11
SGCN 54.13 £ 0.97 12.34 4+ 1.95 22.14 + 3.38
SAGE 45.90 + 8.67 23.88 4+ 1.63 22.00 + 14.54
SSAGE 49.92 4+ 1.52 8.86 +£ 0.80 19.44 + 10.84

NCNC (GCN) 6229 £ 334  OOM  46.53 + 29.24
SNCNC (SGCN)  65.40 4 0.46 46.02 & 1.19 13.55 + 13.48
NCNC (SAGE)  64.91 + 1.50 55.60 + 3.06 40.38 £ 19.71
SNCNC (SSAGE) 62.31 + 1.90 38.17 + 2.37 13.19 + 9.33
NCNC (GIN) 65.87 £ 0.74 59.47 £ 1.60 32.62 £ 30.71
SNCNC (SGIN)  16.69 + 2.43 21.81 + 0.75 54.53 + 11.02

C Experimental setup and Hyperparameter choices

For each model, the optimal values of the learning rate, the number of layers, and
hidden dimensions are determined through an exhaustive search over the values
given in Table @ The optimal hyperparameters values for attributed and non-
attributed datasets are given in Table [7] and Table [§] respectively. We implement
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a three-fold cross-validation procedure to select the optimal hyperparameter
values.

We use Adam [25] as an optimization function and employ binary cross entropy
with logits as our loss function. All datasets are preprocessed by normalizing the
node features and randomly splitting them. For non-attributed datasets, 10%
of the data is allocated to the test set, 5% to the validation set [5I], and the
remaining data is used for the training set. In contrast, for attributed datasets,
the split is 20% for the test set, 10% for the validation set, and the remainder for
the training set [45].Each model configuration is run 10 times, with the results
averaged over these runs. Our training and testing procedures are based on the
methodology outlined in [38], where we perform a new round of negative edge
sampling for each training epoch. We limit the maximum number of epochs to
10,000 and also incorporate an early stopping mechanism in our training process
by terminating training whenever there is no improvement in the validation set
results over a span of 250 epochs.

All hyperparameter searches and experiments were conducted on a workstation
with AMD Ryzen Threadripper PRO 5965WX 24-Cores with 256 GB of memory
and two Nvidia GeForce RTX 3090 Super GPU, and also AMD Ryzen 9 7900X
12-Cores with 64 GB of memory and an Nvidia GeForce RTX 4080 GPU.

Table 6. The hyperparameter space for our experiments. It is worth noting that only
the number of MPNN layers applies to the untrained models.

Hyperparameter Values

Number of MPNN layers 1,2,3

Learning Rate 0.2, 0.1,0.01, 0.001, 0.0001
Hidden Dimensions 16, 64, 128

Table 7. Optimal hyperparameter values for attributed datasets (MaxEpochs=10,000).

‘ Cora small CiteSeer small Cora Cora ML PubMed CiteSeer DBLP

‘ Ir.  hd. nl.‘ Ir. hd. nl ‘ Ir.  hd. nL‘ Ir.  hd. nL‘ Ir.  hd. nl.‘ Ir.  hd. nl.‘ Ir. hd. nl.
GCN 0.001 128 1{0.001 128 1 0.001 64 1(0.001 64 1| 0.01 64 1| 0.01 64 1|0.001128 1
SGCN 0.001 64 1{0.001 128 1 0.001 128 1 |0.001 128 2 |0.001 128 1 |0.001 128 2| 0.2 128 2
UTGCN 2 2 2 2 2 3 2
SAGE 0.01 128 1| 0.01 16 1 0.01 128 1{0.001 128 1| 0.01 128 1]0.001 128 1 |0.001 64 1
SSAGE 0.0001 128 1 [0.0001 128 2 0.1 64 1|0.001 64 1]0.001 128 2| 0.01 128 3|0.01 64 2
UTSAGE 2 2 2 2 2 2 2
GIN 0.001 128 1{0.001 128 1 0.001 128 1 |0.001 128 1 |0.001 128 1 |0.001 128 1 |0.001 128 1
GraphConv|0.0001 64 1 |0.0001 128 1 0.001 64 1 (0.0001 128 1 |0.0001 128 1 |0.001 128 1 |0.001 128 1
SGIN ~~ ]0.001 64 10.0001128 2 ]0.0001128 1|0.001 64 1 [ 0.01 128 1 ]0.0001 128 10.001 128 1~
UTGIN 1 1 1 1 1 1 1
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Table 8. Hyperparameter choices for each model in each of the non-attributed dataset.

‘ NS Celegans PB Power Router USAir Yeast E-coli

‘ Ir.  hd. nl.‘ Ir.  hd. nl,‘ Ir.  hd. nl.‘ Ir.  hd. nl.‘ Ir.  hd. nl,‘ Ir.  hd. nl.‘ Ir.  hd. nl.‘ Ir. hd. nl.
GCN 0.01 64 3]0.001 128 1| 0.01 128 2|0.001 64 3| 0.2 128 3|0.001 128 2| 0.01 64 3| 0.1 128 1
SGCN 0.1 128 3] 0.01 128 2| 0.1 128 2|0.001 128 3| 0.2 64 3| 0.1 64 2| 0.01 128 2|0.01 16 1
UTGCN 3 2 2 3 2 2 2 2
SAGE 0.01 64 2| 0.01 128 2 0.01 128 2| 0.01 64 3| 0.2 16 1| 0.01 64 1| 0.01 64 2]0.01 128 1
SSAGE 0.01 128 1| 0.01 16 2| 0.01 128 1|0.001 128 3|0.001 64 3| 0.1 64 2]0.001 128 1|0.01 128 1
UTSAGE 2 2 2 3 2 2 2 2
GIN 0.001 128 3|0.001 64 1|0.001 128 1| 0.01 128 3| 0.1 128 2|0.0001 128 2| 0.001 128 1 |0.01 128 1
GraphConv| 0.001 128 1 |0.0001 128 1 [0.0001 64 1 [0.0001 128 3|0.001 16 1| 0.01 64 2 |0.0001 64 1|0.01 64 1
SGIN' ~ ~ [0.0001 128 27| 0.01 128 1| 0.2 64 1[0.0001 128 2|0.0001 128 1| 0.1 64 1[0.001 128 1]0.001 64 1
UTGIN 2 1 1 3 2 2 2 1

D Orthogonality of node features in empirical data sets

The distribution of inner products of initial node features for attributed datasets
is given in Figure[I] We find that the inner products of feature vectors of randomly
selected node pairs are in general close to zero. Note that, the feature vectors of
all datasets are non-negative as they represent word occurrences. As expected, for
connected nodes the inner products of feature vectors tend to be higher reflecting
the increased feature similarity.

E Runtime Analysis and Training Efficency

Efficiency of SMPNNs While we allocated a very generous limit of 10,000
epochs for training models in the main paper to ensure models can reach their
best possible performance in order to compare the computational efficiency of
the simplified models to their fully trained counterparts we also consider an
experimental setting where we restrict the maximum number of training epochs
to 100. We find that simplified models achieved convergence even for larger
learning rates and considerably faster than their fully trained models. Even when
constrained to 100 training epochs simplified models maintain scores that are
almost identical to those presented in Table while fully trained architectures
suffer from the increased learning rates and require in general more epochs to
converge. This leads to training efficiency gains similar to those reported by [47]
in the case of node classification.

In Table[I0] it is evident that the simplified models consistently outperform
the fully trained models across all datasets by a considerable margin. Furthermore,
as demonstrated in Table [I] the fully trained models nearly achieve their peak
accuracy within just 100 epochs, indicating that extended training offers minimal
additional benefit. This also implies that the Simplified models are more efficient
in terms of both time and resources required for training.

The hyperpameter space used for the computational efficiency experiments is
the same as in Tabld7] except that we only use 100 epochs.

Efficiency of UTMP In Figure [2| we presented the training times for both
simplified and fully trained models. The prediction times for UT models are
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Fig. 1. The distribution of feature dot products for pairs of connected and random
node pairs for the attributed datasets.
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excluded, as they require only a single "epoch" for making the predictions, unlike
other methods that necessitate prolonged training periods. This characteristic
of UT models leads to a substantial reduction in both time consumption and
electricity costs.

Despite a minor trade-off in accuracy on attributed graphs, UT models fre-
quently outperform in terms of accuracy on unattributed graphs across numerous
datasets. In practical applications, the efficiency of UTMP models could translate
to significant savings in energy consumption and hence environmental footprint
which can outweigh marginal improvements in accuracy in settings where either
computational resources are limited or reducing energy consumption/cost and
environmental impact of models take priority. This makes UT models particularly
appealing for large-scale applications where operational efficiency and cost reduc-
tion are critical. Additionally, the societal impact of using UT models includes a
lower environmental footprint due to reduced energy consumption, aligning with
sustainable and environmentally friendly practices.

Table 9. Optimal hyperparameter values for attributed datasets for MaxEpochs=100.

|Cora (small) CiteSeer (small) Cora Cora ML PubMed CiteSeer DBLP
‘ Ir. hd. nl.‘ Ir. hd. nl. ‘ Ir. hd. nl.‘ Ir. hd. nl.‘ Ir. hd. nl.‘ Ir. hd. nl.‘ Ir. hd. nl

GCN 0.01 128 1 [0.01 128 1 [0.01 64 1[0.01 64 1[0.01 64 1[0.01 64 1]0.01 128 1
SGCN 0.1 128 1 |01 128 2 |0.01 128 1/0.01 128 1]0.01 128 1[0.01 64 2| 0.1 128 2
SAGE 0.01 128 1 [0.01 128 1 [0.01 64 1[0.01 64 1[0.01 128 1[0.01 128 1]0.01 128 1
SSAGE 0.2 128 2 |01 128 2 |0.01 128 1/0.01 128 1|0.01 128 1[0.01 64 1| 0.1 128 2
GIN 0.001128 1 [0.001128 1  [0.001 128 1[0.001 128 1 [0.001 128 1|0.01 64 1[0.01 64 1
GraphConv|0.001 128 1 [0.001128 1  |0.001 128 1]0.001 128 1 |0.001 128 1 |0.01 128 1 |0.001 128 1
SGIN "~ [0.001 128 "1 [0.001128 1 ]0.001 128 1]0.001 128 1]0.001 128 1 |0.001 128 10.001128 1~

Table 10. Link Prediction accuracy for attributed networks as measured by ROC-AUC.
Red values correspond to the overall best model for each dataset, and blue values
indicate the best-performing model within the same category of message passing layers.
The models are trained only for MaxEpochs = 100.

Models Cora (small) CiteSeer (small) Cora Cora ML PubMed CiteSeer DBLP

GCN 91.44 + 1.31 91.48 £ 0.67  96.45 £ 0.29 93.95 £ 0.54 96.56 £ 0.22 93.48 £+ 0.81 95.57 £+ 0.18
SGCN 94.58 + 1.27 96.4 + 0.97 97.99 4+ 0.06 96.75 £ 0.3 97.1 £ 0.17 95.41 £ 0.76 96.95 + 0.1
SAGE 90.2 & 1.67 90.34 & 1.87  95.42 &+ 0.22 92.53 &+ 0.69 92.68 £ 0.5 91.29 & 1.32 94.36 & 0.32
SSAGE 93.98 £+ 1.08 95.77 £ 1.02  97.72 £ 0.08 95.61 £ 0.38 94.52 £ 0.18 94.48 + 0.96 96.34 £+ 0.12
GIN 90.39 £+ 0.6 88.27 £ 0.61  95.38 £ 0.29 93.75 £ 0.24 94.84 £ 0.28 90.94 + 0.72 94.71 £ 0.26
GraphConv 91.57 + 1.33 90.79 & 0.91  96.68 £ 0.16 94.56 + 0.48 95.17 £ 0.3 92.04 & 0.96 94.94 £ 0.11
SGIN 92.72 + 1.23 93.11 £ 0.25  97.29 £ 0.08 95.43 £ 0.27 95.95 £ 0.21 93.18 + 0.56 95.84 £ 0.15

Figure [2] illustrates that the simplified models, when trained for extended
periods, generally achieve higher accuracy and converge faster to their optimal
values compared to fully trained models. Notably, when trained for a shorter
duration (100 epochs), the simplified models not only outperform the fully trained
counterparts by a larger margin but also require considerably fewer epochs to
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reach relatively high accuracies. Additionally, the accuracy gap between shorter
and longer training durations is smaller for simplified models than for fully trained
models.
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Fig. 2. Average runtimes (in seconds) for training and inference for attributed data
sets.

F Increased Numbers of Layers
Increasing UTMP layers enhances UTGCN and UTSAGE performance, while

UTGIN suffers due to a lack of degree-based normalization. Proper normalization
in UTMP layers prevents over-squashing.

G HeaRT Split Results

In this section, we show the results of the datasets split by the HeaRT evaluation
setting [29].



Link Prediction with Untrained Message Passing Layers 23
Table 11. Results on Cora, Citeseer, and Pubmed (%) under HeaRT.
Cora Citeseer Pubmed
Models . . .
MRR HitsQ10 MRR Hits@10 MRR  Hits@10
CN 9.78 20.11 8.42 18.68 2.28 478
AA 11.91 24.10 10.82 22.20 2.63 5.51
Heuristic RA 11.81 24.48 10.84 22.86 247 4.9
Shortest Path|  5.04 15.37 5.83 16.26 0.86 0.38
Katz 11.41 22.77 11.19 24.84 3.01 5.98
Node2Vec |14.47 £ 0.60 32.77 £ 1.20 21.17 + 1.01 45.82 £ 2.01 3.94 + 0.24 8.51 % 0.77
Embedding MF 6.20 £+ 1.42 15.26 + 3.39 7.80 £ 0.79 16.72 = 1.99 4.46 % 0.32 9.42 £ 0.87
MLP  [13.52 % 0.65 31.01 £ 1.71 22.62 % 0.55 48.02 £ 1.79 6.41 = 0.25 15.04 % 0.67
GCN  [16.61 % 0.30 36.26 £ 1.14 21.09 + 0.88 47.23 £ 1.88 7.13 =+ 0.27 15.22 % 0.57
GNN GAT  |13.84 % 0.68 32.80 + 1.27 19.58 % 0.84 45.30 £ 1.3 4.95 + 0.14 9.99 % 0.64
SAGE  |14.74 % 0.69 34.65 + 1.47 21.09 & 1.15 48.75 £ 1.85 9.40 + 0.70 20.54 % 1.40
GAE  |18.32 4 0.41 37.95 + 1.24 25.25 + 0.82 49.65 + 1.48 5.27 % 0.25 10.50 + 0.46
SEAL  [10.67 + 3.46 24.27 + 6.74 13.16 + 1.66 27.37 & 3.20 5.88 & 0.53 12.47 + 1.23
BUDDY  |13.71 + 0.59 30.40 + 1.18 22.84 + 0.36 48.35 =+ 1.18 7.56 & 0.18 16.78 + 0.53
Neo-GNN  [13.95 + 0.39 31.27 + 0.72 17.34 + 0.84 41.74 & 1.18 7.74 + 0.30 17.88 % 0.71
GNN+Pairwise Info~ NCN  |14.66 = 0.95 35.14 % 1.04 28.65 £ 1.21 53.41 % 1.46 5.84 % 0.22 13.22 =+ 0.56
NCNC 14.98 + 1.00 36.70 + 1.57 24.10 £ 0.65 53.72 £ 0.97 8.58 £+ 0.59 18.81 £ 1.16
NBFNet  |13.56 + 0.58 31.12 + 0.75 14.20 + 0.80 31.39 + 1.34  >24h >24h
PEG  |15.73 % 0.39 36.03 + 0.75 21.01 % 0.77 45.56 + 1.38 4.4 + 0.41 8.70 £ 1.26
GCN  [18.33 + 0.32 37.20 = 0.79 25.76 % 0.68 50.44 £ 1.26 5.21 + 0.27 10.55 £ 0.52
GNN + GAE SAGE  |14.34 % 0.42 32.15 + 1.32 21.35 % 0.57 44.20 =+ 0.98 4.12 + 0.06 7.79 % 0.24
GIN  [12.81 £ 0.54 26.41 + 1.21 16.29 £ 0.77 38.61 =+ 1.01 3.64 % 0.07 6.75 £ 0.11
GraphConv |12.48 £ 0.53 24.06 £ 1.30 13.36 & 0.65 28.77 + 1.14 3.38 £ 0.36 5.89 + 0.88
7777777777777 S-GCN™ " |15.89 & 0.26 34.27 £ 0.97 18.01 + 2.59 43.78 + 2.80 5.07 & 0.24 9.95 £ 0.64
S-GNN + GAE  S-SAGE  |13.59 % 0.25 32.28 & 0.84 14.45 = 2.26 34.88 £ 3.38 3.04 £ 0.15 5.53 % 0.52
S-GIN  |12.87 + 0.38 28.82 & 1.30 12.89 =+ 1.18 29.60 & 2.78 3.78  0.11 7.45 + 0.15
77777 7 NT-GCN [ 1214 2638 2 26.00 5165 559 1018
NT-GNN + GAE  NT-SAGE 11.75 30.74 12.74 39.56 2.59 4.44
NT-GIN 0.77 0.19 1.16 1.10 1.89 1.94
GCN  |15.77 £ 0.59 36.51 £ 0.98 21.43 % 1.12 49.56 £ 1.74 9.54 =+ 0.59 21.84 % 1.00
NCNC SAGE  [12.18 % 0.57 30.34 = 1.25 16.22 & 1.72 31.34 £ 4.09 6.48 = 0.37 14.84 + 1.10
GIN  [12.23 £ 0.48 30.76 = 1.17 16.77 & 1.05 33.43 =+ 2.64 6.54 % 0.27 14.62 + 0.46
7777777777777 SGCN™ " [15.92 + 0:80 38.04 £ 0.63 23.55 + 0.82 53.72 & 1.34 8.20 + 0.65 18.28 + 1.49
NCNC SSAGE  |11.92 % 1.35 29.96 = 0.93 20.04 % 3.61 42.90 £ 6.60 4.87 =+ 0.66 10.41 + 1.57

12.59 £ 0.75 30.06 + 2.22 22.35 4 0.83 45.87 £+ 1.72 4.95 £ 0.30 10.38 £ 0.70
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Table 12. Results on OGB datasets (%) under HeaRT.

Models ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2
MRR Hits@20 MRR Hits@20 MRR Hits@20 MRR Hits@20
CN 4.20 16.46 6.71 38.69 25.70 68.25 17.11 41.73
AA 5.07 19.59 6.97 39.75 26.85 70.22 17.83 43.12
RA 6.29 24.29 8.70 44.01 28.34 71.50 17.79 43.34
Shortest Path 2.66 15.98 0 0 0.54 1.31 >24h >24h
Katz 6.31 24.34 6.71 38.69 25.70 68.25 14.10 35.55
Node2Vec 4.68 £ 0.08 16.84 £ 0.17 11.14 £ 0.95 63.63 = 2.05 18.33 £ 0.10 53.42 + 0.11 14.67 £ 0.18 42.68 £ 0.20
MF 4.89 £ 0.25 18.86 & 0.40 13.99 &+ 0.47 59.50 £ 1.68 22.47 + 1.53 70.71 + 4.82 8.72 + 2.60 29.64 £+ 7.30
MLP 5.37 £ 0.14 16.15 + 0.27 N/A N/A 0.98 + 0.00 1.47 £ 0.00 16.32 + 0.07 43.15 + 0.10
GCN 6.09 = 0.38 22.48 4 0.81 13.46 & 0.34 64.76 £ 1.45 26.94 & 0.48 68.38 & 0.73 19.98 & 0.35 51.72 £ 0.46
GAT 4.18 £ 0.33 18.30 £ 1.42 12.92 £ 0.39 66.83 £+ 2.23 OOM OOM OOM OOM
SAGE 5.53 £ 0.5 21.26 + 1.32 12.60 + 0.72 67.19 &+ 1.18 27.27 £ 0.30 69.49 + 0.43 22.05 4+ 0.12 53.13 + 0.15
GAE OOM OOM 3.49 £ 1.73 17.81 £ 9.80 OOM OOM OOM OOM
SEAL 6.43 + 0.32 21.57 4+ 0.38 9.99 £ 0.90 49.74 £ 2.39 29.71 &+ 0.71 76.77 &+ 0.94 20.60 + 1.28 48.62 + 1.93
BUDDY 5.67 £ 0.36 23.35 £ 0.73 12.43 £ 0.50 58.71 + 1.63 27.70 & 0.33 71.50 + 0.68 19.17 + 0.20 47.81 + 0.37
Neo-GNN 5.23 £ 0.9 21.03 &+ 3.39 10.86 + 2.16 51.94 £ 10.33 21.68 £ 1.14 64.81 £ 2.26 16.12 4 0.25 43.17 + 0.53
NCN 5.09 £ 0.38 20.84 £ 1.31 12.86 £ 0.78 65.82 £ 2.66 35.06 & 0.26 81.89 & 0.31 23.35 £ 0.28 53.76 £ 0.20
NCNC 4.73 £ 0.86 20.49 £ 3.97 >24h >24h 33.52 + 0.26 82.24 4 0.40 19.61 £ 0.54 51.69 + 1.48
NBFNet OOM OOM >24h >24h OOM OOM OOM OOM
PEG 4.83 £ 0.21 18.29 + 1.06 12.05 + 1.14 50.12 £ 6.55 OOM OOM OOM OOM
GCN + GAE OOM OOM 6.52 + 0.51 34.48 + 1.52 OOM OOM OOM OOM
SAGE + GAE OOM OOM 5.33 £0.21 29.30 + 1.44 OOM OOM OOM OOM
GIN + GAE OOM OOM 12.15 £ 0.26 54.21 + 0.95 OOM OOM OOM OOM
GraphConv + GAE| OOM OOM 13.60 £ 0.26 56.36 + 0.45 OOM OOM OOM OOM
" SGCN + GAE | OOM ~  OOM  3.82+197 1821+1038 OOM ~ OOM ~~ OOM ~ OOM
SSAGE + GAE OOM OOM 2.71 £0.22 10.98 + 0.76 OOM OOM OOM OOM
SGIN + GAE OOM OOM 0.40 0.00 OOM OOM OOM OOM
" NTGCN + GAE | 1.07 ~ 066 5656 3323 1958~ 30.60 040 000
NTSAGE + GAE 0.40 0.00 0.60 0.00 1.96 3.26 0.40 0.00
NTGIN + GAE 0.40 0.00 0.40 0.00 0.40 0.00 0.40 0.00
NCNC + GCN  [3.53 £ 0.29 13.99 + 1.44 OOM OOM 35.75 + 1.23 75.94 + 1.51 21.52 £ 0.71 53.08 £ 1.61
NCNC + SAGE  |2.97 + 0.63 11.28 £ 2.77 OOM OOM 35.37 + 1.09 71.62 4+ 1.70 20.73 4 0.63 51.87 & 0.86
NCNC + GIN  ]2.93 + 0.64 11.28 £ 2.56 OOM OOM 18.81 + 6.81 38.51 + 9.97 21.36 + 0.89 52.48 + 1.09
" NCNC + SGCN " [3.60 £ 0.87 14.06 £ 379 ~ OOM ~ OOM ~ 33.98 £ 1.90 70.87 & 3.55 20.25 + 0.38 50.95 £ 0.33
NCNC + SSAGE |3.79 & 0.54 15.17 + 2.15 OOM OOM 34.09 + 0.55 69.77 + 1.57 20.55 £ 0.29 51.08 £ 0.39
NCNC + SGIN  |2.38 & 0.25 6.72 & 0.85 OOM OOM 20.46 + 1.41 40.16 & 1.90 20.97 &+ 0.86 51.13 &+ 1.70
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Fig. 3. The effect of increased layer size for fully untrained models.
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