
GNNs Getting ComFy: Community and Feature
Similarity Guided Rewiring

Celia Rubio-Madrigal∗1 (�), Adarsh Jamadandi∗1,2, and Rebekka Burkholz1

1 CISPA Helmholtz Center for Information Security
2 Universität des Saarlandes

∗ Equal contribution. Email: celia.rubio-madrigal@cispa.de

Abstract. Maximizing the spectral gap through graph rewiring has
been proposed to enhance the performance of message-passing graph
neural networks (GNNs) by addressing over-squashing. However, as we
show, minimizing the spectral gap can also improve generalization. To
explain this, we analyze how rewiring can benefit GNNs within the con-
text of stochastic block models. Since spectral gap optimization pri-
marily influences community strength, it improves performance when
the community structure aligns with node labels. Building on this in-
sight, we propose three distinct rewiring strategies that explicitly target
community structure, node labels, and their alignment: (a) community
structure-based rewiring (ComMa), a more computationally efficient al-
ternative to spectral gap optimization that achieves similar goals; (b)
feature similarity-based rewiring (FeaSt), which focuses on maximizing
global homophily; and (c) a hybrid approach (ComFy), which enhances
local feature similarity while preserving community structure to optimize
label-community alignment. Extensive experiments confirm the effective-
ness of these strategies and support our theoretical insights.

Keywords: Graph Neural Networks · Over-squashing · Graph rewiring
· Community structure · Homophily · Feature similarity.

1 Introduction

Graph Neural Networks (GNNs) are a class of deep learning models that com-
monly adopt the message passing paradigm [21, 50, 9], where information is re-
peatedly aggregated and diffused on the graph to generate a representation that
can be used to perform either node-level [29, 24, 56] or graph-level tasks [16].
Although GNNs have found many applications in a wide array of fields, in-
cluding Chemistry [47], Biology [8] and Physics [49, 53], they are also known to
have several limitations. For instance, GNNs can fail to distinguish simple graph
structures [30, 35, 43]. Other problems include over-squashing [2, 19], where topo-
logical bottlenecks in the input graph desensitize nodes to information from dis-
tant nodes, and over-smoothing [32, 41, 42, 60, 28], where node features tend to
become indistinguishable due to repeated aggregations from high model depth.

A popular approach to circumvent problems like over-squashing and over-
smoothing is to make the input graph more amenable to message passing by

2 C. Rubio-Madrigal et al.

rewiring the graph. This can be based on edge curvature [55, 20, 40] or maximiz-
ing the spectral gap [27, 26]. Spectral gap maximization, however, attenuates the
graph’s community structure. As our first contribution, we point out that also
minimization, and thus an amplification of community structure, can improve
the performance of GNNs, and provide a systematic analysis of the scenarios
where one is preferred over the other. We argue that current rewiring techniques
are limited in their effectiveness, as they do not account for the alignment be-
tween the nodes’ ground truth labels and their cluster membership labels. If this
‘graph-task’ alignment is high, sometimes referred to as the cluster hypothesis
[11], reducing the latent community structure can be detrimental to solving a
task. Similarly, if the alignment is poor, spectral gap maximization can amplify
the misalignment, which can still have degrading effects on GNN performance.

We gain these insights by a theoretical analysis of random graphs drawn from
the Stochastic Block Model (SBM), a paradigm model of graphs with community
structure, on which we define a node classification task where we control two cen-
tral quantities that determine the success of GNNs: the community strength and
the graph-task alignment (§2.3). The main mechanism through which rewiring
improves performance in this context is by adding edges between nodes that
have similar features, and by removing edges between nodes with very different
features, which would pollute each other’s neighborhood aggregation and con-
tribute to over-smoothing. Rewiring that improves feature similarity indirectly
improves homophily, because nodes with the same label usually have more sim-
ilar features. Our arguments thus align with the literature that suggests that
homophily critically influences the performance of GNNs [33] and is also related
to the alignment between the optimal kernel matrix and the adjacency matrix
of the graph [59]. To further corroborate our theoretical insight, we analyze in
depth the effect of spectral rewiring on real-world graphs, and observe that the
number of edges that improve the graph-task alignment (and thus homophily)
correlate with the effectiveness of different spectral rewiring approaches.

To overcome the limitations of spectral rewiring, our theory and analysis
provide insights into the mechanisms that can influence alignment and identify
feature similarity as a promising additional criterion to take into account. This
motivates our novel graph rewiring proposals, as shown in Fig. 1. We introduce
three different families of methods to study the importance of both topology
and homophily, in isolation as well as in combination. The first one, ComMa, tar-
gets the strength of latent communities of the input graph: HigherComMa adds
random intra-cluster edges and deletes inter-cluster edges, thus increasing the
community structure. Its counterpart, LowerComMa, deletes intra-cluster edges
and adds inter-cluster edges, lowering the community strength. These are ran-
domized counterparts of the spectral methods, but they perform much faster,
as they only require to run once a community detection algorithm. The second
method that we propose, FeaSt, aims to maximize the global feature similarity.
It prioritizes edges according to this objective. It thus adds edges that increase
the average similarity the most, and deletes existing edges that connect the least
similar nodes. FeaSt performs especially well for highly homophilic graphs, as

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 3

C0

C1
C0 × C0

C0 × C1

C1 × C1

ComMa(k)
LowerComMa

If Del, draw and
delete

⌊
A

A+C
· k
⌋

edges

If Add, draw and
add k edges

If Del, draw and
delete

⌊
C

A+C
· k
⌋

edges

HigherComMa

If Add, draw and
add

⌊
A

A+C
· k
⌋

edges

If Del, draw and
delete k edges

If Add, draw and
add

⌊
C

A+C
· k
⌋

edges

FeaSt(k)
Add

Add top k
of sim(u, v) for

(u, v) ∈ Ē

•u • v+

Del

Delete bottom k
of sim(u, v) for

(u, v) ∈ E

• v•u �

ComFy(k)
Add

FeaSt
Add

(⌊
A

A+B+C
· k
⌋)

FeaSt
Add

(⌊
B

A+B+C
· k
⌋)

FeaSt
Add

(⌊
C

A+B+C
· k
⌋)

Del

FeaSt
Del

(⌊
A

A+B+C
· k
⌋)

FeaSt
Del

(⌊
B

A+B+C
· k
⌋)

FeaSt
Del

(⌊
C

A+B+C
· k
⌋)

Fig. 1. Behaviour of our 3 algorithms on a 2-cluster graph for k edge modifications.
Columns denote methods and their variants. Rows indicate edge areas used for budget-
ing, except for FeaSt, which is global. A, B, and C are the sizes of the 3 edge areas, with
clusters computed via Louvain. ComMa randomly draws edges from intra or inter-cluster
areas, which is equivalent to proportional budgets in expectation. This is translated to
ComFy, where the edges are not drawn randomly but prioritized as in FeaSt.

this procedure might help denoise the conflicting neighbourhoods. FeaSt there-
fore likes to focus on graph regions that already have a homophilic tendency,
and further enhances this trend. Finally, ComFy rewires edges based on feature
similarity, but is able to budget the number of edges according to the community
they belong to, such that the effect is distributed across the graph. ComFy fares
comparably well to FeaSt in homophilic settings, and outperforms other meth-
ods in heterophilic settings. Our extensive results on several GNN benchmarks
prove that graph rewiring cannot be purely grounded on topological criteria, but
that a combination of both topology and feature similarity is helpful.

1.1 Related work

Graph rewiring. A key component for GNNs is the input graph, as it acts as
the data for model training and also as the computational structure on which
message passing [18] occurs. Real-world graphs, however, can be noisy and sub-
optimal for downstream tasks. For example, studies have pointed out issues like
over-squashing [2, 55, 19], caused by topological bottlenecks, which affect how in-
formation is diffused. This shows the importance of the graph topology and begs
the question: how can we obtain an optimal computational structure that aligns
with the downstream task? Graph rewiring has emerged as a popular technique
for affecting changes in edge structure based on various criteria. For instance,
[55, 20, 40] use different variants of Ricci curvature [22], while [6] propose effec-
tive resistance [10], and [4, 14] transform the input graph into an expander graph
[48] for efficient message passing. Edges can be added or deleted and even though
GNNs should be able to learn to drop task-irrelevant neighbors, trainability and
expressiveness issues can limit this [36, 37], which explains why edge deletions
can also help fight over-smoothing in addition to over-squashing [26].

Spectral gap maximization. Contemporaneously, spectral-based methods such as
[27] aim to maximize the spectral gap by edge additions, as a larger spectral gap

4 C. Rubio-Madrigal et al.

is inherently linked to faster mixing time [31] and thus better information flow.
However, this can be detrimental in the case of heterophilic graphs [33, 44] as we
might add edges between nodes of different labels resulting in over-smoothing
[32, 41, 42, 60, 28]. The spectral gap can also be maximized by deleting edges [26]
and this has shown to be beneficial in slowing down detrimental over-smoothing
while simultaneously mitigating over-squashing, especially in heterophilic set-
tings. Contrarily, [3] advocate for spectral gap minimization, but do not explain
when this could be advantageous.

Graph and task alignment. Our findings reveal that the underlying mechanism
enhancing GNN performance by rewiring actually depends on whether we mod-
ify edges connecting nodes with similar or dissimilar features, that are usually
associated with similar or dissimilar labels. In fact, [25] take a first step in this
direction by analysing the interplay between community and node-labels. They
propose an information-theoretic metric, and demonstrate its impact on perfor-
mance by artificially creating and destroying communities in real-world graphs.
This also highlights the importance of the positive influence of same-label neigh-
bours and how different-label neighbours can impair node classification perfor-
mance [12]. We take this analysis several steps further and analyze why spectral
rewiring cannot induce this alignment (Thm. 1). The desirability of alignment
between the graph structure and the task in GNNs has been explored in the con-
text of their training dynamics by [59]. This study theoretically analyzes how
GNN models tend to align their Neural Tangent Kernel (NTK) matrix Θt with
the adjacency matrix A of the input graph. They further derive a generaliza-
tion bound for the NTK regime without considering node features, specifically
in cases where the adjacency matrix A is well-aligned with the optimal kernel
matrix Θ∗. This matrix Θ∗ precisely indicates whether a pair of nodes share the
same label, making this concept of alignment similar to ours —though not ex-
plicitly referring to the graph’s communities— and to the concept of homophily.
Our theory on SBMs supports this result on GNN performance, while addition-
ally relating it to the denoising effect of node features by their neighborhoods
(Thm. 2) and considering different levels of alignment (Thm. 3).

1.2 Contributions

1. Complementing the graph rewiring literature on spectral gap maximization
to fight over-squashing, we highlight real-world cases in which spectral gap
minimization is more effective, contrary to conventional approaches. These
cases are characterized by high graph-task alignment (when community la-
bels overlap with node labels).

2. Our theoretical insights on SBMs and experimental evidence identify the
degree of task and graph structure alignment as the most critical underlying
factor to explain when spectral gap rewiring improves a learning task. This
highlights the major limitation of spectral-based methods, which is that they
cannot improve the graph-task alignment directly.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 5




c1 c2

c1p q

c2q p




(a) Perfect alignment ψ = 1.




c1 c2 c2 c1

c1
p q

c2

c2
q p

c1




(b) Alignment ψ = 2
3
.

Fig. 2. Adjacency matrices of (p, q)-SBM for different alignments. Shaded areas are
intra-community edges drawn with probability p (except self-loops), and unshaded
areas are inter-community edges drawn with probability q. In Figure 2(a), the two
communities match classes c1 (orange) and c2 (purple). In Figure 2(b), a third of
nodes in each community are of the opposite class.

3. To overcome this limitation, motivated by our theoretical insights, we pro-
pose to integrate feature similarity into graph rewiring approaches. We ex-
plore three novel strategies to study the effect of community structure and
feature similarity in isolation (ComMa and FeaSt) and in combination (ComFy).

4. Extensive real-world experiments confirm our previous insights, highlighting
the effectiveness of feature similarity. We find that homophilic graphs tend
to benefit most from maximizing global feature similarity FeaSt, while het-
erophilic graphs gain most from a hybrid approach, ComFy, that maximizes
feature similarity while respecting the community structure.

2 Conceptual analysis

2.1 Spectral rewiring affects community strength

Spectral rewiring approaches usually focus on reducing over-squashing by max-
imizing the spectral gap of the input graph. However, maximizing the gap has
a distinct effect on its latent community structure. It is the case that, by maxi-
mizing the spectral gap, inter-community edges are added and intra-community
edges are deleted, which attenuates the community strength (Thm. 1).

When there is a high graph-task alignment, which has also been termed as the
cluster hypothesis [11], the addition of inter-community edges likely adds more
inter-class edges, while the removal of intra-community edges likely deletes many
intra-class edges. Consequently, message passing happens on a less informative
computational structure, rendering the rewiring detrimental to the performance
of any classifier (Thm. 2). On the other hand, by minimizing the spectral gap
inter-community edges are deleted and intra-community edges are added, which
strengthens the community structure. If this structure is highly aligned with the
labels, the rewiring should be beneficial, as it increases feature similarity of nodes
that have the same label, thus making different class nodes better separable.

To make these intuitive statements more rigorous and quantifiable, we relate
community structure and node labels in a paradigmatic example of community
structure: the Stochastic Block Model (SBM (p, q, C)), which is a random graph

6 C. Rubio-Madrigal et al.

model with planted communities. The nodes are partitioned into C communities
—we adopt a binary SBM (C = 2) unless explicitly stated otherwise. We can ob-
serve the form of the adjacency matrix of a two-block (p, q) SBM in Fig. 2. The
edges are randomly sampled with probabilities p for intra-community edges and
q for inter-community edges. Both values critically influence the performance of
GNNs on a sampled graph, as they determine the amount of neighborhood ag-
gregation. High values of p and low values of q lead to a strong, pronounced com-
munity structure. Thus, the node features after message passing tend to become
more similar within communities in this setting. Similar values of p ≈ q would
make the community structure difficult to detect and the feature distributions of
different communities would not necessarily become more distinguishable after
neighborhood aggregation. To relate this reasoning to spectral gap optimization,
we first establish a direct link to the community structure in SBMs.

Theorem 1 (A less pronounced community structure corresponds to
a higher spectral gap).

Let G be a (p-q)-SBM with N nodes in 2 equally-sized communities and
intra/inter-edge probabilities p > q. Let Gdel be a (p′-q)-SBM where p′ < p, and
Gadd be a (p-q′)-SBM where q′ > q. The (expected) spectral gap of G is smaller
than those of Gdel and Gadd: λ1(G) < λ1(G

del), and λ1(G) < λ1(G
add). In fact,

the spectral gap grows approximately like −p−q
q+p .

In summary, increasing q and decreasing p increases the spectral gap but makes
the community structure less pronounced, and vice versa. The next theorem
establishes how this is connected to the performance of a model that performs
sum aggregation, which we use as a tractable GNN proxy.

Theorem 2 (A less pronounced community structure harms perfor-
mance —if high graph-task alignment).

Let G be the (p-q)-SBM from Thm. 1. Let xi be the single feature of node
i where xi ∼ N (−1, 1) if its class ℓi = c1 or xi ∼ N (1, 1) if its class ℓi = c2,
and ℓi corresponds one-to-one to node i’s block membership. Let f be an optimal
classifier on the model’s features, X, and e(f,X) the (expected) proportion of
misclassified nodes. After a step of sum aggregation, e is monotonically decreas-
ing with respect to p, and increasing with respect to q.

2.2 Varying the amount of graph-task alignment

Theorem 2 applies to an SBM with perfect alignment between its clusters and
node labels. However, in real-world graphs, this assumption is rarely satisfied.
The relationship between the task and the underlying community structure,
which might not necessarily be pronounced, can take more complex forms. For
instance, in heterophilic settings, similar nodes do not need to be connected,
so the effect of spectral rewiring on them is not straightforward. While spectral
rewiring can influence performance by modifying how pronounced the latent
community structure is, aggregation on the input graph is much more effective
if we improve the alignment directly, which spectral rewiring fails to do.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 7

Sp
ec

tra
l G

ap

-(p
-q

)/(
p+

q)

M
od

ul
ar

ity

Ho
m

.-1
.0

Ho
m

op
hi

ly

Spectral Gap

-(p-q)/(p+q)

Modularity

Homophily-1.0

Homophily

1 1 -1 -1 -0.87

1 1 -1 -1 -0.88

-1 -1 1 1 0.87

-1 -1 1 1 0.88

-0.87 -0.88 0.87 0.88 1

Correlation Matrix for SBM

0.5

0.0

0.5

1.0

(a) Correlation of some scores for
different values of (p, q).

0.3 0.4 0.5 0.6 0.7 0.8 0.9
SpectralGap

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(0.5,0.2)

(0.5,0.2)

(0.5,0.2)

(0.5,0.5)(0.5,0.5)
(0.5,0.5)

(0.7,0.2)

(0.7,0.2)

(0.7,0.2)

(0.7,0.5)

(0.7,0.5)
(0.7,0.5)(0.8,0.2)

(0.8,0.2)

(0.8,0.2)

(0.8,0.5)

(0.8,0.5)
(0.8,0.5)

(0.99,0.2)

(0.99,0.2)

(0.99,0.2)

(0.99,0.2)

(0.99,0.5)

(0.99,0.5)

(0.99,0.5)

Accuracy for SBM (p,q)
alignment

0.6
0.9
0.95
1.0

(b) Accuracy of a GCN trained on differ-
ent (p, q) (averaged for 8 different seeds).

Fig. 3. The effects of Thm. 1 (spectral gap) and Thms. 2, 3 (accuracy) on 1000-node
SBM-(p, q). Each SBM has different p = {0.5, 0.7, 0.8, 0.99} and q = {0.2, 0.5}, and
different alignment between the labels and the communities: {0.9, 0.95, 1}, as well as
an example of 0.6. The spectral gap correlates perfectly with − p−q

p+q
, and negatively

with the community structure and the homophily with alignment=1.

This intuition is corroborated and quantified by our theory. Theorem 3 de-
scribes the behaviour of the proportion of misclassified nodes after a step of
neighborhood aggregation. Let ψ capture the graph-task alignment. An illustra-
tion of an SBM with ψ ̸= 1 can be found in Figure 2(b). If ψ = 1, we obtain the
same behaviour (perfect alignment) as in Theorem 2. With ψ = 0, we obtain
an SBM where the node labels are assigned oppositely to their communities,
so by renaming the communities we also have perfect alignment. For ψ = 0.5,
P (M) = Φ(0) = 1

2 , so half the nodes are misclassified and this classifier is as
good as a random choice. In this setup, the distributions of neighbours follow
binomials. For better interpretability, we simplify the formula with normal ap-
proximations to reveal continuous trends. All nuances are derived in the proof
(§A.3), which suggests that the central ψ parameter controls GNN performance.

Theorem 3 (The effect of different alignments on performance). Let G
be the (p-q)-SBM from Thm. 1 (p > q). Let xi be the single feature of node i
where xi ∼ N (−1, 1) or xi ∼ N (1, 1) depending on its class, and ℓi its label,
which may correspond to node i’s block membership with a fixed probability ψ.
After a step of sum aggregation, the proportion of misclassified nodes of the best
classifier f is approximately

P(M)≈ 1− ψ + (2ψ − 1)Φ

(
N
2 (2ψ−1)(p−q)√

N
2 (p+q+p(1−p)+q(1−q)+2(p−q)2ψ(1−ψ))

)

2.3 Experiments on SBM for different p and q

The stated theorems are also supported by empirical results. Thm. 1 proves that
maximizing the spectral gap results in a weaker latent community structure,

8 C. Rubio-Madrigal et al.

Fig. 4. Maximizing the spectral gap (using [26]) on Cora and Citeseer reduces the
graph-task alignment and the test accuracy. Labels denote number of edge additions.

while minimization enhances it. To quantify the impact of the spectral gap on
the performance, we sample SBM graphs with Gaussian node features, whose
means indicate their class membership. The class memberships are sampled from
independent Bernoulli distributions whose probability (the alignment) depends
on a node’s community label. For different values of p and q, we train a 2-layered
GCN [29] and measure the Normalized Mutual Information (NMI) [13] between
the ground truth labels and the predictions made by the GCN, which we show
in Figure 3(b). Figure 3(a) furthermore validates that the spectral gap correlates
with −p−q

q+p and the community strength of the SBM (negatively), as well as with
the graph’s normalized homophily score when the alignment is perfect. When
the alignment is weaker, the homophily also decreases homogeneously. In Figure
3(b), we compare the spectral gap of these different SBM graphs against the
accuracy of a GCN trained on it, using a fixed train-test split.

We find that, in cases of high homophily and high alignment, it is benefi-
cial to minimize the spectral gap, as the communities that get strengthened also
correspond to the task labels. However, the spectral gap does not completely cor-
relate with the GCN accuracy, as it can only affect the community strength. We
can also see that a lack of graph-task alignment reduces the GNN performance,
as shown by the different hues in the scatter plot. Changing the alignment only
from 1.0 to 0.95 reduces dramatically the influence of different (p, q) on the per-
formance. But even given a fixed theoretical alignment, the topology of the graph
can have nuanced effects on GNN accuracy. For instance, the SBM-(0.5, 0.2) has
a lower spectral gap (and higher homophily) than the SBM-(0.99, 0.5), although
a worse test performance. Yet, the latter has a higher density, which means it
is potentially better at denoising and obtaining better separable node repre-
sentations. This observation highlights potential benefits resulting from adding
edges (and thus increasing the graph density) even without considering feature
similarity or graph-task alignments.

2.4 Analysis of real-world datasets

Real-world datasets usually have complex community structures and mixed
alignment trends. Some parts of the graph might show good graph-task align-

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 9

ment while other parts do not invite for spectral-based rewiring. This makes it
difficult to predict when minimization or maximization works best or how many
edge modifications are required to see changes in GNN performance. On the one
hand, very homophilic datasets might be similar to the SBM setup analyzed in
the previous theorems, so spectral maximization is detrimental in the long run
—as seen for Cora and Citeseer in Fig. 4, where the alignment between labels
and communities gets heavily reduced, and so does the accuracy. On the other
hand, increasing connectivity might be key for some tasks, where, for exam-
ple, information needs to travel across different clusters. All kinds of spectral
rewiring methods can be effective for a small number of edge changes, as they
might locally have a denoising effect for some (lucky) edges.

However, the trend variability for spectral rewiring might be explained by the
type of edges it adds or deletes, considering both the node and community labels
that they connect. Fig. 12 in the appendix visualizes alignment matrices with the
number of edges that connect nodes with the same or different node and commu-
nity labels, for spectral minimization, maximization, and random rewiring of 500
edges, for Cora and Chameleon. It shows that spectral gap minimization tends to
add same-community edges, which supports homophilic datasets like Cora but
misaligns with labels in heterophilic graphs like Chameleon. Conversely, spectral
gap maximization adds and deletes more inter-community edges—harmful in ho-
mophilic settings but often beneficial in heterophilic ones, where it can better
align graph structure with the task. The alignment matrices serve as a guiding
principle to determine if spectral gap maximization or minimization should be
preferred. However, spectral gap optimization fails to transform the input graph
into a computational structure that is well aligned for the downstream task,
which leaves the question, can we do better?

3 Graph Rewiring for Community-Node Label Alignment

In our analysis, we have proven that spectral rewiring algorithms directly affect
the community strength of the input graph, and that this can be detrimental to
the task when there is an originally good alignment between community and node
labels. Yet, pre-processing spectral rewiring methods are usually performed in a
Greedy manner, and this causes the methods to affect newly obtained community
structure but not the original one, which can get lost.

ComMa. To obtain clearer insights into the impact of community structure, we
propose a non-Greedy and more efficient alternative to spectral rewiring: ComMa.
This method modifies edges such that they increase (HigherComMa, Alg. 3) or
decrease (LowerComMa, Alg. 4) the original community structure. It is flexible
regarding the method that is applied to detect the community structure of the
initial input graph. We use the Louvain algorithm [7], as it scales to large graphs
and is implemented by the library nx_cugraph for GPU acceleration. The non-
accelerated algorithm runs in O(|V| log |V|). Rewiring only needs to consider the
edges to add (O(|Ē |)) or delete (O(|E|)), and to randomly pick a fixed number
of them (provided by a hyperparameter N).

10 C. Rubio-Madrigal et al.

Table 1. Accuracy on node classification comparing different rewiring schemes.

Method Cora Citeseer Pubmed Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 86.12±0.36 77.83±0.35 85.57±0.11 35.14±1.63 35.14±1.50 38.00±1.47 39.33±0.59 31.69±0.42 27.24±0.21
GCN+BORF 87.50±0.20 73.80±0.20 NA 50.80±1.10 NA 50.30±0.90 61.50±0.40 NA NA
GCN+FoSR 83.50±0.39 75.47±0.31 86.08±0.10 40.54±1.47 51.35±1.75 54.00±1.46 41.01±0.63 32.36±0.37 27.57±0.21

GCN+ProxyAddMin 84.10±0.39 78.77±0.40 86.15±0.10 45.95±1.50 48.65±1.45 42.00±1.23 39.33±0.55 33.71±0.40 28.03±0.22
GCN+ProxyAddMax 85.92±0.43 79.25±0.35 86.41±0.11 48.65±1.41 40.54±1.64 50.00±1.25 38.20±0.70 35.06±0.44 25.99±0.20
GCN+ProxyDelMin 85.92±0.37 79.01±0.34 86.28±0.11 45.95±1.50 48.65±1.63 44.00±1.13 39.89±0.59 34.83±0.45 26.58±0.25
GCN+ProxyDelMax 86.32±0.38 81.84±0.38 85.95±0.11 54.05±1.67 48.65±1.35 52.00±1.33 39.33±0.70 34.61±0.39 27.30±0.22

GCN+HigherComMaAdd 83.64±0.38 77.13±0.38 85.86±0.10 49.93±1.34 52.66±1.47 50.55±1.24 41.23±0.72 34.51±0.40 30.92±0.21
GCN+HigherComMaDel 83.82±0.31 77.31±0.41 85.90±0.11 49.03±1.26 48.57±1.53 50.32±1.38 40.44+0.69 34.66±0.39 30.71±0.24
GCN+LowerComMaAdd 83.41±0.37 77.15±0.36 85.85±0.09 51.08±1.67 50.29±1.71 50.95±1.29 40.61±0.64 34.48±0.39 30.79±0.23
GCN+LowerComMaDel 83.61±0.35 77.39±0.37 85.90±0.10 49.69±1.43 50.59±1.52 50.61±1.35 40.43±0.71 34.76±0.40 30.79±0.22

GCN+FeaStAdd 87.73±0.39 78.54±0.34 86.43±0.09 59.46±1.49 54.05±1.51 60.00±1.09 43.26±0.62 39.33±0.73 31.25±0.22
GCN+FeaStDel 90.74±0.39 81.60±0.39 86.76±0.10 51.35±1.63 64.86±1.43 60.00±1.27 42.70±0.69 36.40±0.36 31.97±0.21

GCN+ComFyAdd 87.73±0.26 77.36±0.38 86.74±0.10 67.57±1.68 62.16±1.52 62.00±1.12 41.57±0.83 36.85±0.38 32.30±0.25
GCN+ComFyDel 88.13±0.27 78.07±0.35 86.23±0.11 70.27±1.50 64.86±1.51 66.00±1.34 45.51±0.76 39.10±0.43 31.12±0.19

FeaSt. (Alg. 5) To make neighborhood aggregation more homogeneous to
fight over-smoothing and likely increase homophily, we propose to maximize
the pairwise feature similarity of all connected nodes in the graph. The fea-
ture (cosine) similarity between nodes u, v, with features Xu, Xv, is sim(u, v) =
⟨Xu,Xv⟩

∥Xu∥∥Xv∥) . Although this can also be accelerated by GPU, the non-accelerated
computation runs in O(|Xu||V|2). We consider all edges that can be added or
deleted, and we rank them according to the similarity, which we would obtain if
the edges were added or deleted, respectively. The N modified edges are the top
ones of this ranking, which can be obtained in O(N |Ē |) for additions or O(N |E|)
for deletions.

ComFy. While FeaSt is a well performing rewiring approach, it suffers from
complementary pitfalls to the spectral rewiring methods. For the latter, it can
be disadvantageous to ignore the task. For the former, it can be disadvantageous
to not account for the original community structure of the graph. To address
this, we constrain similarity maximization to edges within or between specific
community pairs. We call this method ComFy (Alg. 6). This spreads the rewiring
effect across the graph and the original structure is accounted for proportionally.
This method still requires to compute all pairwise similarity values, and to detect
the graph’s original communities. Afterwards, it budgets the number of edges Bij
to modify between each pair of communities (i, j) (including intra-community
with i = j) based on their sizes, ensuring the total budget is roughly N . For each
(i, j), we find the top Bij edges that maximize the similarity of edges bridging
them. The complexity of this algorithm is comparable to the sum of the other
two algorithms.

4 Experiments

We conduct a comprehensive set of experiments for all proposed algorithms on
various benchmark datasets. Our backbone model is GCN [29]. Our rewiring
techniques could be combined with any GNN model. We focus on a simple,
common base architecture, as we compare many rewiring techniques in a com-
parable environment. Our proposed rewiring algorithms include: HigherComMa

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 11

Table 2. Node classification on Large Het-
erophilic Datasets.

Method Roman-Empire Amazon-Ratings Minesweeper

Baseline 70.30±0.73 47.20±0.33 89.49±0.07
GCN+FoSR 73.60±1.11 49.68±0.73 89.66±0.04

GCN+ProxyAddMin 79.18±0.06 49.30±0.05 89.56±0.05
GCN+ProxyAddMax 77.54±0.74 49.72±0.41 89.63±0.05
GCN+ProxyDelMin 79.09±0.05 49.57±0.06 89.60±0.05
GCN+ProxyDelMax 77.45±0.68 49.75±0.46 89.58±0.04

GCN+FeaStAdd 79.67±0.07 49.46±0.07 89.75±0.05
GCN+FeaStDel 78.99±0.05 49.19±0.06 89.02±0.04

GCN+FeaStAddDel 79.03±0.07 49.39±0.07 89.62±0.05

GCN+ComFyAdd 79.53±0.07 49.29±0.04 89.76±0.05
GCN+ComFyDel 79.17±0.07 49.21±0.06 89.66±0.05

GCN+ComFyAddDel 79.27±0.06 49.45±0.07 89.40±0.08

Table 3. Runtime for rewiring
schemes, in seconds, for 50 edges.

Method Cora Citeseer Chameleon Squirrel

FoSR 4.69 5.33 5.04 19.48
ProxyAddMax 4.30 3.13 1.15 9.12
ProxyAddMin 5.03 3.63 1.08 10.01
ProxyDelMax 1.18 0.86 1.46 7.26
ProxyDelMin 3.59 2.85 3.12 8.43
ComMaAdd 0.05 0.03 0.04 0.63
ComMaDel 0.05 0.03 0.04 0.68
FeaStAdd 1.78 0.92 0.56 4.43
FeaStDel 1.73 0.91 0.56 4.52

ComFyAdd 6.29 3.85 2.84 8.72
ComFyDel 6.68 3.73 2.99 8.97

which randomly adds/deletes intra-community edges and inter-community edges
respectively based on communities detected [39, 7]; LowerComMa which does the
opposite by randomly deleting intra-class edges and adding inter-class edges
based on the communities detected; FeaSt, which rewires the graph to maximize
the pair-wise cosine similarity between node features; and ComFy, a hybrid version
of other two algorithms that uses both the community structure and the feature
similarity to rewire the graph. We use the suffixes Add, Delete and AddDel to
represent only additions, deletions, or both. Our baselines with which we com-
pare our algorithms are spectral gap maximization methods such as FoSR [27],
ProxyAddMax, and ProxyDelMax proposed in [26]. We further modify the latter
algorithms to also minimize the spectral gap, resulting in methods ProxyAddMin
(Alg. 1) and ProxyDelMin (Alg. 2). The results for the Ricci curvature-based
method BORF [40] is directly taken from their paper —hence Not Available
(NA) for a few datasets. For all tables, the best-performing methods are high-
lighted in bold, and the second best-performing methods are highlighted with
underlines. More details on the hyperparameters are described in §C.

In Table 1, we test our algorithms on a variety of homophilic and het-
erophilic graphs: Cora [34], Citeseer [51], Pubmed [38], Cornell, Texas, Wis-
consin, Chameleon, Squirrel, and Actor [46]. We find that FeaSt-Del performs
especially well for homophilic graphs. However, ComFy-Del seems to be in the
lead for the heterophilic ones, and performs comparably for some of the ho-
mophilic ones. In Table 2 we present the results on accuracy for the large het-
erophilic graph benchmarks [46] for the spectral rewiring methods, for FeaSt and
ComFy. While FeaSt-Add has some good results, all ComFy variants seem to also
perform comparably. Finally, in Table 4 we present results for both simultane-
ous additions and deletions for our methods. Table 3 reports the computational
efficiency compared to baselines, in seconds, when adding or deleting 50 edges.
Concretely, ComMa is orders of magnitude faster than the spectral methods, FeaSt
beats most of the baselines, and ComFy is comparable to them. The runtime of
methods HigherComMa and LowerComMa are exactly the same, which we denote
by ComMa.

12 C. Rubio-Madrigal et al.

Table 4. Accuracy on node classification with both additions and deletions.

Method Cora Citeseer Pubmed Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN 86.12±0.36 77.83±0.35 85.57±0.11 35.14±1.63 35.14±1.50 38.00±1.47 39.33±0.59 31.69±0.42 27.24±0.21
GCN+BORF 87.50±0.20 73.80±0.20 NA 50.80±1.10 NA 50.30±0.90 61.50±0.40 NA NA
GCN+FoSR 83.50±0.39 75.47±0.31 86.08±0.10 40.54±1.47 51.35±1.75 54.00±1.46 41.01±0.63 32.36±0.37 27.57±0.21

GCN+HigherComMa 83.82±0.34 77.32±0.38 85.83±0.11 48.92±1.48 52.44±1.64 51.35±1.40 41.22±0.75 34.70±0.40 30.81±0.19
GCN+LowerComMa 83.76±0.35 77.05±0.37 85.82±0.10 51.46±1.49 50.29±1.59 50.42±1.27 40.49±0.62 34.11±0.38 30.60±0.22

GCN+FeaSt 85.71±0.36 80.19±0.34 87.01±0.12 54.05±1.62 56.76±1.65 58.00±1.26 44.94±0.70 35.73±0.48 32.63±0.21
GCN+ComFy 88.93±0.31 80.42±0.46 87.22±0.10 62.16±1.49 59.46±1.68 64.00±1.08 46.63±0.69 37.75±0.41 33.09±0.21

5 Conclusions

We have introduced three novel graph rewiring techniques —ComMa, FeaSt,
and ComFy— designed to improve the performance of Graph Neural Networks
(GNNs) by focusing on the alignment between the graph structure and the tar-
get task. Through our theoretical analysis, we have identified this alignment as
a critical factor in explaining performance gains and highlighted it as a major
limitation of purely topological-based rewiring strategies that they cannot im-
prove this alignment directly. We have discussed this specifically in the context of
spectral gap maximization, a widely adopted strategy to address over-squashing,
which attenuates the community structure of a graph. However, when the com-
munity labels overlap with the node labels, minimizing the spectral gap (thus
amplifying the community structure) would yield significant performance im-
provements instead.

The basic mechanism behind this improvement is the increase of feature
similarity by neighborhood aggregation. In line with this finding, we have shown
that rewiring techniques that explicitly take feature similarity into account, such
as FeaSt and ComFy, can lead to significant performance gains, particularly in
highly homophilic settings. Our proposed ComFy method, which balances commu-
nity structure and feature similarity, was shown to outperform spectral rewiring
methods in heterophilic settings, where feature alignment across different com-
munities plays a critical role.

Our comprehensive experiments on real-world datasets confirm the effective-
ness of these rewiring strategies, demonstrating that a combination of topolog-
ical and feature-based approaches is key to overcoming the limitations of spec-
tral methods. We believe that this work lays the foundation for future research
on task-aware rewiring strategies, and opens the door to more sophisticated
methods that leverage both graph topology and node features to optimize GNN
performance across a wide range of graph-based applications.

Disclosure of Interests. The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. for funding this project by providing computing time on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre (JSC). We also gratefully
acknowledge funding from the European Research Council (ERC) under the Horizon
Europe Framework Programme (HORIZON) for proposal number 101116395 SPARSE-
ML.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 13

References

1. Abbe, E.: Community detection and stochastic block models: Recent de-
velopments. Journal of Machine Learning Research 18(177), 1–86 (2018),
http://jmlr.org/papers/v18/16-480.html

2. Alon, U., Yahav, E.: On the bottleneck of graph neural networks and its practi-
cal implications. In: International Conference on Learning Representations (2021),
https://openreview.net/forum?id=i80OPhOCVH2

3. Arnaiz-Rodríguez, A., Begga, A., Escolano, F., Oliver, N.: Dif-
fwire: Inductive graph rewiring via the lovász bound (2022).
https://doi.org/10.48550/ARXIV.2206.07369, https://arxiv.org/abs/2206.07369

4. Banerjee, P.K., Karhadkar, K., Wang, Y.G., Alon, U., Montúfar,
G.: Oversquashing in gnns through the lens of information contrac-
tion and graph expansion. In: 2022 58th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton). p. 1–8.
IEEE Press (2022). https://doi.org/10.1109/Allerton49937.2022.9929363,
https://doi.org/10.1109/Allerton49937.2022.9929363

5. Bi, W., Du, L., Fu, Q., Wang, Y., Han, S., Zhang, D.: Mm-gnn: Mix-moment
graph neural network towards modeling neighborhood feature distribution. In:
Proceedings of the Sixteenth ACM International Conference on Web Search
and Data Mining. p. 132–140. WSDM ’23, Association for Computing Ma-
chinery, New York, NY, USA (2023). https://doi.org/10.1145/3539597.3570457,
https://doi.org/10.1145/3539597.3570457

6. Black, M., Wan, Z., Nayyeri, A., Wang, Y.: Understanding oversquashing in gnns
through the lens of effective resistance. In: Proceedings of the 40th International
Conference on Machine Learning. ICML’23, JMLR.org (2023)

7. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment 2008(10), P10008 (oct 2008). https://doi.org/10.1088/1742-
5468/2008/10/P10008, https://dx.doi.org/10.1088/1742-5468/2008/10/P10008

8. Bongini, P., Pancino, N., Scarselli, F., Bianchini, M.: Biognn: How graph neu-
ral networks can solve biological problems. In: Artificial Intelligence and Machine
Learning for Healthcare, pp. 211–231. Springer (2023)

9. Bronstein, M.M., Bruna, J., Cohen, T., Velickovic, P.: Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR abs/2104.13478 (2021),
https://arxiv.org/abs/2104.13478

10. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The
electrical resistance of a graph captures its commute and cover times. compu-
tational complexity 6(4), 312–340 (1996). https://doi.org/10.1007/BF01270385,
https://doi.org/10.1007/BF01270385

11. Chapelle, O., Scholkopf, B., Zien, Eds., A.: Semi-supervised learning (chapelle, o.
et al., eds.; 2006) [book reviews]. IEEE Transactions on Neural Networks 20(3),
542–542 (2009). https://doi.org/10.1109/TNN.2009.2015974

12. Chen, H., Xu, Y., Huang, F., Deng, Z., Huang, W., Wang, S., He, P.,
Li, Z.: Label-aware graph convolutional networks. In: Proceedings of the
29th ACM International Conference on Information & Knowledge Man-
agement. p. 1977–1980. CIKM ’20, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3340531.3412139,
https://doi.org/10.1145/3340531.3412139

14 C. Rubio-Madrigal et al.

13. Chen, Z., Li, L., Bruna, J.: Supervised community detection with line graph neu-
ral networks. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=H1g0Z3A9Fm

14. Deac, A., Lackenby, M., Veličković, P.: Expander graph prop-
agation. In: The First Learning on Graphs Conference (2022),
https://openreview.net/forum?id=IKevTLt3rT

15. Dong, M., Kluger, Y.: Towards understanding and reducing graph structural noise
for GNNs. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scar-
lett, J. (eds.) Proceedings of the 40th International Conference on Machine Learn-
ing. Proceedings of Machine Learning Research, vol. 202, pp. 8202–8226. PMLR
(23–29 Jul 2023), https://proceedings.mlr.press/v202/dong23a.html

16. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural
networks for graph classification. In: International Conference on Learning Repre-
sentations (2020), https://openreview.net/forum?id=HygDF6NFPB

17. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

18. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70. p. 1263–1272. ICML’17, JMLR.org (2017)

19. Giovanni, F.D., Giusti, L., Barbero, F., Luise, G., Lio’, P., Bronstein, M.: On over-
squashing in message passing neural networks: The impact of width, depth, and
topology (2023)

20. Giraldo, J.H., Skianis, K., Bouwmans, T., Malliaros, F.D.: On the trade-off be-
tween over-smoothing and over-squashing in deep graph neural networks. In:
Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. p. 566–576. CIKM ’23, Association for Computing Ma-
chinery, New York, NY, USA (2023). https://doi.org/10.1145/3583780.3614997,
https://doi.org/10.1145/3583780.3614997

21. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in
graph domains. In: Proceedings. 2005 IEEE International Joint Confer-
ence on Neural Networks, 2005. vol. 2, pp. 729–734 vol. 2 (2005).
https://doi.org/10.1109/IJCNN.2005.1555942

22. Hamilton, R.: The ricci flow on surfaces. In: Mathematics and general relativity,
Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference in the
Mathematical Sciences on Mathematics in General Relativity (1988)

23. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. p. 1025–1035. NIPS’17, Curran Associates Inc., Red Hook,
NY, USA (2017)

24. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive Representation Learning on
Large Graphs. In: NIPS. pp. 1024–1034 (2017)

25. Hussain, H., Duricic, T., Lex, E., Helic, D., Kern, R.: The interplay between com-
munities and homophily in semi-supervised classification using graph neural net-
works. Applied Network Science 6(1), 80 (2021). https://doi.org/10.1007/s41109-
021-00423-1, https://doi.org/10.1007/s41109-021-00423-1

26. Jamadandi, A., Rubio-Madrigal, C., Burkholz, R.: Spectral graph pruning against
over-squashing and over-smoothing. In: The Thirty-eighth Annual Conference on
Neural Information Processing Systems (2024)

27. Karhadkar, K., Banerjee, P.K., Montufar, G.: FoSR: First-order
spectral rewiring for addressing oversquashing in GNNs. In: The

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 15

Eleventh International Conference on Learning Representations (2023),
https://openreview.net/forum?id=3YjQfCLdrzz

28. Keriven, N.: Not too little, not too much: a theoretical analysis of graph
(over)smoothing. In: NeurIPS (2022)

29. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional
Networks. In: ICLR (2017)

30. Leman, A.: The reduction of a graph to canonical form and the algebra which
appears therein (1968)

31. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American
Mathematical Society (2006)

32. Li, G., Müller, M., Thabet, A., Ghanem, B.: Deepgcns: Can gcns go as deep as
cnns? In: The IEEE International Conference on Computer Vision (ICCV) (2019)

33. Ma, Y., Liu, X., Shah, N., Tang, J.: Is homophily a necessity for graph neu-
ral networks? In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=ucASPPD9GKN

34. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the
construction of internet portals with machine learning. Information Re-
trieval 3(2), 127–163 (2000). https://doi.org/10.1023/A:1009953814988,
https://doi.org/10.1023/A:1009953814988

35. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan,
G., Grohe, M.: Weisfeiler and leman go neural: Higher-order graph neu-
ral networks. Proceedings of the AAAI Conference on Artificial Intelligence
33(01), 4602–4609 (Jul 2019). https://doi.org/10.1609/aaai.v33i01.33014602,
https://ojs.aaai.org/index.php/AAAI/article/view/4384

36. Mustafa, N., Bojchevski, A., Burkholz, R.: Are GATs out of balance? In:
Thirty-seventh Conference on Neural Information Processing Systems (2023),
https://openreview.net/forum?id=qY7UqLoora

37. Mustafa, N., Burkholz, R.: GATE: How to keep out intrusive neigh-
bors. In: Forty-first International Conference on Machine Learning (2024),
https://openreview.net/forum?id=Sjv5RcqfuH

38. Namata, G., London, B., Getoor, L., Huang, B.: Query-driven active surveying for
collective classification (2012)

39. Newman, M.E.: Modularity and community structure in networks. Proceed-
ings of the National Academy of Sciences 103(23), 8577–8582 (Jun 2006).
https://doi.org/10.1073/pnas.0601602103

40. Nguyen, K., Nong, H., Nguyen, V., Ho, N., Osher, S., Nguyen, T.: Revisiting over-
smoothing and over-squashing using ollivier-ricci curvature (2023)

41. NT, H., Maehara, T.: Revisiting graph neural networks: All we have is low-pass
filters. ArXiv abs/1905.09550 (2019)

42. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power
for node classification. In: International Conference on Learning Representations
(2020)

43. Papp, P.A., Martinkus, K., Faber, L., Wattenhofer, R.: DropGNN: Random
dropouts increase the expressiveness of graph neural networks. In: Beygelzimer,
A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems (2021), https://openreview.net/forum?id=fpQojkIV5q8

44. Platonov, O., Kuznedelev, D., Babenko, A., Prokhorenkova, L.: Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and be-
yond. In: Thirty-seventh Conference on Neural Information Processing Systems
(2023), https://openreview.net/forum?id=m7PIJWOdlY

16 C. Rubio-Madrigal et al.

45. Platonov, O., Kuznedelev, D., Babenko, A., Prokhorenkova, L.: Charac-
terizing graph datasets for node classification: Homophily-heterophily di-
chotomy and beyond. In: The Second Learning on Graphs Conference (2023),
https://openreview.net/forum?id=D4GLZkTphJ

46. Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., Prokhorenkova, L.: A crit-
ical look at evaluation of gnns under heterophily: Are we really making progress?
In: The Eleventh International Conference on Learning Representations (2023)

47. Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C., Shao, C., Metni, H.,
van Hoesel, C., Schopmans, H., Sommer, T., Friederich, P.: Graph neural networks
for materials science and chemistry. Communications Materials 3(1), 93 (2022).
https://doi.org/10.1038/s43246-022-00315-6

48. Salez, J.: Sparse expanders have negative curvature (2021)
49. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.:

Learning to simulate complex physics with graph networks. In: III, H.D., Singh,
A. (eds.) Proceedings of the 37th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 119, pp. 8459–8468. PMLR (13–18
Jul 2020)

50. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009).
https://doi.org/10.1109/TNN.2008.2005605

51. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-
Rad, T.: Collective classification in network data. AI Magazine
29(3), 93 (Sep 2008). https://doi.org/10.1609/aimag.v29i3.2157,
https://ojs.aaai.org/index.php/aimagazine/article/view/2157

52. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural
network evaluation (2019)

53. Shlomi, J., Battaglia, P., Vlimant, J.R.: Graph neural networks in parti-
cle physics. Machine Learning: Science and Technology 2(2), 021001 (jan
2021). https://doi.org/10.1088/2632-2153/abbf9a, https://doi.org/10.1088/2632-
2153/abbf9a

54. Silvester, J.R.: Determinants of block matrices. Mathematical Gazette 84(501),
460–467 (Nov 2000). https://doi.org/10.2307/3620776

55. Topping, J., Giovanni, F.D., Chamberlain, B.P., Dong, X., Bronstein,
M.M.: Understanding over-squashing and bottlenecks on graphs via cur-
vature. In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=7UmjRGzp-A

56. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
Attention Networks. In: ICLR (2018)

57. Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L.,
Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., Zhang, Z.: Deep graph library: A
graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019)

58. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural
networks? In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=ryGs6iA5Km

59. Yang, C., Wu, Q., Wipf, D., Sun, R., Yan, J.: How graph neural networks learn:
Lessons from training dynamics. In: Forty-first International Conference on Ma-
chine Learning (2024), https://openreview.net/forum?id=Dn4B53IcCW

60. Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.H., Hu, X.: Dirichlet
energy constrained learning for deep graph neural networks. Advances in neural
information processing systems (2021)

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 17

A Proofs

A.1 Proof of Thm. 1

Proof. We consider an SBM with 2 classes and N
2 nodes in each class, with intra-

class edge probability p and interclass edge probability q. Its adjacency matrix A
is a random matrix where Aij = Bernoulli(p) if nodes i, j are in the same cluster,
and Aij = Bernoulli(q) otherwise. For a large N , the adjacency matrix A can

be approximated by its expected value, which is a block matrix: Ã =

(
P Q
Q P

)
,

where P = p · 1N
2
+ (1− p)IN

2
, where all values are p except the diagonal which

consists of ones, and Q = q ·1N
2
, where all values are q. By summing up each row

we find that the expected degree matrix D̃ is the diagonal matrix with entries
D̃ii = 1− p+ N

2 (p+ q).
To find the second largest eigenvalue λ2, we need to spectrally analyze the

(expected) normalized Laplacian of Ã; that is, L = I − D̃−1/2ÃD̃−1/2. We have

that D̃−1/2 =
(

1
1−p+N

2 (p+q)

)1/2
IN , so

D̃−1/2ÃD̃−1/2 =

(
1

1− p+ N
2 (p+ q)

)
Ã := d̃Ã, where we define d̃ for convenience.

Then L = I − d̃Ã. We need to find λ such that det (L − λI) = 0.

L− λI = I − d̃Ã− λI = −d̃Ã− (λ− 1)I =

(
−d̃P − (λ− 1)I −d̃Q

−d̃Q −d̃P − (λ− 1)I

)

(−d̃P − (λ − 1)I) and −d̃Q commute, so by [54], the determinant of that
matrix is

det

((
−d̃P − (λ− 1)I

)2
−
(
−d̃Q

)2)
= det

(
d̃(Q− P)− (λ− 1)I

)
det
(
−d̃(Q+ P)− (λ− 1)I

)

We have that Q−P = (q−p) ·1N
2
+(1−p)IN

2
, which has eigenvalues (1−p)

and ((q − p)N2 + (1− p)), so we finally get the required eigenvalue

λ2 = d̃((q − p)
N

2
+ (1− p)) + 1 =

(q − p)N2 + (1− p)

(q + p)N2 + (1− p)
+ 1

For N > 2 and p, q ∈ (0, 1): ∂
∂p

(
(q−p)N

2 +(1−p)
(q+p)N

2 +(1−p) + 1
)
= − 2N(Nq+2)

((N−2)p+Nq+2)2
<

0, while ∂
∂q

(
((p−q)N

2 +(1−p))
((p+q)N

2 +(1−p))
+ 1

)
= 2N2p

((N−2)p+Nq+2)2
> 0. This proves that λ2

increases when p decreases, and when q increases. So a higher spectral gap is
related to a lower community structure.

18 C. Rubio-Madrigal et al.

Extensions of the theorem The argument still follows for a higher amount

of blocks. Let Ã =



P Q Q

Q
. . . Q

Q Q P


 with k diagonal P blocks of sizes N

k each. The

degree of every node is now D̃ii = 1 − p + N
k p +

N(k−1)
k q. Because of the block

structure of our matrix, we still get the second eigenvalue from the difference
between on and off diagonal blocks Q − P , which now has eigenvalues (1 − p)
and ((q − p)Nk + (1− p)). Therefore

λ2 = d̃((q−p)N
k
+(1−p))+1 =

(q − p)Nk + (1− p)
N
k p+

N(k−1)
k q + (1− p)

+1 =
−k(p− 1)−N(p− q)

k(Nq − p+ 1) +N(p− q)
+1

If k is constant with respect to N , this quantity grows like 1 − p−q
(k−1)q+p . If

k = aN , then it goes to 1 as N increases.

The argument also still holds for different-sized communities. Let Ã =

(
P1 Q1
Q2 P2

)
,

where P1 = p · 1M + (1 − p)IM and P2 = p · 1N−M + (1 − p)IN−M , where
all values are p except the diagonal which consists of ones, and Q1 = q · 1M ,
Q2 = q ·1N−M , where all values are q. We assume that M > N −M . Then D̃ is
the diagonal matrix with entries D̃ii = (1+(M −1)p+(N −M)q) if i < M , and
D̃ii = (1 + (N −M − 1)p +Mq) otherwise. We define d̃1 = 1

1+(M−1)p+(N−M)q

and d̃2 = 1
1+(N−M−1)p+Mq for convenience. Because d̃1 < d̃2, the second largest

eigenvalue will come from the interactions of the first block. So the eigenvalues
are (1− p) and ((q − p)M + (1− p)). Therefore

λ2 = d̃1((q − p)M + (1− p)) + 1 =
(q − p)M + (1− p)

(1 + (M − 1)p+ (N −M)q)
+ 1

If M = aN , this quantity grows like 1 − a(p−q)
ap+(1−a)q . If M is constant, then the

second block gets bigger than the first and we get the second eigenvalue from it
instead.

A.2 Proof of Thm. 2

Proof. We consider an SBM with 2 classes and N
2 nodes in each class, with

intra-class edge probability p and inter-class edge probability q. Each node i ∈
{0, . . . , N −1} has one feature, xi, and a label ℓi which corresponds to the block
it belongs to: ℓi = 1 ⇔ i ≥ N

2 . The task is, therefore, to predict each node’s
community association. In this case, the alignment of communities and labels is
perfect.

Each feature xi is aligned with its label following a normal distribution: class-
0 node features follow N (−µ0, σ

2
0), while class-1 node features follow N (µ0, σ

2
0),

as shown in Figure 5(a). A perfect classifier f without any knowledge of the
graph structure builds a decision boundary at x = 0. The expected number of

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 19

misclassified nodes is N
2 times the intersection area of both distributions —be-

cause they are normalized from a population of N2 each. Such area is 2 ·Φ(−µ0

σ0
),

where Φ is the cumulative distribution function of the standard normal dis-
tribution (see Figure 5(b)). Therefore, the proportion of misclassifications is
e(f) = N

2 · 2 · Φ(−µ0

σ0
) · 1

N = Φ(−µ0

σ0
). As Φ is a cumulative function, it is mono-

tonically increasing with respect to its argument.
The classification error of f can be reduced by performing a step of message

passing on the graph, which utilizes the community information to further sep-
arate the two classes. We shall consider a single round of sum aggregation as an
example.

0−µ0 µ0

xi

D
en

si
ty

N (−µ0, σ
2
0) N (µ0, σ

2
0)

(a) The distribution of features from both clus-
ters before training. The area in purple corre-
sponds to nodes wrongly classified by the deci-
sion boundary x = 0.

0−µ0
σ0

xi

D
en

si
ty

N (0, 1)

(b) The cumulative distribution function at
x = −1 of N (µ0, σ

2
0) is equal to the cumula-

tive distribution function at x = −µ0
σ0

of the
standard normal distribution N (0, 1), which is
Φ(−µ0

σ0
). The purple area of Figure 5(a) is two

times this quantity.

Fig. 5. Illustration of the setup for the feature distributions for Thm. 2.

Any node has an expected Ep = p ·
(
N
2 − 1

)
intra-class neighbors, plus itself,

and an expected Eq = q · N2 inter-class neighbors. In the next proof A.3 we

20 C. Rubio-Madrigal et al.

compute the same quantity with neighbour distributions instead, for a more
fine-grained approximation. The hidden state of a class-1 node i after a step of
sum aggregation is therefore the sum of Ep + 1 random variables ∼ N (µ0, σ

2
0)

and Eq random variables ∼ N (−µ0, σ
2
0). This follows another normal distribution

with mean µ1 := µ0 ·(1+Ep−Eq) and variance σ2
1 := σ2

0 ·(1+Ep+Eq). Conversely,
the hidden state of a class-0 node i follows a normal distribution of mean −µ1

and the same variance σ2
1 . The decision boundary of a perfect classifier is still at

x = 0, but the average proportion of misclassified nodes is now Φ(−µ1

σ1
), which

depends on p and q. Specifically, it tends to be monotonically decreasing with
respect to p; this means that the higher the community structure, the more
accurate the classifier can be, because there is more information to utilize.

Let us take µ0 = 1 and σ0 = 1 to simplify the calculations. We need to check
that ∂

∂p

(
−µ1

σ1

)
< 0. For N > 2 and p, q ∈ (0, 1):

µ1 = 1 · (1 + p

(
N

2
− 1

)
− q · N

2
) = 1− p+

N

2
· (p− q)

σ2
1 = 1 · (1 + p

(
N

2
− 1

)
+ q · N

2
) = 1− p+

N

2
· (p+ q)

−µ1

σ1
= −

1− p+ N
2 · (p− q)√

1− p+ N
2 · (p+ q)

∂

∂p

(
−µ1

σ1

)
= − (N − 2)((N − 2)p+ 3Nq + 2)

2
√
2 ((N − 2)p+Nq + 2)

3
2

< 0

⇐⇒ (N − 2)((N − 2)p+ 3Nq + 2) > 0

On the other side, ∂
∂q

(
−µ1

σ1

)
> 0.

∂

∂q

(
−µ1

σ1

)
=

N(6 + 3(N − 2)p+Nq)

2
√
2(2 + (N − 2)p+Nq)

3
2

> 0 ⇐⇒ N(6 + 3(N − 2)p+Nq) > 0

This proves that, by reducing the community structure (either by decreasing
p or increasing q), then the quantity −µ1

σ1
increases, so the expected proportion

of misclassified nodes e(f) = Φ
(

−µ1

σ1

)
also increases. In consequence, it harms

the performance of classifier f .
The graph’s information provides a better separation between the two classes

if the intra-class edge probability is high enough. From this we can conclude that
reducing the intra-class edge probability is not a good strategy to improve the
classification performance for any model on the graph.

A.3 Proof of Thm. 3

Proof. We consider another SBM with 2 classes and N
2 nodes in each class,

with intra-class edge probability p and inter-class edge probability q. Each node

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 21

i ∈ {0, . . . , N − 1} has again one feature, xi, aligned with its class label ℓi
following a normal distribution: N (−µ0, σ

2
0) for class 0 and N (µ0, σ

2
0) for class

1. However, now ℓi corresponds to its community with a fixed probability ψ
—recovering Thm. 2 when ψ = 1.

What is the probability of any node i such that, after a round of sum ag-
gregation, its modified representation x′i is now misclassified (M)? As the two
classes are symmetric:

P (M) = P (M,L0) + P (M,L1) = P (L0)P (M |L0) + P (L1)P (M |L1)

=
1

2
P (M |L0) +

1

2
P (M |L1) = P (M |L0)

Then the question becomes the following: what is the probability of a node
with label L0 being misclassified? It depends whether it belongs to community
C0 or C1.

P (M |L0) = P (M,C0|L0) + P (M,C1|L0) = P (C0|L0)P (M |L0, C0) + P (C1|L0)P (M |L0, C1)

= ψP (M |L0, C0) + (1− ψ)P (M |L0, C1)

P (M |L0, C0) = P (X ′
(L0,C0)

> 0). We now need to calculate what is the
predicted label of a (L0, C0) node after a sum aggregation round. For this we
need the distribution of its neighbours. We consider the node to have a self loop,
as it uses its own feature too.

– The number of nodes (L0, C0) (that are not node i) follows a binomial dis-
tribution N0 ∼ B(N2 − 1, ψ). However, for easiness of proof we will approxi-
mate it by a normal distribution, which is appropriate for N large enough:
N0 ∼ N ((N2 − 1)ψ, (N2 − 1)ψ(1 − ψ)). The amount of them connected to
node i follows a conditional binomial distribution H00 ∼ B(n0, p) | N0 = n0,
which we again approximate by H00 ∼ N (n0p, n0p(1− p)) | N0 = n0.

– The number of nodes (L0, C1) that are connected to node i follows H01 ∼
B(N2 − 1−n0, q) | N0 = n0, approximated by H01 ∼ N ((N2 − 1−n0)q, (N2 −
1− n0)q(1− q)) | N0 = n0.

– Since H00 and H01 are conditionally independent given N0 = n0, their sum
H0 = H00 + H01 also follows a normal distribution with parameters given
by the sum of their means and variances. Thus, the number of total L0

nodes connected to node i (except itself) follows H0 ∼ N (n0p + (N2 − 1 −
n0)q, n0p(1− p) + (N2 − 1− n0)q(1− q)) | N0 = n0. We are going to get rid
of the dependency of N0 by estimating it by a normal distribution with the
mean and variance of the marginal distribution of H0:

E[H0] = E[E[H0|N0]] = E[N0]p+

(
N

2
− 1− E[N0]

)
q

=

(
N

2
− 1

)
ψp+

(
N

2
− 1−

(
N

2
− 1

)
ψ

)
q

=

(
N

2
− 1

)
(pψ + q(1− ψ))

22 C. Rubio-Madrigal et al.

Var[H0] = E[Var(H0|N0)] + Var(E[H0|N0])

= E[N0]p(1− p) +

(
N

2
− 1− E[N0]

)
q(1− q)

+ Var
(
N0(p− q) +

(
N

2
− 1

)
q

)

=

(
N

2
− 1

)
ψp(1− p) +

(
N

2
− 1−

(
N

2
− 1

)
ψ

)
q(1− q)

+ (p− q)2
(
N

2
− 1

)
ψ(1− ψ)

=

(
N

2
− 1

)
(ψp(1− p) + (1− ψ)q(1− q) + (p− q)2ψ(1− ψ))

– The number of nodes (L1, C1) follows N1 ∼ B(N2 , ψ), approximated by N1 ∼
N (N2 ψ,

N
2 ψ(1−ψ)). The amount of them connected to node i follows H11 ∼

B(n1, q) | N1 = n1, approximated by H11 ∼ N (n1q, n1q(1− q)) | N1 = n1.
– The number of nodes (L1, C0) that are connected to node i follows H10 ∼
B(N2 −n1, p) | N1 = n1, approximated by H10 ∼ N ((N2 −n1)p, (N2 −n1)p(1−
p)) | N1 = n1.

– Similarly to L0, the number of total L1 nodes connected to node i follows
H1 ∼ N (n1q+(N2 −n1)p, n1q(1− q)+ (N2 −n1)p(1− p)) | N1 = n1. We will
estimate it by a normal distribution with its mean and variance:

E[H1] = E[E[H1|N1]] = E[N1]q + (
N

2
− E[N1])p

=
N

2
ψq +

(
N

2
− N

2
ψ

)
p

=
N

2
(p(1− ψ) + qψ)

Var[H1] = E[Var(H1|N1)] + Var(E[H1|N1])

= E[N1]q(1− q) +

(
N

2
− E[N1]

)
p(1− p) + Var

(
N1(q − p) +

N

2
p

)

=
N

2
ψq(1− q) +

(
N

2
− N

2
ψ

)
p(1− p) + (p− q)2

N

2
ψ(1− ψ)

=
N

2
(ψq(1− q) + (1− ψ)p(1− p) + (p− q)2ψ(1− ψ))

The representation of node i after one step of sum aggregation is the sum-
mation of H0 + 1 (independent) normal distributions ∼ N (−µ0, σ

2
0) and H1

(independent) normal distributions ∼ N (µ0, σ
2
0). Therefore:

X ′
(L0,C0)

∼ N (−µ0(1 + h0 − h1), σ
2
0(1 + h0 + h1)) | H0 = h0, H1 = h1

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 23

Again calculating its mean and variance:

E[X ′
(L0,C0)

] = E[E[X ′
(L0,C0)

|H0, H1]] = −µ0(1 + E[H0]− E[H1])

= −µ0

(
1 +

(
N

2
− 1

)
(pψ + q(1− ψ))− N

2
(p(1− ψ) + qψ)

)

Var[X ′
(L0,C0)

] = E[Var(X ′
(L0,C0)

|H0, H1)] + Var(E[X ′
(L0,C0)

|H0, H1])

= σ2
0(1 + E[H0] + E[H1]) + µ2

0(Var(H0) + Var(H1))

= σ2
0

(
1 +

(
N

2
− 1

)
(pψ + q(1− ψ)) +

N

2
(p(1− ψ) + qψ)

)

+ µ2
0

((
N

2
− 1

)
(ψp(1− p) + (1− ψ)q(1− q) + (p− q)2ψ(1− ψ))

+
N

2
(ψq(1− q) + (1− ψ)p(1− p) + (p− q)2ψ(1− ψ))

)

For a more clear analysis of this formula, we take µ0 = 1, σ0 = 1 and N large
enough:

E[X ′
(L0,C0)

] ≈ −N
2
(pψ + q(1− ψ)− p(1− ψ)− qψ) = −N

2
(2ψ − 1)(p− q)

Var[X ′
(L0,C0)

] ≈ N

2

(
pψ + q(1− ψ) + p(1− ψ) + qψ + 2(p− q)2ψ(1− ψ)

+ ψp(1− p) + (1− ψ)q(1− q) + ψq(1− q) + (1− ψ)p(1− p)

)

=
N

2
(p+ q + p(1− p) + q(1− q) + 2(p− q)2ψ(1− ψ))

Finally, we have P (X ′
(L0,C0)

> 0) ≈ 1− Φ

(
−E[X′

(L0,C0)]√
Var[X′

(L0,C0)
]

)
=

Φ




N
2 (2ψ − 1)(p− q)√

N
2 (p+ q + p(1− p) + q(1− q) + 2(p− q)2ψ(1− ψ))




For P (M |L0, C1) = P (X ′
(L0,C1)

> 0), the calculation of the predicted label
of a (L0, C1) node follows exactly the same steps, but exchanging p and q, as the
probabilities for nodes to be connected to node i are now exactly of the opposite
community. So we have P (X ′

(L0,C1)
> 0) ≈

Φ




N
2 (2ψ − 1)(q − p)√

N
2 (p+ q + p(1− p) + q(1− q) + 2(p− q)2ψ(1− ψ))


 = 1− P (X ′

(L0,C0)
> 0)

And P (M) ≈ ψP (X ′
(L0,C0)

> 0) + (1− ψ)(1− P (X ′
(L0,C0)

> 0)) = (1− ψ) +

(2ψ − 1)P (X ′
(L0,C0)

> 0).

24 C. Rubio-Madrigal et al.

Algorithm 1 Proxy Spectral Gap based Greedy Graph Addition
(ProxyAddMin)
Require:Graph G = (V, E), num. edges to add N , spectral gap λ1(LG), second eigen-

vector f of G.
repeat

for (u, v) ∈ Ē do
Consider Ĝ = G ∪ (u, v).
Calculate proxy value for the spectral gap of Ĝ used in [26]:
λ1(LĜ) ≈ λ1(LG) + ((fu − fv)

2 − λ1(LG) · (f2
u + f2

v))
end for
Find the edge that maximizes the proxy: (u+, v+) = argmin

(u,v)∈Ē
λ1(LĜ).

Update graph edges: E = E ∪ {(u+, v+)}.
Update degrees: du+ = du+ + 1, dv+ = dv+ + 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges added.
Output : Denser graph Ĝ = (V, Ê).

B Algorithms

B.1 Spectral gap minimization

We use the algorithms presented in [26] for adding (ProxyAddMax) and delet-
ing edges (ProxyDelMax) based on a proxy of the spectral gap. We modify
these algorithms to minimize the gap and call them ProxyAddMin (Alg. 1) and
ProxyDelMin (Alg. 2).

B.2 Community and Feature similarity algorithms

We present the three algorithm families proposed in this paper for graph rewiring:
ComMa (Algs. 3, 4), FeaSt (Alg. 5), and ComFy (Alg. 6). Each algorithm has an
addition and a deletion variant. Furthermore, ComMa has two extra variants for
increasing (HigherComMa, Alg. 3) or decreasing (LowerComMa, Alg. 4) the com-
munity structure.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 25

Algorithm 2 Proxy Spectral Gap based Greedy Graph Sparsification
(ProxyDelMin)
Require: Graph G = (V, E), num. edges to prune N , spectral gap λ1(LG), second

eigenvector f .
repeat

for (u, v) ∈ E do
Consider Ĝ = G \ (u, v).
Calculate proxy value for the spectral gap of Ĝ used in [26]:
λ1(LĜ) ≈ λ1(LG)− ((fu − fv)

2 − λ1(LG) · (f2
u + f2

v))
end for
Find the edge that minimizes the proxy: (u−, v−) = argmin

(u,v)∈E
λ1(LĜ).

Update graph edges: E = E \ {(u−, v−)}.
Update degrees: du− = du− − 1, dv− = dv− − 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges deleted.
Output : Sparse graph Ĝ = (V, Ê).

Algorithm 3 HigherComMa: Increasing community structure. Variants: ADD, DEL
Require:Graph G = (V, E), num. edges to add (ADD) / delete (DEL) N .

Calculate communities (here used Louvain): (C0, . . . , Cm) =
CommunityDetection(G)
if ADD then

Consider set of edges to add: E = {(u, v) ∈ Ē | Comm[u] = Comm[v]}
else if DEL then

Consider set of edges to delete: E = {(u, v) ∈ E | Comm[u] ̸= Comm[v]}
end if
repeat

if ADD then
Randomly and uniformly pick an edge e from E
Update graph edges: E = E ∪ {e} (ADD) or E = E \ {e} (DEL)

end if
until N edges modified.
Output : Modified graph Ĝ = (V, Ê).

26 C. Rubio-Madrigal et al.

Algorithm 4 LowerComMa: Decreasing community structure. Variants: ADD, DEL
Require:Graph G = (V, E), num. edges to add (ADD) / delete (DEL) N .

Calculate communities (here used Louvain): (C0, . . . , Cm) =
CommunityDetection(G)
if ADD then

Consider set of edges to add: E = {(u, v) ∈ Ē | Comm[u] ̸= Comm[v]}
else if DEL then

Consider set of edges to delete: E = {(u, v) ∈ E | Comm[u] = Comm[v]}
end if
repeat

if ADD then
Randomly and uniformly pick an edge e from E
Update graph edges: E = E ∪ {e} (ADD) or E = E \ {e} (DEL)

end if
until N edges modified.
Output : Modified graph Ĝ = (V, Ê).

Algorithm 5 FeaSt: Maximizing feature similarity. Variants: ADD, DEL
Require:Graph G = (V, E), node features X, num. edges to add (ADD) / delete (DEL)
N .
Calculate the pairwise cosine similarity of X: sim(u, v).
Calculate the mean of the current graph’s similarity values: sim =
1
|E|

∑
(u,v)∈E sim(u, v)

if ADD then
for (u, v) ∈ Ē do

Calculate the graph’s mean similarity in the presence of (u, v): rank(u, v) =
sim|E|+sim(u,v)

|E|+1

end for
else if DEL then

for (u, v) ∈ E do
Calculate the graph’s mean similarity in the absence of (u, v): rank(u, v) =
sim|E|−sim(u,v)

|E|−1

end for
end if
Find top N edges in the ranking: EN = topN (rank(u, v))
Update graph edges: E = E ∪ EN (ADD) or E = E \ EN (DEL)
Output : Modified graph Ĝ = (V, Ê).

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 27

Algorithm 6 ComFy: Maximizing feature similarity across communities. Vari-
ants: ADD, DEL
Require:Graph G = (V, E), node features X, (approx.) num. edges to add (ADD) /

delete (DEL) N .
Calculate the pairwise cosine similarity of X: sim(u, v).
Calculate communities (here used Louvain): (C0, . . . , Cm) =
CommunityDetection(G)
Consider pairs of communities: C = {(Ci, Cj) ∈ C × C | i ≤ j}
for (Ci, Cj) ∈ C do

Existing edges between Ci and Cj : Eij = {(u, v) ∈ E | Comm[u] = Ci∧Comm[v] =
Cj}
Calculate the mean of the existing edges’ similarities: simij =

1
|Eij |

∑
(u,v)∈Eij

sim(u, v)

if ADD then
Non-existing edges between Ci, Cj : Eij = {(u, v) ∈ Ē | Comm[u] = Ci ∧
Comm[v] = Cj}
for (u, v) ∈ Eij do

Calculate the mean similarity in the presence of (u, v): rankij(u, v) =
simij |Eij |+sim(u,v)

|Eij |+1

end for
else if DEL then

for (u, v) ∈ Eij do
Calculate the mean similarity in the absence of (u, v): rankij(u, v) =
simij |Eij |−sim(u,v)

|Eij |−1

end for
end if
Calculate edge budget: B(i, j) = round(N · |Ci|·|Cj |∑

(Cx,Cy)∈C |Cx|·|Cy|)

Find top B(i, j) edges in the ranking: EB(i,j)
ij = topB(i,j)(rankij(u, v))

Update graph edges: E = E ∪ EB(i,j)
ij (ADD) or E = E \ EB(i,j)

ij (DEL)
end for
Output : Modified graph Ĝ = (V, Ê). Number of modifications is approximately N .

C Datasets and hyperparameters

C.1 Dataset statistics

In Table 5 we provide a summary of the datasets used for the experiments (§4).
We also provide various metrics such as Edge Label Informativeness (ELI) and
Adjusted Homophily score proposed in [45]. The Normalized Mutual Informa-
tion (NMI), Adjusted Mutual Information (AMI) and Modularity score after
performing community detection using the Louvain method to understand how
informative the graph structure is. The adjustment in AMI is only necessary
when comparing between sets of different size, but within a dataset the number
of classes does not change. Therefore we can compare the effect of our algo-
rithm by means of the NMI’s value. However, the AMI is useful to compare the
alignment across different datasets.

28 C. Rubio-Madrigal et al.

Table 5. Dataset statistics.

Dataset #Nodes #Edges NMI AMI ELI Homophily Modularity
Cora 2708 10138 0.4556 0.4489 0.5802 0.7637 0.8023

Citeseer 3327 7358 0.3270 0.3151 0.4437 0.6620 0.8519
Pubmed 19717 88648 0.1973 0.1966 0.4092 0.6860 0.7671
Cornell 183 277 0.1250 0.0202 0.1556 -0.2201 0.6227
Texas 183 279 0.0673 0.0016 0.19234 -0.2936 0.5548

Wisconsin 251 450 0.0867 0.0351 0.1310 -0.1732 0.6293
Chameleon 890 8854 0.1035 0.0823 0.0138 0.0295 0.6680

Squirrel 2223 57850 0.0176 0.0153 0.0013 0.0086 0.4451
Actor 7600 26659 0.0044 -0.0002 0.00017 0.00277 0.5113
CS 18333 163788 0.5528 0.5501 0.6467 0.7845 0.7321

Photo 7650 238162 0.6845 0.6835 0.6662 0.7850 0.7363
Physics 34493 495924 0.4376 0.4372 0.7222 0.8724 0.6627

Roman-Empire 22662 32927 0.0214 0.0030 0.1101 -0.0468 0.9887
Amazon-Ratings 24492 93050 0.0426 0.0381 0.0398 0.1402 0.9645

Minesweeper 10000 39402 0.0011 0.0004 0.0001 0.0094 0.8860

C.2 Details of the experiments

We use PyTorch Geometric [17] and Deep Graph Library (DGL) [57] for all our
experiments. For datasets Cora, Citeseer, Pubmed, Cornell, Texas, Wisconsin,
Chameleon, Squirrel and Actor we use a 60/20/20 split for train/test/validation
respectively. The hyperparameters are tuned on the validation set. Our back-
bone model is a 2-layered GCN [29]. We report the final test accuracy averaged
over 100 splits of the data. For datasets Roman-empire, Amazon-ratings and
Minesweeper we use the code base of the authors [46], where the datasets are
split 50/25/25 for train/test/validation respectively. Our backbone model here is
a 5-layered GCN and the final test accuracy is reported averaged over 10 splits.
We report the hyperparameters such as the Normalized Mutual Information
(NMI) between the cluster labels and the ground truth labels after community
detection [7] before and after rewiring the graph to understand how it affects the
community structure-node label alignment. We also report the number of edges
added and deleted to effect the required change in test accuracy. The empirical
runtimes, in seconds, are presented in seconds in Tables 6,7,9,11,10,12. Our code
is available here: https://github.com/RelationalML/ComFy.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 29

Table 6. Empirical runtimes for FeaSt based rewiring.

Dataset AvgTestAcc NMIBefore NMIAfter EdgesAdded EdgesDeleted Rewire Time (s)

Cora 87.730±0.390 0.456 0.432 1000 0 9.333
Cora 90.740±0.390 0.456 0.432 0 500 9.637
Citeseer 78.540±0.340 0.327 0.338 1000 0 8.549
Citeseer 81.600±0.390 0.327 0.330 0 10 8.422
Pubmed 86.430±0.090 0.197 0.206 1000 0 89.224
Pubmed 86.760±0.100 0.197 0.196 0 50 89.745
Cornell 59.460±1.490 0.125 0.099 20 0 7.402
Cornell 51.350±1.400 0.125 0.114 0 5 7.525
Texas 54.050±1.510 0.067 0.063 5 0 7.630
Texas 64.860±1.430 0.067 0.190 0 100 7.568
Wisconsin 60.000±1.090 0.087 0.077 10 0 7.533
Wisconsin 60.000±1.270 0.087 0.134 0 50 7.538
Chameleon 43.260±0.620 0.103 0.103 20 0 9.513
Chameleon 42.700±0.690 0.103 0.103 0 20 9.093
Squirrel 35.510±0.440 0.018 0.018 50 0 14.566
Squirrel 36.400±0.360 0.018 0.018 0 100 13.219
Actor 31.250±0.220 0.004 0.005 100 0 79.587
Actor 31.970±0.210 0.004 0.006 0 100 78.594

Table 7. Empirical runtimes for FeaSt+Add+Delete.

Dataset AvgTestAcc NMIBefore NMIAfter EdgesAdded EdgesDeleted Rewire Time (s)

Cora 85.710±0.360 0.456 0.464 10 10 11.450
Cora 85.710±0.360 0.456 0.464 10 10 11.450
Citeseer 80.190±0.340 0.327 0.322 50 50 10.777
Citeseer 80.190±0.340 0.327 0.322 50 50 10.777
Pubmed 87.010±0.120 0.197 0.198 1000 1000 97.618
Pubmed 87.010±0.120 0.197 0.198 1000 1000 97.618
Cornell 54.050±1.620 0.125 0.115 5 5 8.774
Cornell 54.050±1.620 0.125 0.115 5 5 8.774
Texas 56.760±1.650 0.067 0.165 100 100 8.747
Texas 56.760±1.650 0.067 0.165 100 100 8.747
Wisconsin 58.000±1.260 0.087 0.120 50 50 8.079
Wisconsin 58.000±1.260 0.087 0.120 50 50 8.079
Chameleon 44.940±0.700 0.103 0.158 100 100 8.780
Chameleon 44.940±0.700 0.103 0.158 100 100 8.780
Squirrel 35.730±0.480 0.018 0.019 500 500 13.645
Squirrel 35.730±0.480 0.018 0.019 500 500 13.645
Actor 32.630±0.210 0.004 0.008 50 50 82.668
Actor 32.630±0.210 0.004 0.008 50 50 82.668

30 C. Rubio-Madrigal et al.

Table 8. Empirical runtimes for ComFy

Dataset AvgTestAcc NMIBefore NMIAfter EdgesAdded EdgesDeleted Rewire Time (s)

Cora 87.73±0.26 0.4556 0.4580 100 0 14.99
Cora 88.13±0.27 0.4556 0.44876 0 2000 18.39

Citeseer 77.36±0.38 0.32701 0.32492 100 0 11.75
Citeseer 78.07±0.35 0.32701 0.35509 0 1000 11.86
Pubmed 86.74±0.10 0.19726 0.19572 50 0 415.23
Pubmed 86.23±0.11 0.19726 0.20603 0 2000 415.59
Cornell 67.57±1.68 0.1249 0.0955 10 0 9.91
Cornell 70.27±1.50 0.1249 0.1269 0 10 9.50
Texas 62.16±1.52 0.0672 0.0678 10 0 9.74
Texas 64.86±1.51 0.0672 0.0915 0 0 9.74

Wisconsin 62.00±1.12 0.0866 0.1526 50 0 9.79
Wisconsin 66.00±1.34 0.0866 0.1180 0 50 10.36
Chameleon 41.57±0.83 0.10349 0.14758 100 0 13.98
Chameleon 45.51±0.76 0.10349 0.10340 0 1500 10.94

Squirrel 36.85±0.38 0.01762 0.01762 500 0 17.51
Squirrel 39.10±0.43 0.01762 0.01762 0 1500 20.98
Actor 32.30±0.25 0.00436 0.00491 500 0 143.81
Actor 31.12±0.19 0.00436 0.01364 0 2000 141.79

Table 9. Empirical runtimes for HigherComMa based rewiring.

Dataset AvgTestAcc NMI EdgesAdded EdgesDeleted FinalGap Rewire Time (s)

Cora 83.64±0.38 0.4531 100 0 0.004825 0.06
Cora 83.82±0.31 0.4565 0 127 0.003925 0.05
Citeseer 77.31±0.40 0.3252 10 0 0.001555 0.03
Citeseer 77.31±0.41 0.3273 0 10 0.001551 0.03
Pubmed 85.83±0.11 0.1933 50 0 0.014013 7.47
Pubmed 85.90±0.11 0.1975 0 50 0.013990 8.67
Cornell 49.03±1.26 0.1283 5 0 0.079053 0.01
Cornell 49.93±1.34 0.1038 0 10 0.000001 0..01
Texas 52.66±1.47 0.0633 100 0 0.072213 0.01
Texas 48.57±1.53 0.0695 0 10 0.062387 0.01
Wisconsin 50.55±1.24 0.0886 5 0 0.074916 0.01
Wisconsin 50.32±1.38 0.0866 0 10 0.068169 0.01
Chameleon 41.23±0.72 0.1536 100 0 0.006417 0.04
Chameleon 40.44±0.69 0.0875 0 20 0.005920 0.04
Squirrel 34.51±0.40 0.0176 20 0 0.051575 0.63
Squirrel 34.66±0.39 0.0150 0 1000 0.050114 0.68
Actor 30.92±0.21 0.0080 20 0 0.032282 6.57
Actor 30.71±0.24 0.0222 0 50 0.032679 6.42

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 31

Table 10. Empirical runtimes for HigherComMa+add+delete based rewiring.

Dataset AvgTestAcc NMIAfter EdgesAdded EdgesDeleted FinalGap Rewire Time (s)

Cora 83.820±0.340 0.463 50 100 0.004 0.06
Citeseer 77.320±0.380 0.332 10 50 0.000 0.03
Pubmed 85.830±0.110 0.195 100 50 0.014 7.14
Cornell 48.920±1.480 0.113 10 17 0.000 0.01
Texas 52.440±1.640 0.067 100 10 0.068 0.01
Wisconsin 51.350±1.400 0.091 20 10 0.069 0.01
Chameleon 41.220±0.750 0.094 500 100 0.004 0.04
Squirrel 34.700±0.400 0.016 20 500 0.051 0.82
Actor 30.810±0.190 0.025 100 50 0.032 6.88

Table 11. Empirical runtimes for LowerComMa based rewiring.

Dataset AvgTestAcc NMIAfter EdgesAdded EdgesDeleted FinalGap Rewire Time (s)

Cora 83.41±0.37 0.4604 10 0 0.008448 0.693458
Cora 83.61±0.35 0.4583 0 2 0.004784 0.663406
Citeseer 77.15±0.36 0.3195 10 0 0.001556 0.686848
Citeseer 77.39±0.37 0.3240 0 4 0.001555 0.697997
Pubmed 85.85±0.090 0.1899 50 0 0.014267 13.045066
Pubmed 85.90±0.10 0.1844 0 7 0.014069 11.933355
Cornell 51.08±1.67 0.0695 100 0 0.131261 7.787908
Cornell 49.69±1.43 0.1249 0 1 0.080970 7.696815
Texas 50.29±1.71 0.0516 100 0 0.201174 8.309750
Wisconsin 50.95±1.29 0.1094 20 0 0.089029 8.400457
Wisconsin 50.61±1.35 0.0886 0 4 0.076910 8.699127
Chameleon 40.61±0.64 0.0791 50 0 0.007699 8.595781
Chameleon 40.43±0.71 0.1034 0 17 0.006315 8.385635
Squirrel 34.48±0.39 0.0207 100 0 0.056416 10.908470
Squirrel 34.76±0.40 0.0166 0 12 0.051370 9.688496
Actor 30.79±0.23 0.0055 500 0 0.070495 17.127213
Actor 30.79±0.22 0.0077 0 2 0.032679 15.543629

32 C. Rubio-Madrigal et al.

Table 12. Empirical runtimes for LowerComMa+add+delete based rewiring.

Dataset AvgTestAcc NMIAfter EdgesAdded EdgesDeleted FinalGap Rewire Time (s)

Cora 83.73±0.32 0.4466 10 2 0.007464 0.660313
Citeseer 77.42±0.38 0.3197 10 4 0.001556 0.427487
Pubmed 85.87±0.10 0.2036 50 7 0.014268 13.815228
Cornell 52.36±1.52 0.0690 100 1 0.132826 8.077217
Texas 51.6±1.53 0.0516 100 0 0.201174 7.848707
Wisconsin 51.45±1.33 0.1096 5 4 0.078300 7.622503
Chameleon 40.9±0.66 0.0995 20 17 0.007556 7.997294
Squirrel 34.75±0.41 0.0187 100 12 0.056383 10.509906
Actor 30.85±0.23 0.0034 20 2 0.036560 15.892848

Table 13. Different community detection metrics for various datasets after applying
FeaSt.

FeaSt-Add

Dataset NMIBefore NMIAfter AMIBefore AMIAfter ModularityBefore ModularityAfter ELIBefore ELIAfter HomBefore HomAfter Test
Acc

Cora 0.4556 0.4726 0.4489 0.4656 0.8023 0.8021 0.5802 0.5822 0.7637 0.7659 89.74±0.26
Citeseer 0.3270 0.3384 0.3151 0.3249 0.8519 0.8401 0.4437 0.4633 0.6620 0.67998 79.48±0.40

Chameleon 0.1035 0.1035 0.0823 0.0823 0.6680 0.6680 0.0138 0.0138 0.0295 0.0295 44.94±0.78
Squirrel 0.0176 0.0167 0.0153 0.0143 0.4451 0.4451 0.001325 0.00133 0.00861 0.00869 35.73±0.43

FeaSt-Del
Cora 0.4556 0.4497 0.4489 0.4379 0.8023 0.8039 0.5802 0.5816 0.7637 0.7645 87.32±0.30

Citeseer 0.3270 0.3400 0.3151 0.3212 0.8519 0.8558 0.4437 0.4523 0.6620 0.6694 78.38±1.46
Chameleon 0.1035 0.1047 0.0823 0.0809 0.6680 0.6655 0.0138 0.0137 0.0295 0.0297 47.19±0.62

Squirrel 0.0176 0.0184 0.0153 0.0151 0.4451 0.4453 0.001325 0.00133 0.00861 0.00865 37.75±0.39

Table 14. Different community detection metrics for various datasets after applying
ComFy.

ComFy-Add

Dataset NMIBefore NMIAfter AMIBefore AMIAfter ModularityBefore ModularityAfter ELIBefore ELIAfter HomBefore HomAfter Test
Acc

Cora 0.4556 0.4556 0.4489 0.4489 0.8023 0.8032 0.5802 0.5776 0.7637 0.7620 89.13±0.26
Citeseer 0.3270 0.3297 0.3151 0.3175 0.8519 0.8501 0.4437 0.44033 0.6620 0.6602 80.42±0.39

Chameleon 0.1035 0.0842 0.0823 0.0706 0.6680 0.6687 0.0138 0.0140 0.0295 0.0307 47.19±0.62
Squirrel 0.0176 0.0176 0.0153 0.0153 0.4451 0.4451 0.0013 0.0013 0.0086 0.0086 37.75±0.39

ComFy-Del
Cora 0.4556 0.4499 0.4489 0.4382 0.8023 0.8021 0.5802 0.5806 0.7637 0.7634 88.33±0.31

Citeseer 0.3270 0.3263 0.3151 0.3133 0.8519 0.8678 0.4437 0.4461 0.6620 0.6650 81.37±0.36
Chameleon 0.1035 0.1044 0.0823 0.0705 0.6680 0.6649 0.0138 0.0139 0.0295 0.0298 45.51±0.64

Squirrel 0.0176 0.0176 0.0153 0.0153 0.4451 0.4451 0.0013 0.0013 0.0086 0.0086 37.75±0.42

C.3 Sensitivity to hyperparameters

The hyperparameters used in the experiments are given in Table 15. For the
large heterophilic datasets Roman-empire, Amazon-ratings and Minesweeper we
use the model hyperparameters recommended by the authors [45]. However, we
found setting the learning rate to 3e−3 instead of 3e−5 yields better results.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 33

The GCN hyperparameters on the other datasets are tuned based on the vali-
dation set through a grid search. As is common, we found that the performance
of not only our method but GNNs in general is sensitive to the learning rate
but otherwise robust across datasets and architectures. Our rewiring techniques
do not require any change of the basic GNN hyperparameters. In fact, we use
the same ones as the baselines. Our rewiring methods come with an additional
hyperparameter, i.e., the rewiring budget (and thus how many edges are added
or deleted). This is true for all the rewiring methods that have been proposed
[55, 27, 20, 40, 6, 26] in the literature. In Table 16 and Table 17 we present results
for 4 datasets Cora, Citeseer, Chameleon and Squirrel and how their perfor-
mance varies with respect to edge modification budgets. While the performance
is clearly sensitive to this choice, the rewiring budget seems to be task specific
but not very architecture specific, as we could use the same budgets for different
GNN variants, such as GIN and GraphSAGE.

Table 15. GCN hyperparameters used in the experiments.

Dataset LR Dropout HiddenDimension

Cora 0.01 0.41 128
Citeseer 0.01 0.31 32
Pubmed 0.01 0.41 32
Cornell 0.001 0.51 128
Texas 0.001 0.51 128

Wisconsin 0.001 0.51 128
Chameleon 0.001 0.21 128

Squirrel 0.001 0.51 128
Actor 0.001 0.51 128
CS 0.001 0.51 512

Photo 0.01 0.51 512
Physics 0.01 0.51 512

Roman-empire 0.003 0.31 512
Amazon-ratings 0.003 0.31 512

Minesweeper 0.003 0.31 512

D Additional Experiments

D.1 Comparison with various baselines

We compare our proposed algorithms with other diverse methods [5, 3, 15] in Ta-
ble 18. In [5] the authors suggest to use multi-order moments to model a neigh-
bor’s feature distribution and propose MM-GNN to use a multi-order moment
embedding and an attention mechanism to weight importance of certain nodes
going beyond single statistic aggregation mechanisms such as mean, max and
sum. In [3], the authors propose DiffWire, an inductive way to rewire the graph

34 C. Rubio-Madrigal et al.

Table 16. GCN test accuracy variability for different edge budgets for FeaSt.

GCN+FeaSt

Dataset EdgesAdded Accuracy EdgesDeleted Accuracy

10 85.11±0.37 10 82.49±0.39
50 79.88±0.41 50 83.70±0.34

100 86.72±0.36 100 86.92±0.34
500 83.90±0.35 500 90.74±0.39

Cora

1000 87.73±0.39 1000 85.51±0.31

10 77.36±0.35 10 81.60±0.39
50 77.59±0.37 50 74.06±0.36
100 75.24±0.41 100 78.30±0.33
500 75.94±0.35 500 75.71±0.39

Citeseer

1000 78.54±0.34 1000 75.00±0.33

20 43.26±0.62 20 42.70±0.69
50 38.20±0.71 50 41.01±0.68

100 41.01±0.64 100 35.96±0.68
500 37.08±0.64 500 40.45±0.63

Chameleon

1000 40.45±0.62 1000 39.33±0.73

20 33.26±0.38 20 34.38±0.40
50 35.51±0.44 50 35.28±0.38
100 33.48±0.44 100 36.40±0.36
500 33.26±0.37 500 33.71±0.39

Squirrel

1000 33.26±0.38 1000 32.36±0.38

based on the Lovász bound by formulating two new layers that are interspersed
between regular GNN layers. In [15] the authors propose a way to de-noise the
graph by proposing graph propensity score (GPS) and GPS-PE (with positional
encoding) methods to rewire the graph. Although the authors call their method
“graph rewiring", the proposal involves separating edges in the graph as training
edges and message-passing edges and use a self-supervised link prediction task
to impute edges between nodes. Note that these methods go beyond ‘rewiring-
as-a-pre-processing’ paradigm, which is the case for all our proposed algorithms.
We report the results reported in their respective papers, and hence NA for some
datasets. Not all code is made available for reproducing the results. We also re-
port our proposed algorithms with different variant of GNNs such as GIN [58]
and GraphSAGE [24] to emphasize on the fact that our rewiring algorithms can
be combined with any GNN model. The top performance is highlighted in bold.
From the table we can clearly see that our proposed algorithms outperform the
chosen diverse baselines on 6 out of 9 datasets.

D.2 Scalability

We present additional results for large homophilic graphs to understand how
our proposed algorithms scale with increasing graph size. The statistics for the
datasets used is presented in Table 5. We present results on CS, Physics, and
Photo [52] available as PyTorch geometric datasets. We train a two-layered GCN
with the following hyperparameters, the learning rate = {0.001, 0.01} and hidden
dimension size = 512. The results are presented in Table 19. Further, we pick
the largest dataset among these which is Physics with 34, 493 nodes and 495, 924
edges and run a version of our algorithms which samples the nodes randomly

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 35

Table 17. GCN test accuracy variability for different edge budgets for ComFy

GCN+ComFy

Dataset EdgesAdded Accuracy EdgesDeleted Accuracy

50 86.72±0.27 500 86.52±0.27
100 87.73±0.26 1000 84.31±0.27
500 86.12±0.32 1500 85.71±0.31Cora

1000 85.11±0.27 2000 88.13±0.27

50 77.36±0.38 500 75.24±0.38
100 77.36±0.38 1000 78.07±0.35
500 75.47±0.33 1500 76.42±0.36Citeseer

1000 75.71±0.39 2000 74.76±0.39

5 35.39±0.72 100 41.57±0.73
10 38.20±0.73 500 37.08±0.69
50 41.01±0.64 1000 44.38±0.69
100 41.57±0.83 1500 45.51±0.76

Chameleon

500 39.33±0.60 2000 42.13±0.74

5 36.85±0.38 100 35.51±0.41
10 30.34±0.44 500 33.71±0.40
50 34.16±0.41 1000 37.08±0.41
100 32.81±0.37 1500 39.10±0.43

Squirrel

500 34.61±0.42 2000 36.85±0.39

Table 18. Additional baselines with diverse methods.

Method Cora Citeseer Pubmed Cornell Texas Wisconsin Chameleon Squirrel Actor

MM-GNN 84.21±0.56 73.03±0.58 80.26±0.69 NA NA NA 63.32 ± 1.31 51.38 ± 1.73 NA
GCN+DiffWire 83.66±0.60 72.26±0.50 86.07±0.10 69.04±2.2 NA 79.05±2.1 NA NA 31.98±0.30

GPS 79.5±0.80 71.5±0.60 77.7±0.30 74.6±3.00 80.0±1.80 77.3±4.40 41.5±3.60 43.0±0.90 38.3±0.70
GPS-PE 80.5±0.80 71.5±0.40 77.7±0.50 68.6±4.70 75.1±4.30 78.8±1.50 37.6±1.60 34.9±1.30 36.3±0.80

GCN+FeaStAdd 87.73±0.39 78.54±0.34 86.43±0.09 59.46±1.49 54.05±1.51 60.00±1.09 43.26±0.62 39.33±0.73 31.25±0.22
GCN+FeaStDel 90.74±0.39 81.60±0.39 86.76±0.10 51.35±1.63 64.86±1.43 60.00±1.27 42.70±0.69 36.40±0.36 31.97±0.21

GCN+ComFyAdd 87.73±0.26 77.36±0.38 86.74±0.10 67.57±1.68 62.16±1.52 62.00±1.12 41.57±0.83 36.85±0.38 32.30±0.25
GCN+ComFyDel 88.13±0.27 78.07±0.35 86.23±0.11 70.27±1.50 64.86±1.51 66.00±1.34 45.51±0.76 39.10±0.43 31.12±0.19
GIN+FeaStAdd 87.12±0.34 75.71±0.41 88.36±0.11 51.35±1.62 70.27±1.48 62.00±1.40 42.70±0.64 38.20±0.48 28.62±0.23
GIN+FeaStDel 85.31±0.34 73.35±0.48 89.83±0.12 59.46±1.73 72.97±1.34 70.00±1.31 45.51±0.60 40.67±0.43 29.21±0.23

GIN+ComFyAdd 84.10±0.28 75.00±0.46 89.75±0.14 62.16±1.99 67.57±1.48 68.00±1.32 46.07±0.72 38.43±0.47 29.74±0.21
GIN+ComFyDel 85.71±0.37 74.29±0.39 88.46±0.11 56.76±1.60 67.57±1.50 66.00±1.42 51.12±0.73 40.67±0.54 30.33±0.22

GraphSAGE+FeaStAdd 89.74±0.26 79.48±0.40 86.84±0.11 81.08±1.46 75.68±1.52 80.00±1.04 44.94±0.78 35.73±0.43 37.37±0.22
GraphSAGE+FeaStDel 87.32±0.30 80.42±0.39 87.62±0.10 78.38±1.46 81.08±1.43 86.00±1.07 47.19±0.62 37.75±0.39 37.76±0.21

GraphSAGE+ComFyAdd 89.13±0.26 81.37±0.36 88.33±0.09 89.19±1.37 81.08±1.52 86.00±1.06 43.82±0.72 37.30±0.41 35.86±0.22
GraphSAGE+ComFyDel 88.33±0.31 81.60±0.37 88.03±0.11 78.38±1.41 83.78±1.47 78.00±1.13 45.51±0.64 37.75±0.42 36.45±0.22

and calculates the feature similarity and rewires only on the subset of those
nodes. We use sampling ratio 0.2 to represent 20% of the nodes. The results
are presented in Table 20. Clearly from the table, we can see that our proposed
algorithms are robust, in that, we can bring down the runtime significantly and
still obtain comparable accuracy to the full graph.

D.3 Results with different GNN variants

In Table 21 we present results for GIN [58] and GraphSAGE [23] variants, demon-
strating that our rewiring schemes are architecture agnostic and can be used as
a pre-processing step to make the input graphs amenable to message-passing.
We also add MLP as a baseline.

36 C. Rubio-Madrigal et al.

Table 19. Node classification results on large homophilic graphs.

Dataset Method Edges Modified Rewire Time (s) Accuracy

CS

GCNBaseline NA NA 91.76±0.08
FeaStAdd 500 52.20 92.10±0.08
FeaStDel 10000 53.52 92.71±0.06

ComFyAdd 100 318.58 91.98±0.06
ComFyDel 500 331.71 92.30±0.08

Physics

GCNBaseline NA NA 94.55±0.04
FeaStAdd 100 190.24 94.85±0.05
FeaStDel 500 192.07 95.01±0.05

ComFyAdd 100 1282.06 95.04±0.05
ComFyDel 500 1300.39 94.69±0.05

Photo

GCNBaseline NA NA 78.70±0.41
FeaStAdd 100 42.63 79.10±0.47
FeaStDel 10000 40.34 81.10±0.51

ComFyAdd 100 82.49 77.30±0.60
ComFyDel 1000 80.94 81.60±0.49

Table 20. Node classification results on Physics dataset with node sampling.

Sampling ratio Method Rewire Time (s) Accuracy

100

FeaStAdd 190.24 94.85±0.05
FeaStDel 192.07 95.01±0.05

ComFyAdd 1282.06 95.04±0.05
ComFyDel 1300.39 94.69±0.05

20

FeaStAdd 32.60 94.60±0.05
FeaStDel 33.03 94.86±0.04

ComFyAdd 718.40 94.62±0.05
ComFyDel 713.65 94.53±0.05

D.4 Our algorithms against Feature Noise

To understand how our proposed algorithm perform in presence of feature noise,
we artificially add Gaussian noise with 0 mean and standard deviation {0.01, 0.03, 0.05, 0.08, 0.1, 0.2}
controlling the level of noise. We compare our proposed algorithms FeaSt and
ComFy against the baseline GCN for increasing feature noise. We add/delete 10
edges. This is shown in Fig. 6 for datasets Chameleon and Squirrel. Evidently,
our proposed algorithms are robust to noise perturbations and consistently out-
perform the baseline by a large margin.

D.5 Our algorithms against Label Noise

To understand how our algorithms perform in presence of label noise, we ran-
domly flip a certain percentage of labels in the training node before rewiring the
graph. We flip {0, 3, 5, 10, 20, 50} percent of the labels and compare the baseline

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 37

Table 21. Accuracy on node classification with GIN and GraphSAGE.

Method Cora Citeseer Pubmed Cornell Texas Wisconsin Chameleon Squirrel Actor

MLP 73.02±0.39 70.84±0.51 87.68±0.10 73.54±1.45 76.22±1.45 81.68±1.06 35.70±0.69 31.84±0.40 36.05±0.23

GIN 85.51±0.29 74.53±0.41 88.33±0.12 37.84±1.62 54.05±1.61 56.00±1.21 41.57±0.64 37.08±0.39 24.21±0.22
GIN+FeaStAdd 87.12±0.34 75.71±0.41 88.36±0.11 51.35±1.62 70.27±1.48 62.00±1.40 42.70±0.64 38.20±0.48 28.62±0.23
GIN+FeaStDel 85.31±0.34 73.35±0.48 89.83±0.12 59.46±1.73 72.97±1.34 70.00±1.31 45.51±0.60 40.67±0.43 29.21±0.23

GIN+ComFyAdd 84.10±0.28 75.00±0.46 89.75±0.14 62.16±1.99 67.57±1.48 68.00±1.32 46.07±0.72 38.43±0.47 29.74±0.21
GIN+ComFyDel 85.71±0.37 74.29±0.39 88.46±0.11 56.76±1.60 67.57±1.50 66.00±1.42 51.12±0.73 40.67±0.54 30.33±0.22

GraphSAGE 87.73±0.26 77.12±0.31 86.56±0.10 67.57±1.36 78.38±1.37 76.00±1.18 38.76±0.61 35.96±0.38 35.99±0.21
GraphSAGE+FeaStAdd 89.74±0.26 79.48±0.40 86.84±0.11 81.08±1.46 75.68±1.52 80.00±1.04 44.94±0.78 35.73±0.43 37.37±0.22
GraphSAGE+FeaStDel 87.32±0.30 80.42±0.39 87.62±0.10 78.38±1.46 81.08±1.43 86.00±1.07 47.19±0.62 37.75±0.39 37.76±0.21

GraphSAGE+ComFyAdd 89.13±0.26 81.37±0.36 88.33±0.09 89.19±1.37 81.08±1.52 86.00±1.06 43.82±0.72 37.30±0.41 35.86±0.22
GraphSAGE+ComFyDel 88.33±0.31 81.60±0.37 88.03±0.11 78.38±1.41 83.78±1.47 78.00±1.13 45.51±0.64 37.75±0.42 36.45±0.22

GCN and our methods FeaSt and ComFy with 10 edge additions/deletions. We
plot the results in Fig. 7, for increasing label noise, we can see that our methods
are as robust as the baseline, because they lose performance at the same rate.

D.6 Our algorithms on SBMs with lower community structure

Using the same setups as in the proofs for Theorems 2 and 3, we evaluate the per-
formance of ComMa (Fig. 8) and ComFy (Fig. 9) on SBM graphs with varying
levels of community strength, under edge additions or deletions of 0, 50, 200, 500.
Classification accuracy is measured via a simple mean aggregation step across
four tasks, defined by different levels of alignment between labels and communi-
ties: ψ ∈ 0.7, 0.8, 0.9, 1.0. Results are averaged over 8 seeds.

Levels of community strength. For a 2-class, n-node SBM with (p, q) =
(
a ln(n)
n , b ln(n)n

)
,

it is known [1, Thm. 13] that the community structure is recoverable when
|
√
a −

√
b| >

√
2. For n = 100 and q = 0.2, this implies a community detection

threshold of p >
(√

0.2n
ln(n) +

√
2
)2

· ln(n)
n ≈ 0.56. Values below this threshold

can be seen as having low community structure. We analyze four settings: three
below and one above the threshold, with p ∈ 0.3, 0.4, 0.5, 0.6.

Behaviour on SBMs for ComMa. This particular SBM setup obtains perfor-
mance gains as community strength increases —although this is not guaranteed
for all types of graphs and tasks. In this case, HigherComMa (Fig. 8) can show
advantages, but will suffer when the graph structure cannot be recovered. This
is the case for p = 0.3, especially with edge additions. However, for p = 0.4
and p = 0.5 (both still below the threshold), edge additions provide consistent
benefits. For p = 0.6, where the community structure becomes clearer, deletions
cease to be useful, and performance plateaus as the number of deletions grows.

Behaviour on SBMs for ComFy. ComFy (Fig. 9) is effective when the community
structure is not clear, as it enhances the communities’ signal via feature denoising
(e.g., for p = 0.3). As p increases, tasks with high alignment (ψ = 1.0) gain little
from ComFy, while those with noisier label alignments (ψ = 0.8, ψ = 0.7)
continue to benefit.

38 C. Rubio-Madrigal et al.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise Level

32

34

36

38

40

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)
Baseline
FeaStAdd
FeaStDel

(a)
FeaSt+Chameleon+FeatureNoise.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise Level

27

28

29

30

31

32

33

34

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
FeaStAdd
FeaStDel

(b)
FeaSt+Squirrel+FeatureNoise.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise Level

32

34

36

38

40

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
ComFyAdd
ComFyDel

(c)
ComFy+Chameleon+FeatureNoise.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise Level

27

28

29

30

31

32

33

34

35

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
ComFyAdd
ComFyDel

(d)
ComFy+Squirrel+FeatureNoise.

Fig. 6. We analyse the behaviour of GCNs and our rewiring methods FeaSt and ComFy
in presence of feature noise.

Behaviour on SBMs for FeaSt. In this simple setup with only two communities,
ComFy’s distribution of communities is not required for good performance. In
fact, its trends match those of FeaSt, as is shown in Fig. 10. Yet, Feast shows
higher improvements in absolute terms (especially in high Alignment ψ = 1) due
to the homophilic setup considered.

These trends align with our theoretical predictions (§2.3) and are also con-
sistent with the results observed on real-world GNN benchmarks (§4).

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 39

0 10 20 30 40 50
Noise Level

26

28

30

32

34

36

38

40

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
FeaStAdd
FeaStDel

(a)
FeaSt+Chameleon+LabelNoise.

0 10 20 30 40 50
Noise Level

26

28

30

32

34

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
FeaStAdd
FeaStDel

(b)
FeaSt+Squirrel+LabelNoise.

0 10 20 30 40 50
Noise Level

26

28

30

32

34

36

38

40

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
ComFyAdd
ComFyDel

(c)
ComFy+Chameleon+LabelNoise.

0 10 20 30 40 50
Noise Level

26

28

30

32

34

Av
er

ag
e

Te
st

 A
cc

ur
ac

y
(%

)

Baseline
ComFyAdd
ComFyDel

(d)
ComFy+Squirrel+LabelNoise.

Fig. 7. We analyse the behaviour of GCNs and our rewiring methods FeaSt and ComFy
in presence of label noise.

0.76

0.78

MeanAccuracy for SBM (0.3,0.2)
Alignment

1.0

0.70

0.72
Alignment

0.9

0.625

0.650 Alignment
0.8

400 200 0 200 400
Edges Modified by ComMa

0.58

0.60 Alignment
0.7

(a) For p = 0.3.

0.94
0.95

MeanAccuracy for SBM (0.4,0.2)
Alignment

1.0

0.82

0.84 Alignment
0.9

0.700
0.725 Alignment

0.8

400 200 0 200 400
Edges Modified by ComMa

0.635
0.640
0.645 Alignment

0.7

(b) For p = 0.4.

0.98
0.99

MeanAccuracy for SBM (0.5,0.2)
Alignment

1.0

0.86
0.88 Alignment

0.9

0.725
0.750
0.775 Alignment

0.8

400 200 0 200 400
Edges Modified by ComMa

0.63
0.64
0.65 Alignment

0.7

(c) For p = 0.5.

0.995

1.000
MeanAccuracy for SBM (0.6,0.2)

Alignment
1.0

0.89

0.90 Alignment
0.9

0.76

0.78 Alignment
0.8

400 200 0 200 400
Edges Modified by ComMa

0.650
0.655 Alignment

0.7

(d) For p = 0.6.

Fig. 8. The effect of ComMa on mean aggregation in SBMs for low levels of community
strength. Each figure is a different SBM-(p, 0.2). Their rows are different levels of
alignment.

40 C. Rubio-Madrigal et al.

0.800

0.825

MeanAccuracy for SBM (0.3,0.2)
Alignment

1.0

0.75
0.80 Alignment

0.9

0.7
0.8 Alignment

0.8

400 200 0 200 400
Edges Modified by ComFy

0.7
0.8 Alignment

0.7

(a) For p = 0.3.

0.85
0.90

MeanAccuracy for SBM (0.4,0.2)
Alignment

1.0

0.82

0.84 Alignment
0.9

0.7

0.8 Alignment
0.8

400 200 0 200 400
Edges Modified by ComFy

0.7

0.8 Alignment
0.7

(b) For p = 0.4.

0.85
0.90
0.95

MeanAccuracy for SBM (0.5,0.2)
Alignment

1.0

0.825
0.850
0.875

Alignment
0.9

0.75

0.80
Alignment

0.8

400 200 0 200 400
Edges Modified by ComFy

0.65
0.70
0.75 Alignment

0.7

(c) For p = 0.5.

0.9

1.0
MeanAccuracy for SBM (0.6,0.2)

Alignment
1.0

0.850
0.875 Alignment

0.9

0.775
0.800 Alignment

0.8

400 200 0 200 400
Edges Modified by ComFy

0.65
0.70
0.75 Alignment

0.7

(d) For p = 0.6.

Fig. 9. The effect of ComFy on mean aggregation in SBMs for low levels of community
strength. Each figure is a different SBM-(p, 0.2). Their rows are different levels of
alignment.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 41

0.80

0.85

MeanAccuracy for SBM (0.3,0.2)
Alignment

1.0

0.75
0.80 Alignment

0.9

0.7

0.8 Alignment
0.8

400 200 0 200 400
Edges Modified by FeaSt

0.7
0.8

Alignment
0.7

(a) For p = 0.3.

0.875
0.900
0.925

MeanAccuracy for SBM (0.4,0.2)
Alignment

1.0

0.83
0.84

Alignment
0.9

0.7

0.8
Alignment

0.8

400 200 0 200 400
Edges Modified by FeaSt

0.65
0.70
0.75 Alignment

0.7

(b) For p = 0.4.

0.90

0.95

MeanAccuracy for SBM (0.5,0.2)
Alignment

1.0

0.84

0.86 Alignment
0.9

0.75

0.80
Alignment

0.8

400 200 0 200 400
Edges Modified by FeaSt

0.65
0.70
0.75 Alignment

0.7

(c) For p = 0.5.

0.90
0.95

MeanAccuracy for SBM (0.6,0.2)
Alignment

1.0

0.850
0.875 Alignment

0.9

0.775

0.800
Alignment

0.8

400 200 0 200 400
Edges Modified by FeaSt

0.65
0.70
0.75 Alignment

0.7

(d) For p = 0.6.

Fig. 10. The effect of FeaSt on mean aggregation in SBMs for low levels of community
strength. Each figure is a different SBM-(p, 0.2). Their rows are different levels of
alignment.

D.7 Illustration of Thm. 3

In Fig. 11 we show 3D plots illustrating the expected proportion of misclassified
nodes P (M) in a Stochastic Block Model (SBM) as described in the setting
in Thm. 3. In the plots, when P (M) is low (yellow), performance is better,
and when it is high (purple), performance is worse. The plot shows P (M) as a
function of alignment ψ, and different configurations of (p, q):

– 11(a) for ψ and the theoretical spectral gap formula in the limit −p−q
p+q from

Thm. 1.
– 11(b) and 11(c) for p and q given fixed ψ ∈ {0.7, 1.0}. As ψ increases, the

minimum (purple) and maximum (yellow) possible performance extend their
range.

– 11(d), 11(e), 11(f) for ψ and p given fixed values of q ∈ {0.2, 0.5, 0.7}. As the
value of q increases, the community structure is less pronounced. Therefore,
the range of values of p for which performance can achieve 100% (in yellow)
becomes more and more narrow.

42 C. Rubio-Madrigal et al.

0.0
0.2

0.4
0.6

0.8
1.0

Alig
nm

en
t

1.000.750.500.250.000.250.500.751.00

(q-p)/(p+q)

0.0

0.2

0.4

0.6

0.8

1.0

P(M)

0.2

0.4

0.6

0.8

(a) Against ψ and q−p
p+q

.

0.0
0.2

0.4
0.6

0.8
1.0

p
0.0 0.2 0.4 0.6 0.8 1.0q

0.0

0.2

0.4

0.6

0.8

1.0

P(M)

0.3

0.4

0.5

0.6

0.7

(b) Fixed ψ = 0.7.

0.0
0.2

0.4
0.6

0.8
1.0

p
0.0 0.2 0.4 0.6 0.8 1.0q

0.0

0.2

0.4

0.6

0.8

1.0

P(M)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Fixed ψ = 1.0.

0.0
0.2

0.4
0.6

0.8
1.0

Alignment

0.0
0.2

0.4
0.6

0.8
1.0 p for q=0.2

0.0

0.2

0.4

0.6

0.8

1.0

P(M)

0.2

0.4

0.6

0.8

(d) Fixed q = 0.2.

0.0
0.2

0.4
0.6

0.8
1.0

Alignment

0.0
0.2

0.4
0.6

0.8
1.0 p for q=0.5

0.0

0.2

0.4

0.6

0.8

1.0

P(M)

0.2

0.4

0.6

0.8

(e) Fixed q = 0.5.

0.0
0.2

0.4
0.6

0.8
1.0

Alignment

0.0
0.2

0.4
0.6

0.8
1.0 p for q=0.7

0.0

0.2

0.4

0.6

0.8

1.0

P(M)

0.2

0.4

0.6

0.8

(f) Fixed q = 0.7.

Fig. 11. Plots illustrating the expected proportion of misclassified nodes P (M) from
Thm. 3.

D.8 Alignment matrices of real-world datasets

Fig. 12 shows the number of edges that connect nodes with the same or different
node and community labels, for spectral minimization, maximization, and ran-
dom rewiring of 500 edges, for both Cora and Chameleon. We use the spectral
gap optimization algorithms presented in [26], as they are reliable in maximizing
the spectral gap for additions and deletions, and we adapt them for minimiza-
tion (as described in Algs. 1 and 2). The amount of edges for each type clearly
changes from the homophilic to the heterophilic case for the different methods.

In the first row (spectral gap minimization), we see that minimization adds
more same-community edges than the other two methods. When adding edges
in homophilic settings (Cora), this is preferred, because these same-community
edges are mostly same-label edges (same C: 152/21). However, in heterophilic
settings (Chameleon) the opposite is true: making the community structure more
pronounced adds edges connecting different labels (same C: 95/265). Deletions
are, however, more similar to random rewiring, with the exception of a subtle
increase in the pruning of different-community edges for the heterophilic setting,
compared to random (Different C: -15/-59).

In the second row (spectral gap maximization), the algorithm exclusively
adds different-community edges. In homophilic settings, this is detrimental, as
most of them will be from different classes (Different C: 36/464). However, in
heterophilic settings, often nodes of the same class are connected, which helps
align the community structure with the task (different C: 152/348). MaxGap also
prunes almost exclusively same-community edges, which is again detrimental for
the homophilic case (same C: -409/-57) but helps in the heterophilic case (same

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 43

C: -167/333). The fact that spectral maximization by deletions helps especially in
heterophilic settings is also supported by its strong benefits for GNN performance
[26].

(a) Cora: additions vs. deletions (b) Chameleon: additions vs. dele-
tions

Fig. 12. Alignment matrices for Cora (homophilic) and Chameleon (heterophilic) by
a 500-edge rewiring method. In each row: spectral minimization and maximization
from [26], and random rewiring. In each column: additions and deletions. Each align-
ment matrix compares the number of edges added/deleted in terms of the type of
nodes it connects: with the Same or Different L(abel), and with the Same or Different
C(ommunity).

