
Spectral Graph Pruning Against Over-Squashing
and Over-Smoothing

Adarsh Jamadandi∗1,2, Celia Rubio-Madrigal∗2 (�), and Rebekka Burkholz2

1 Universität des Saarlandes
2 CISPA Helmholtz Center for Information Security

∗ Equal contribution. Email: celia.rubio-madrigal@cispa.de

Abstract. Message Passing Graph Neural Networks are known to suf-
fer from two problems that are sometimes believed to be diametrically
opposed: over-squashing and over-smoothing. The former results from
topological bottlenecks that hamper the information flow from distant
nodes and are mitigated by spectral gap maximization, primarily, by
means of edge additions. However, such additions often promote over-
smoothing that renders nodes of different classes less distinguishable.
Inspired by the Braess phenomenon, we argue that deleting edges can
address over-squashing and over-smoothing simultaneously. This insight
explains how edge deletions can improve generalization, thus connecting
spectral gap optimization to a seemingly disconnected objective of re-
ducing computational resources by pruning graphs for lottery tickets. To
this end, we propose a computationally effective spectral gap optimiza-
tion framework to add or delete edges and demonstrate its effectiveness
on the long range graph benchmark and on larger heterophilous datasets.

Keywords: Graph Neural Networks · Rewiring · Spectral gap optimiza-
tion · Over-smoothing · Over-squashing · Lottery Tickets.

1 Introduction

Graphs are ubiquitous data structures that can model data from diverse fields
ranging from chemistry [63], biology [13] to even high-energy physics [70]. This
has led to the development of deep learning techniques for graphs, commonly
referred to as Graph Neural Networks (GNNs). The most popular GNNs follow
the message-passing paradigm [39, 68, 36, 15], where arbitrary differentiable func-
tions, parameterized by neural networks, are used to diffuse information on the
graph, consequently learning a graph-level representation. This representation
can then be used for various downstream tasks like node classification, link pre-
diction, and graph classification. Different types of GNNs [48, 42, 74, 75, 10, 11,
8], all tackling a variety of problems in various domains have been proposed with
varied degree of success. Despite their widespread use, GNNs have a number of
inherent problems. These include limited expressivity, [50, 56], over-smoothing
[51, 59, 60, 77], and over-squashing [2, 72].

2 A. Jamadandi et al.

The phenomenon of over-squashing, first studied heuristically by [2] and later
theoretically formalized by [72], is caused by the presence of structural bottle-
necks in the graph. These bottlenecks can be attributed to the first non-zero
eigenvalue of the normalized graph Laplacian, also known as the spectral gap.
The smaller the gap, the more susceptible a graph is to over-squashing. Recent
work has explored rewiring the input graph to address these bottlenecks [72, 3,
38, 58, 46], but suggest there has to be a trade-off between over-squashing and
over-smoothing [47]. Instead, we propose to leverage the Braess paradox [14, 29]
that posits certain edge deletions can maximize the spectral gap. We propose
to approximate the spectral change in a computationally efficient manner via
Matrix Perturbation Theory [71]. Our proposed framework allows us to jointly
address the problem of over-squashing, by increasing the spectral gap, and over-
smoothing, by slowing down the rate of smoothing. We find that our method is
especially effective in heterophilic graph settings, where we delete edges between
nodes of different labels, thus preventing unnecessary aggregation. We empiri-
cally show that our proposed method outperforms other graph rewiring methods
on node classification and graph classification tasks. We also show that spectral
gap based edge deletions can help identify graph lottery tickets (GLTs) [31], that
is, sparse sub-networks that can match the performance of dense networks.

1.1 Contributions

1. Inspired by the Braess phenomenon, we prove that, contrary to common as-
sumptions, over-smoothing and over-squashing are not necessarily diametri-
cally opposed. By deriving a minimal example, we show that both can be
mitigated by spectral based edge deletions.

2. Leveraging matrix perturbation theory, we propose a Greedy graph pruning
algorithm (ProxyDelete) that maximizes the spectral gap in an efficient
way. Similarly, our algorithm can also be utilized to add edges in a joint
framework. We compare this approach with a novel graph rewiring scheme
based on Eldan’s criterion [29] that provides guarantees for edge deletions
and a stopping criterion for pruning, but is computationally less efficient.

3. Our results connect literature on three seemingly disconnected topics: over-
smoothing, over-squashing, and graph lottery tickets, which explain observed
improvements in generalization performance by graph pruning. Utilizing this
insight, we demonstrate that graph sparsification based on our proxy spec-
tral gap update can perform better than or on par with a contemporary
baseline [23] that takes additional node features and labels into account.
This highlights the feasibility of finding winning subgraphs at initialization.

2 Related work

Over-squashing. [2, 72] have observed that over-squashing, where information
from distant nodes are not propagated due to topological bottlenecks in the
graph, hampers the performance of GNNs. A promising line of work that at-
tempts to alleviate this issue is graph rewiring. This task aims to modify the edge

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 3

structure of the graph either by adding or deleting edges. [35] propose to add
edges according to graph diffusion kernel, such as personalized PageRank, to rely
less on messages from only one-hop neighbors, thus alleviating over-squashing.
[72] propose Stochastic Discrete Ricci Flow (SDRF) to rewire the graph based
on curvature. [6] resort to measuring the spectral expansion with respect to the
number of rewired edges and propose a random edge flip algorithm that trans-
forms the given input graph into an Expander graph. Contrarily, [26] show that
negatively curved edges might be inevitable for building scalable GNNs without
bottlenecks and advocate the use of Expander graphs for message passing. [3] in-
troduces two new intermediate layers called CT-layer and GAP-layer, which
can be interspersed between GNN layers. The layers perform edge re-weighting
(which minimizes the gap) and introduce additional parameters. [46] propose
FoSR, a graph rewiring algorithm that sequentially adds edges to maximize the
first-order approximation of the spectral gap. A recent work by [9] explores the
idea of characterizing over-squashing through the lens of effective resistance [19].
[37] provide a comprehensive account of over-squashing and studies the interplay
of depth, width and the topology of the graph.

Over-smoothing. It is a known fact that increasing network depth [43] often leads
to better performance in the case of deep neural networks. However, naively
stacking GNN layers often seems to harm generalization. And one of the reasons
is over-smoothing [51, 60, 59, 77, 65], where repeated aggregation leads to node
features, in particular nodes with different labels, becoming indistinguishable.
Current graph rewiring strategies, such as FoSR [46], which rely on iteratively
adding edges based on spectral expansion, may help mitigate over-squashing
but also increase the smoothing induced by message passing. Curvature based
methods such as [58, 38] aim to optimize the degree of smoothing by graph
rewiring, as they assume that over-smoothing is the result of too much infor-
mation propagation, while over-squashing is caused by too little. Within this
framework, they assume that edge deletions always reduce the spectral gap. In
contrast, we show and exploit that some deletions can also increase it. Further-
more, we rely on a different, well established concept of over-smoothing [47]
that also takes node features into account and is therefore not diametrically op-
posed to over-squashing. As we show, over-smoothing and over-squashing can be
mitigated jointly. Moreover, we propose a computationally efficient approach to
achieve this with spectral rewiring. In contrast to our proposal, curvature based
methods [58, 38] do not scale well to large graphs. For instance, [58] propose
a batch Ollivier-Ricci (BORF) curvature based rewiring approach to add and
delete edges, which solves optimal transport problems and runs in cubic time.

Graph sparsification and lottery tickets. Most GNNs perform recursive aggre-
gations of neighborhood information. This operation becomes computationally
expensive when the graphs are large and dense. A possible solution for this is
to extract a subset of the graph which is representative of the dense graph,
either in terms of their node distribution [28] or graph spectrum [1]. [76, 52] for-
mulate graph sparsification as an optimization problem by resorting to learning

4 A. Jamadandi et al.

G
(λ1 ≈ 0.2829) 0

1

6 7

23
4
5

Prune
(λ1 ⇈)

Add
(λ1 ⇈)

Add
(λ1 ⇊)

G−
(λ1 ≈ 0.2929) 0

1

6 7

23
4
5

G+

(λ1 ≈ 0.3545)0
1

6 7

23
4
5

G̃+

(λ1 ≈ 0.2713)
0

1

6 7

23
4
5

Fig. 1. Braess’ paradox. We derive a simple example where deleting an edge from G to
obtain G− yields a higher spectral gap. Alternatively, we add a single edge to the base
graph to either increase (G+) or to decrease (G̃+) the spectral gap. The relationship
between the four graphs is highlighted by arrows when an edge is added/deleted.

surrogates and ADMM respectively. With the primary aim to reduce the compu-
tational resource requirements of GNNs, a line of work that transfers the lottery
ticket hypothesis (LTH) by [31] to GNNs [23, 45], prunes the model weights in ad-
dition to the adjacency matrix. The resulting winning graph lottery ticket (GLT)
can match or surpass the performance of the original dense model. While our
theoretical understanding of GLTs is primarily centered around their existence
[30, 18, 17, 16], our insights inspired by the Braess paradox add a complemen-
tary lens to our understanding of how generalization can be improved, namely
by reducing over-squashing and over-smoothing with graph pruning. So far, the
spectral gap has only been employed to maintain a sufficient degree of connec-
tivity of bipartite graphs that are associated with classic feed-forward neural
network architectures [61, 44]. We highlight that the spectral gap can also be
employed as a pruning at initialization technique [32] that does not take node
features into account and can achieve computational resource savings while re-
ducing the generalization error, which is in line with observations for random
pruning of CNNs [34, 33].

3 Theoretical insights into spectral rewiring

To prove our claim that over-smoothing and over-squashing can both be allevi-
ated jointly, we provide a minimal example as illustrated in Figure 1. Utilizing
the Braess paradox, we achieve this by the deletion of an edge. In contrast, an
edge addition that addresses over-squashing still causes over-smoothing, yet less
drastically than another edge addition that worsens over-squashing.

Reducing over-squashing via the spectral gap. From a spectral perspective, bot-
tlenecks, which hamper the information flow by over-squashing, can be charac-
terized by the spectral gap of the (symmetric) normalized graph Laplacian LG ,
where G = (V, E). The Laplacian of the graph is L = D − A, where A is the
adjacency matrix and D the diagonal degree matrix. The symmetric normalized
graph Laplacian is defined as LG = D−1/2LD−1/2. Let {λ0 < λ1 < λ2, ...λn} be
the eigenvalues of LG arranged in ascending order and let λ1(LG) be the first
non-zero eigenvalue of the normalized graph Laplacian, which is also called the

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 5

spectral gap of the graph. For a graph where distant network components are
connected only by a few bridging edges, all the information has to be propagated
via these edges. The information flow through edges is encoded by the [20] con-
stant hS = minS⊂V

|∂S|
min{V ol(S),V ol(S\V)} where ∂S = {(u, v) : u ∈ S, v ∈ V\S}

and V ol(S) =
∑

u∈S du, being du the degree of the node u. The spectral gap

is bounded by the Cheeger inequality 2hG ≥ λ1 ≥ h2
G
2 , which motivates it as a

measure of over-squashing.

Braess’ paradox. [14] found a counter-intuitive result for road networks: even
if all travelers behave selfishly, the removal of a road can still improve each of
their individual travel times. That is, there is a violation of monotonicity in the
traffic flow with respect to the number of edges of a network. For instance, [24]
has shown that Braess’ paradox occurs with high probability in Erdős-Rényi
random graphs, and [25] have confirmed it for a large class of Expander graphs.
The paradox can be analogously applied to related graph properties such as the
spectral gap of the normalized Laplacian. [29] have studied how the spectral
gap of a random graph changes after edge additions or deletions, proving a
strictly positive occurrence of the paradox for typical instances of ER graphs.
This result inspires us to develop an algorithm for rewiring a graph by specifically
eliminating edges that increase this quantity, which we can expect to carry out
with high confidence in real-world graphs. Their Lemma 3.2 (when reversed)
states a sufficient condition that guarantees a spectral gap increase in response
to a deletion of an edge.

Lemma 1. [29]: Let G = (V, E) be a finite graph, with f denoting the eigenvector
and λ1(LG) the eigenvalue corresponding to the spectral gap. Let {u, v} /∈ V be
two vertices that are not connected by an edge. Denote Ĝ = (V, Ê), the new
graph obtained after adding an edge between {u, v}, i.e., Ê := E ∪ {u, v}. Denote
with Pf := ⟨f, f̂0⟩ the projection of f onto the top eigenvector of Ĝ. Define
g (u, v,LG) := −P2

fλ1(LG) − 2(1 − λ1(LG))
(√

du+1−
√
du√

du+1
f2
u +

√
dv+1−

√
dv√

dv+1
f2
v

)
+

2fufv√
du+1

√
dv+1

. If g (u, v,LG) > 0, then λ1(LG) > λ1(LĜ).

As a showcase example of the Braess phenomenon, let us analyze the be-
haviour of the spectral gap in terms of an edge perturbation on the ring graph
of n nodes Rn. We consider the ring R8 as G−, the deletion of an edge from
graph G in Figure 1.

Proposition 1. The spectral gap of G increases with the deletion of {0, 3}, i.e.,
λ1(LG−) > λ1(LG). It also increases with the addition of {0, 5} or decreases with
the addition of {4, 7}, i.e., λ1(LG+) > λ1(LG) and λ1(LG̃+) < λ1(LG).

We leverage Eldan’s Lemma 1 in Appendix A.1 and apply the spectral graph
proxies in our derivations starting from an explicit spectral analysis of the ring
graph. While these derivations demonstrate that we can reduce over-squashing
(i.e., increase the spectral gap) by edge deletions, we show next that edge dele-
tions can also alleviate over-smoothing.

6 A. Jamadandi et al.

(a) Smoothing test for graphs in Fig. 1. (b) Smoothing test for Texas.

Fig. 2. We plot the MSE vs order of smoothing for our four synthetic graphs (2(a)),
and for a real heterophilic dataset with the result of different rewiring algorithms to it:
FoSR [46] and ProxyAdd for adding (200 edges), and our ProxyDelete for deleting
edges (5 edges) (2(b)). We find that deleting edges helps reduce over-smoothing, while
still mitigating over-squashing via the spectral gap increase.

Slowing detrimental over-smoothing. For GNNs with mean aggregation, increas-
ing the spectral gap usually promotes smoothing and thus leads to higher node
feature similarity. Equating a high node feature similarity with over-smoothing
would thus imply a trade-off between over-smoothing and over-squashing. [38,
58] seek to find the right amount of smoothing by adding edges to increase the
gap and deleting edges to decrease it. Contrarily, we argue that deleting edges
can also increase the gap while adding edges could decrease it, as our previous
analysis demonstrates. Thus, both edge deletions and additions allow to control
which node features are aggregated, while mitigating over-squashing. Such node
features are central to a more nuanced concept of over-smoothing that acknowl-
edges that increasing the similarity of nodes that share the same label, while
keeping nodes with different labels distinguishable, aids the learning task.

To measure over-smoothing, we adopt the Linear GNN test bed proposed
by [47], which uses a linear ridge regression (LRR) setup with mean squared
error (MSE) as the loss. We assign two classes to nodes according to their color
in Figure 1, and one-dimensional features that are drawn independently from
normal distributions N (1, 1) and N (−1, 1), respectively. Figure 2(a) compares
how our exemplary graphs (see Figure 1) influence over-smoothing in this set-
ting. While adding edges can accelerate the rate of smoothing, pruning strikingly
aids in reducing over-smoothing —and still reduces over-squashing by increasing
the spectral gap. Note that the real world heterophilic graph example shows a
similar trend and highlights the utility of the spectral pruning algorithm Prox-
yDelete, which we describe in the next section, over edge additions by the
strong baseline FoSR. Additional real world examples along with cosine distance
between nodes of different labels before and after spectral pruning and plots for
Dirichlet energy can be found in Appendix D.

Next, we discuss and analyze the reasons for this finding. Consider again the
ring graph G−, which has an inter-class edge pruned from our base graph G; this
avoids a problematic aggregation step and in this way mitigates over-smoothing.
Instead of deleting an edge, we could also add an edge arriving at G+, which

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 7

would lead to a higher spectral gap than the edge deletion. Yet, it adds an edge
between nodes with different labels and therefore leads to over-smoothing. We
also prove this relationship rigorously for one step of mean aggregation.

Proposition 2. As more edges are added (from G− to G, or from G to G+

or G̃+), the average value over same-class node representations after a mean
aggregation round becomes less informative.

The proof is presented in Appendix A.2. We argue that similar situations arise
particularly in heterophilic learning tasks, where spectral gap optimization would
frequently delete inter-class edges but also add inter-class edges. Thus, mostly
edge deletions can mitigate over-squashing and over-smoothing simultaneously.

Clearly, this argument relies on the specific distribution of labels. Other sce-
narios are analyzed in Appendix B to also highlight potential limitations of
spectral rewiring that does not take node labels into account.

Following this argument, however, we could ask if the learning task only de-
pends on the label distribution. The following proposition highlights why spectral
gap optimization is justified beyond label distribution considerations.

Proposition 3. After one round of mean aggregation, the node features of G+

are more informative compared to G̃+.

Note that G̃+ decreases the spectral gap, while G+ increases it relative to G.
However, the label configuration of G̃+ seems more advantageous because, for
the changed nodes, the number of neighbors of the same class label remains in
the majority in contrast to G+. Still, the spectral gap increase seems to aid the
learning task compared to the spectral gap decrease.

4 Braess-inspired graph rewiring

We introduce two algorithmic approaches to perform spectral rewiring. Our main
proposal is computationally more efficient and more effective in spectral gap ap-
proximation than baselines, as we also showcase in Table 14. The other approach
based on Eldan’s Lemma is also analyzed, as it provides theoretical guarantees
for edge deletions. However, it does not scale well to larger graphs.

Greedy approach to modify edges. Evaluating all potential subsets of edges that
we could add or delete is computationally infeasible due to the combinatorially
exploding number of possible candidates. Therefore, we resort to a Greedy ap-
proach, in which we add or delete a single edge iteratively. In every iteration,
we rank candidate edges according to a proxy of the spectral gap change that
would be induced by the considered rewiring operation, as described next.

4.1 Graph rewiring with Proxy spectral gap updates

Update of eigenvalues and eigenvectors. Calculating the eigenvalues for every
normalized graph Laplacian obtained by the inclusion or exclusion of a single

8 A. Jamadandi et al.

edge would be a highly costly method. The ability to use the spectral gap directly
as a criterion to rank edges requires a formula to efficiently estimate it for one
edge flip. For this we resort to Matrix Perturbation Theory [71, 53] to capture
the change in eigenvalues and eigenvectors approximately. Our update scheme
is similar to the proposal by [12] in the context of adversarial flips. The change
in the eigenvalue and eigenvector for a single edge flip (u, v) is given by

λ́ ≈ λ+∆wu,v((fu − fv)
2 − λ(f2

u + f2
v)), (1)

where λ is the initial eigenvalue; {fu, fv} are entries of the leading eigenvector,
∆wu,v = 1 if we add an edge and ∆wu,v = −1 if we delete an edge. Note that
this proxy is only used to rank edges efficiently. After adding/deleting the top
M edges (where M = 1 in our experiments), we update the eigenvector and
the spectral gap by performing a few steps of power iteration. To this end, we
initialize the function eigsh of the scipy sparse library in Python, which is based
on the Implicitly Restarted Lanczos Method [49], with our current estimate of the
leading eigenvector. Both our resulting algorithms, ProxyDelete for deleting
edges and ProxyAdd for adding edges, are detailed in Appendix C.

ProxyDelete runs in O (N · (|E| +s(G))) where N is the number of edges
to delete, and s(G) denotes the complexity of the algorithm that updates the
leading eigenvector and eigenvalue at the end of every iteration. In our setting,
this requires a constant number of power method iterations, which is of com-
plexity s(G) = O(|E|). Note that, because we choose to only delete one edge, the
ranking does not need to be sorted to obtain its maximum. By having an O(1)
proxy measure to score candidate edges, we are able to improve the overall run-
time complexity from the original O (N · |E| · s(G)). Furthermore, even though
this does not impact the asymptotic complexity, deleting edges instead of adding
them makes every iteration run on a gradually smaller graph, which can further
induce computational savings for the downstream task.

The run time analysis of ProxyAdd consists of the same elements as Prox-
yDelete, but the ranking is conducted on the complement of the edges, Ē . Since
the set of missing edges is usually larger than the existing edges in real world
settings, to save computational overhead, it is possible to only sample a constant
amount of edges. See Section F for empirical runtimes.

4.2 Graph rewiring with Eldan’s criterion

Lemma 1 states a sufficient condition for the Braess paradox. It naturally defines
a scoring function of edges to rank them according to their potential to max-
imize the spectral gap based on the function g. However, the computation of
this ranking is significantly more expensive than other considered algorithms, as
each scoring operation needs access to the leading eigenvector of the perturbed
graph with an added or deleted edge. In case of edge deletions, we also need to
approximate the spectral gap similar to our Proxy algorithms. As the involved
projection Pf is a dot product of eigenvectors, it requires O(|V|) operations.
Even though this algorithm does not scale well to large graphs without focusing

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 9

0 50 100 150 200 250 300 350

Iterations

0.2

0.4

0.6

0.8

1.0

Sp
ec

tr
al

G
ap

GreedyFull-Add
PR-Add
EldanAdd
FoSR

(a) Additions to increase spectral gap.

0 5 10 15 20 25

Iterations

0.05

0.10

0.15

0.20

0.25

Sp
ec

tr
al

 G
ap

GreedyFull-Delete
PR-Delete
EldanDelete

(b) Deletions to increase spectral gap.

Fig. 3. We instantiate an ER graph with 30 nodes and 58 edges. We compare FoSR
[46], our proxy spectral gap methods, and our Eldan’s criterion methods.

on a small random subset of candidate edges, we still consider it as baseline, as
it defines a more conservative criterion to assess when we should stop deleting
edges. The precise algorithms are stated in Appendix C.

4.3 Approximation quality

To check whether the proposed edge modification algorithms are indeed effective
in the spectral gap expansion, we conduct experiments on an Erdös-Rényi (ER)
graph with (|V|, |E|) = (30, 58) in Figure 3. Our ideal baseline that scores each
candidate with the correct spectral gap change would usually be computation-
ally too expensive, because each edge scoring requires O(|E|) computations. For
our small synthetic test bed, we still compute it to assess the approximation
quality of the proposed algorithms, and of the competitive baseline FoSR [46].
For both edge additions (Figure 3(a)) and deletions (Figure 3(b)), we observe
that the Proxy method outlined in Algorithm 1 usually leads to a better spectral
expansion approximation. In addition, we report the spectral gaps that different
methods obtain on real world data in Table 16 in the Appendix, which highlights
that our proposals are consistently most effective in increasing the spectral gap.

5 Experiments

5.1 Long Range Graph Benchmark

The Long Range Graph Benchmark (LRGB) was introduced by [27] specifically
to create a test bed for over-squashing. We compare our proposed ProxyAdd
and ProxyDelete methods with DRew [41], a recently proposed strong base-
line for addressing over-squashing using a GCN as our backbone architecture
in Table 1. We adopt the experimental setting of [73], we adopt DRew base-
line results from the original paper. We evaluate on the following datasets and
tasks: 1) PascalVOC-SP - Semantic image segmentation as a node classification
task operating on superpixel graphs. 2) Peptides-func - Peptides modeled as

10 A. Jamadandi et al.

molecular graphs. The task is graph classification. 3) Peptides-struct - Peptides
modeled as molecular graphs. The task is to predict various molecular proper-
ties, hence a graph regression task. The top performance is highlighted in bold.
Evidently, our proposed rewiring methods outperform DRew [41] and FoSR [46]
on PascalVOC and Peptides-struct, and achieves comparable performance on
Peptides-func. In addition, Table 10 in the appendix compares different rewiring
strategies for node classification on other commonly used datasets and graph
classification (§E.2) for adding edges, since FoSR [46] was primarily tested on
this task.

Node classification on large heterophilic datasets. [62] point out that most progress
on heterophilic datasets is unreliable since many of the used datasets have draw-
backs, including duplicate nodes in Chameleon and Squirrel datasets, which lead
to train-test data leakage. The sizes of the small graph sizes also lead to high
variance in the obtained accuracies. Consequently, we also test our proposed al-
gorithms on 3/5 of their newly introduced larger datasets and use GCN [48] and
GAT [74] as our backbone architectures. As a higher depth potentially increases
over-smoothing, we also analyze how our methods fares with varied number of
layers. To that end, we adopt the code base and experimental setup of [62]; the
datasets are divided into 50/25/25 split for train/test/validation respectively.
The test accuracy is reported as an average over 10 runs. To facilitate training
deeper models, skip connections and layer normalization are employed. We com-
pare FoSR [46] and our proposals based on the Eldan criterion as well as Prox-
yAdd and ProxyDelete in Tables 2,3,4. The top performance is highlighted in
bold. Evidently, for increasing depth, even though the GNN performance should
degrade because of over-smoothing, we achieve a significant boost in accuracy
compared to baselines, which we attribute to the fact that our methods delete
inter-class edges —thus slowing down detrimental smoothing.

Pruning for graph lottery tickets. In Sections §3, §5, we show that graph pruning
can improve generalization, mitigate over-squashing and also help slow down
the rate of smoothing. Can we also use our insights to find lottery tickets [31]?
The first extension of the Lottery Ticket Hypothesis to GNNs, called Unified
Graph Sparsification (UGS) [23], prunes connections in the adjacency matrix
and model weights that are deemed less important for a prediction task. Note
that UGS relies on information that is obtained in computationally intensive
prune-train cycles that take into account the data and the associated masks.
In the context of GNNs, the input graph plays a central role in determining
a model’s performance at a downstream task. Naively pruning the adjacency
matrix without characterizing what constitutes important edges is a pitfall we
would want to avoid [45], yet resorting to expensive train-prune-rewind cycles to
identify importance is also undesirable. This brings forth the questions: To what
extent does the pruning criterion need to depend on the data? Is it possible
to formulate a data/feature agnostic pruning criterion that optimizes a more
general underlying principle to find lottery tickets? [55] and [22] show, in the
context of computer vision and natural language processing respectively, that

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 11

Table 1. Node classification (N.C.) on
Long Range Graph Benchmark datasets.

Method PascalVOC-SP
(Test F1 ↑)

Peptides-Func
(Test AP ↑)

Peptides-Struct
(Test MAE ↓)

Baseline-GCN 0.1268±0.0060 0.5930±0.0023 0.3496±0.0013
DRew+GCN 0.1848±0.0107 0.6996±0.0076 0.2781±0.0028
FoSR+GCN 0.2157±0.0057 0.6526±0.0014 0.2499±0.0006

ProxyAdd+GCN 0.2213±0.0011 0.6789±0.0002 0.2465±0.0004
ProxyDelete+GCN 0.2170±0.0015 0.6908±0.0007 0.2470±0.0080

Table 2. N.C. on Roman-Empire
dataset.

Method #EdgesAdded Accuracy #EdgesDeleted Accuracy Layers

GCN - 70.30±0.73 - 70.30±0.73 5
GCN+FoSR 50 73.60±1.11 - - 5
GCN+Eldan 50 72.11±0.80 50 79.14±0.73 5

GCN+ProxyGap 50 77.54±0.74 20 77.45±0.68 5

GAT - 80.89±0.70 - 80.89±0.70 5
GAT+FoSR 50 81.88±1.07 - - 5
GAT+Eldan 50 81.13±0.50 100 82.12±0.69 5

GAT+ProxyGap 50 86.07±0.46 20 86.00±0.36 5

GCN - 68.89±0.77 - 68.89±0.77 10
GCN+FoSR 100 73.85±1.26 - - 10
GCN+Eldan 100 75.39±0.96 100 80.40±0.54 10

GCN+ProxyGap 20 78.31±0.47 20 78.19±0.71 10

GAT - 80.23±0.59 - 80.23±0.59 10
GAT+FoSR 100 81.37±1.14 - - 10
GAT+Eldan 100 87.19±0.38 20 86.90±0.37 10

GAT+ProxyGap 20 83.45±0.42 20 86.44±0.40 10
GCN - 67.77±0.90 - 67.77±0.90 20

GCN+FoSR 100 75.14±1.43 - - 20
GCN+Eldan 100 75.52±1.16 20 80.37±0.70 20

GCN+ProxyGap 50 77.96±0.65 20 78.03±0.71 20

GAT - 79.22±0.70 - 79.22±0.70 20
GAT+FoSR 100 80.64±1.12 - 80.64±1.12 20
GAT+Eldan 100 86.79±0.58 50 86.70±0.50 20

GAT+ProxyGap 10 86.25±0.63 20 86.15±0.61 20

Table 3. N.C. on Amazon-Ratings.

Method #EdgesAdded Accuracy #EdgesDeleted Accuracy Layers

GCN - 47.20±0.33 - 47.20±0.33 10
GCN+FoSR 25 49.68±0.73 - - 10
GCN+Eldan 25 48.71±0.99 100 50.15±0.50 10

GCN+ProxyGap 10 49.72±0.41 50 49.75±0.46 10

GAT - 47.43±0.44 - 47.43±0.44 10
GAT+FoSR 25 51.36±0.62 - - 10
GAT+Eldan 25 51.68±0.60 50 51.80±0.27 10

GAT+ProxyGap 20 49.06±0.92 100 51.72±0.30 10
GCN - 47.32±0.59 - 47.32±0.59 20

GCN+FoSR 100 49.57±0.39 - - 20
GCN+Eldan 50 49.66±0.31 20 48.32±0.76 20

GCN+ProxyGap 50 49.48±0.59 500 49.58±0.59 20

GAT - 47.31±0.46 - 47.31±0.46 20
GAT+FoSR 100 51.31±0.44 - - 20
GAT+Eldan 20 51.40±0.36 20 51.64±0.44 20

GAT+ProxyGap 50 47.53±0.90 20 51.69±0.46 20

Table 4. N.C. on Minesweeper.

Method #EdgesAdded Accuracy #EdgesDeleted Test ROC Layers

GCN - 88.57± 0.64 - 88.57± 0.64 10
GCN+FoSR 50 90.15±0.55 - - 10
GCN+Eldan 100 90.11±0.50 50 89.49±0.60 10

GCN+ProxyGap 20 89.59±0.50 20 89.57±0.49 10

GAT - 93.60±0.64 - 93.60±0.64 10
GAT+FoSR 100 93.14±0.43 - - 10
GAT+Eldan 50 93.26±0.48 100 93.82±0.56 10

GAT+ProxyGap 20 93.60±0.69 20 93.65±0.84 10
GCN - 87.41±0.65 - 87.41±0.65 20

GCN+FoSR 100 89.64±0.55 - - 20
GCN+Eldan 72 89.70±0.57 10 88.90±0.44 20

GCN+ProxyGap 20 89.46±0.50 50 89.35±0.30 20

GAT - 93.92±0.52 - 93.92±0.52 20
GAT+FoSR 50 93.56±0.64 - - 20
GAT+Eldan 10 93.92±0.44 20 95.48±0.64 20

GAT+ProxyGap 20 94.89±0.67 20 94.64±0.81 20

lottery tickets can have universal properties that can even provably [18] transfer
to related tasks.

Lottery tickets that rely on the spectral gap. However, even specialized structures
need to maintain and promote information flow through their connections. This
fact has inspired works like [61, 44] to analyze how well lottery ticket pruning
algorithms maintain the Ramanujan graph property of bipartite graphs, which
is intrinsically related to the Cheeger constant and thus the spectral gap. They
have further shown that rejecting pruning steps that would destroy a proxy of
this property can positively impact the training process.

In the context of GNNs, we show that we can base the graph pruning decision
even entirely on the spectral gap, but rely on a computationally cheaper approach
to obtain a proxy. By replacing the magnitude pruning criterion for the graph
with the Eldan criterion and ProxyDelete to prune edges, in principle, we can
avoid the need for additional data features and labels. This has the advantage
that we could also prune the graph at initialization and thus benefit from the
computational savings from the start. We use our proposed methods to prune the
graph at initialization to the requisite sparsity level and then feed it to the GNN

12 A. Jamadandi et al.

Table 5. Pruning for lottery tickets comparing UGS to our EldanDelete and Prox-
yDelete. We report Graph Sparsity (GS), Weight Sparsity (WS), and Accuracy (Acc).

Method Cora Citeseer Pubmed

Metrics GS WS Acc GS WS Acc GS WS Acc

UGS 79.85% 97.86% 68.46±1.89 78.10% 97.50% 66.50±0.60 68.67% 94.52% 76.90±1.83
EldanDelete-UGS 79.70% 97.31% 68.73±0.01 77.84% 96.78% 64.60±0.00 70.11% 93.17% 78.00±0.42
ProxyDelete-UGS 78.81% 97.24% 69.26±0.63 77.50% 95.83% 65.43±0.60 78.81% 97.24% 75.25±0.25

where the weights are pruned in an iterative manner. Our results are presented in
Table 18, where we compare IMP based UGS [23] with our methods for different
graph and weight sparsity levels. Note that, even though our method does not
take any feature information into account and prunes purely based on the graph
structure, our results are comparable. For datasets like Pubmed, we even slightly
outperform the baseline. Table 5 shows results for jointly pruning the graph and
parameter weights, which leads to better results due to potential positive effects
of overparameterization on training [33].

Stopping criterion. The advantage of using spectral gap based pruning (espe-
cially the Eldan criterion) is patent: It helps identify problematic edges that
cause information bottlenecks and provides a framework to prune those edges.
Unlike UGS, our proposed framework also has the advantage that we can couple
the overall pruning scheme with a stopping criterion that follows naturally from
our setup. We stop pruning the input graph when no available edges satisfy our
criterion anymore.

6 Conclusion

Our work connects two seemingly distinct branches of the literature on GNNs:
rewiring graphs to mitigate over-squashing and pruning graphs for lottery tickets
to save computational resources. Contributing to the first branch, we highlight
that, contrary to the standard rewiring practice, not only adding but also pruning
edges can increase the spectral gap of a graph exploiting the Braess paradox. By
providing a minimal example, we prove that this way it is possible to address
over-squashing and over-smoothing simultaneously. Experiments on large-scale
heterophilic graphs confirm the practical utility of this insight. Contributing to
the second branch, these results explain how pruning graphs moderately can
improve the generalization performance of GNNs, in particular for heterophilic
learning tasks. To utilize these insights, we have proposed a computationally
efficient graph rewiring framework, which also induces a competitive approach
to prune graphs for lottery tickets at initialization.

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 13

Disclosure of Interests. We gratefully acknowledge funding from the European Re-
search Council (ERC) under the Horizon Europe Framework Programme (HORIZON)
for proposal number 101116395 SPARSE-ML.

References

1. Adhikari, B., Zhang, Y., Bharadwaj, A., Prakash, B.A.: Condensing temporal net-
works using propagation. In: SDM. pp. 417–425. SIAM (2017)

2. Alon, U., Yahav, E.: On the bottleneck of graph neural networks and its practi-
cal implications. In: International Conference on Learning Representations (2021),
https://openreview.net/forum?id=i80OPhOCVH2

3. Arnaiz-Rodríguez, A., Begga, A., Escolano, F., Oliver, N.: Dif-
fwire: Inductive graph rewiring via the lovász bound (2022).
https://doi.org/10.48550/ARXIV.2206.07369, https://arxiv.org/abs/2206.07369

4. Azabou, M., Ganesh, V., Thakoor, S., Lin, C.H., Sathidevi, L., Liu, R., Valko, M.,
Veličković, P., Dyer, E.: Half-hop: A graph upsampling approach for slowing down
message passing. In: International Conference on Machine Learning (08 2023)

5. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016),
https://arxiv.org/abs/1607.06450

6. Banerjee, P.K., Karhadkar, K., Wang, Y.G., Alon, U., Montúfar,
G.: Oversquashing in gnns through the lens of information contrac-
tion and graph expansion. In: 2022 58th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton). p. 1–8.
IEEE Press (2022). https://doi.org/10.1109/Allerton49937.2022.9929363,
https://doi.org/10.1109/Allerton49937.2022.9929363

7. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.:
Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 (2018)

8. Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai, C., Balamuru-
gan, G., Bronstein, M.M., Maron, H.: Equivariant subgraph aggregation
networks. In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=dFbKQaRk15w

9. Black, M., Wan, Z., Nayyeri, A., Wang, Y.: Understanding oversquashing in gnns
through the lens of effective resistance. In: Proceedings of the 40th International
Conference on Machine Learning. ICML’23, JMLR.org (2023)

10. Bodnar, C., Frasca, F., Otter, N., Wang, Y.G., Liò, P., Montufar, G., Bron-
stein, M.M.: Weisfeiler and lehman go cellular: CW networks. In: Beygelzimer,
A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems (2021), https://openreview.net/forum?id=uVPZCMVtsSG

11. Bodnar, C., Frasca, F., Wang, Y.G., Otter, N., Montufar, G., Liò, P., Bronstein,
M.M.: Weisfeiler and lehman go topological: Message passing simplicial networks.
In: ICLR 2021 Workshop on Geometrical and Topological Representation Learning
(2021), https://openreview.net/forum?id=RZgbB-O3w6Z

12. Bojchevski, A., Günnemann, S.: Adversarial attacks on node embeddings via graph
poisoning. In: Proceedings of the 36th International Conference on Machine Learn-
ing, ICML. Proceedings of Machine Learning Research, PMLR (2019)

13. Bongini, P., Pancino, N., Scarselli, F., Bianchini, M.: Biognn: How graph neu-
ral networks can solve biological problems. In: Artificial Intelligence and Machine
Learning for Healthcare, pp. 211–231. Springer (2023)

14 A. Jamadandi et al.

14. Braess, D.: Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung
12, 258–268 (1968)

15. Bronstein, M.M., Bruna, J., Cohen, T., Velickovic, P.: Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. CoRR abs/2104.13478 (2021),
https://arxiv.org/abs/2104.13478

16. Burkholz, R.: Convolutional and residual networks provably contain lottery tickets.
In: International Conference on Machine Learning (2022)

17. Burkholz, R.: Most activation functions can win the lottery without excessive
depth. In: Advances in Neural Information Processing Systems (2022)

18. Burkholz, R., Laha, N., Mukherjee, R., Gotovos, A.: On the existence of universal
lottery tickets. In: International Conference on Learning Representations (2022)

19. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R., Tiwari, P.: The
electrical resistance of a graph captures its commute and cover times. compu-
tational complexity 6(4), 312–340 (1996). https://doi.org/10.1007/BF01270385,
https://doi.org/10.1007/BF01270385

20. Cheeger, J.: A Lower Bound for the Smallest Eigenvalue
of the Laplacian, pp. 195–200. Princeton University Press,
Princeton (1971). https://doi.org/doi:10.1515/9781400869312-013,
https://doi.org/10.1515/9781400869312-013

21. Chen, J., Ma, T., Xiao, C.: FastGCN: Fast learning with graph convolutional net-
works via importance sampling. In: International Conference on Learning Repre-
sentations (2018), https://openreview.net/forum?id=rytstxWAW

22. Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang, Z., Carbin, M.: The
lottery ticket hypothesis for pre-trained bert networks. In: Proceedings of the 34th
International Conference on Neural Information Processing Systems. NIPS ’20,
Curran Associates Inc., Red Hook, NY, USA (2020)

23. Chen, T., Sui, Y., Chen, X., Zhang, A., Wang, Z.: A unified lottery ticket hypoth-
esis for graph neural networks. In: International Conference on Machine Learning
(2021)

24. Chung, F., Young, S.J.: Braess’s paradox in large sparse graphs. In: Internet and
Network Economics. Springer Berlin Heidelberg (2010)

25. Chung, F., Young, S.J., Zhao, W.: Braess’s paradox in ex-
panders. Random Structures & Algorithms 41(4), 451–
468 (2012). https://doi.org/https://doi.org/10.1002/rsa.20457,
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20457

26. Deac, A., Lackenby, M., Veličković, P.: Expander graph prop-
agation. In: The First Learning on Graphs Conference (2022),
https://openreview.net/forum?id=IKevTLt3rT

27. Dwivedi, V.P., Rampášek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A.T., Beaini,
D.: Long range graph benchmark (2023)

28. Eden, T., Jain, S., Pinar, A., Ron, D., Seshadhri, C.: Provable and practi-
cal approximations for the degree distribution using sublinear graph samples.
In: Proceedings of the 2018 World Wide Web Conference. p. 449–458. WWW
’18, International World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, CHE (2018). https://doi.org/10.1145/3178876.3186111,
https://doi.org/10.1145/3178876.3186111

29. Eldan, R., Rácz, M.Z., Schramm, T.: Braess’s paradox for the spectral gap in ran-
dom graphs and delocalization of eigenvectors. Random Structures & Algorithms
50 (2017)

30. Ferbach, D., Tsirigotis, C., Gidel, G., Avishek, B.: A general framework for proving
the equivariant strong lottery ticket hypothesis (2022)

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 15

31. Frankle, J., Carbin, M.: The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=rJl-b3RcF7

32. Frankle, J., Dziugaite, G.K., Roy, D., Carbin, M.: Pruning neural networks at ini-
tialization: Why are we missing the mark? In: International Conference on Learning
Representations (2021)

33. Gadhikar, A.H., Burkholz, R.: Masks, signs, and learning rate rewinding. In: In-
ternational Conference on Learning Representations (2024)

34. Gadhikar, A.H., Mukherjee, S., Burkholz, R.: Why random pruning is all we need
to start sparse. In: International Conference on Machine Learning (2023)

35. Gasteiger, J., Weißenberger, S., Günnemann, S.: Diffusion improves graph learning.
In: Conference on Neural Information Processing Systems (NeurIPS) (2019)

36. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70. p. 1263–1272. ICML’17, JMLR.org (2017)

37. Giovanni, F.D., Giusti, L., Barbero, F., Luise, G., Lio’, P., Bronstein, M.: On over-
squashing in message passing neural networks: The impact of width, depth, and
topology (2023)

38. Giraldo, J.H., Skianis, K., Bouwmans, T., Malliaros, F.D.: On the trade-off be-
tween over-smoothing and over-squashing in deep graph neural networks. In:
Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management. p. 566–576. CIKM ’23, Association for Computing Ma-
chinery, New York, NY, USA (2023). https://doi.org/10.1145/3583780.3614997,
https://doi.org/10.1145/3583780.3614997

39. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in
graph domains. In: Proceedings. 2005 IEEE International Joint Confer-
ence on Neural Networks, 2005. vol. 2, pp. 729–734 vol. 2 (2005).
https://doi.org/10.1109/IJCNN.2005.1555942

40. Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Foundations and
Trends in Communications and Information Theory 2(3), 155–239 (2005).
https://doi.org/10.1561/0100000006

41. Gutteridge, B., Dong, X., Bronstein, M.M., Di Giovanni, F.: DRew: Dynami-
cally rewired message passing with delay. In: International Conference on Machine
Learning. pp. 12252–12267. PMLR (2023)

42. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive Representation Learning on
Large Graphs. In: NIPS. pp. 1024–1034 (2017)

43. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

44. Hoang, D.N., Liu, S., Marculescu, R., Wang, Z.: Revisiting Pruning At Initial-
ization Through The Lens of Ramanujan Graph. In: The Eleventh International
Conference on Learning Representations (2023)

45. Hui, B., Yan, D., Ma, X., Ku, W.S.: Rethinking graph lottery tickets: Graph spar-
sity matters. In: The Eleventh International Conference on Learning Representa-
tions (2023), https://openreview.net/forum?id=fjh7UGQgOB

46. Karhadkar, K., Banerjee, P.K., Montufar, G.: FoSR: First-order
spectral rewiring for addressing oversquashing in GNNs. In: The
Eleventh International Conference on Learning Representations (2023),
https://openreview.net/forum?id=3YjQfCLdrzz

16 A. Jamadandi et al.

47. Keriven, N.: Not too little, not too much: a theoretical analysis of graph
(over)smoothing. In: The First Learning on Graphs Conference (2022),
https://openreview.net/forum?id=KQNsbAmJEug

48. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional
Networks. In: ICLR (2017)

49. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large
Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM (1998)

50. Leman, A.: The reduction of a graph to canonical form and the algebra which
appears therein (1968)

51. Li, G., Müller, M., Thabet, A., Ghanem, B.: Deepgcns: Can gcns go as deep as
cnns? In: The IEEE International Conference on Computer Vision (ICCV) (2019)

52. Li, J., Zhang, T., Tian, H., Jin, S., Fardad, M., Zafarani, R.: Sgcn: A graph sparsi-
fier based on graph convolutional networks. In: Advances in Knowledge Discovery
and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May
11–14, 2020, Proceedings, Part I. p. 275–287. Springer-Verlag, Berlin, Heidelberg
(2020)

53. von Luxburg, U.: A tutorial on spectral clustering. Statistics and Com-
puting 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z,
https://doi.org/10.1007/s11222-007-9033-z

54. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the
construction of internet portals with machine learning. Information Re-
trieval 3(2), 127–163 (2000). https://doi.org/10.1023/A:1009953814988,
https://doi.org/10.1023/A:1009953814988

55. Morcos, A.S., Yu, H., Paganini, M., Tian, Y.: One ticket to win them all: generaliz-
ing lottery ticket initializations across datasets and optimizers. Curran Associates
Inc., Red Hook, NY, USA (2019)

56. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan,
G., Grohe, M.: Weisfeiler and leman go neural: Higher-order graph neu-
ral networks. Proceedings of the AAAI Conference on Artificial Intelligence
33(01), 4602–4609 (Jul 2019). https://doi.org/10.1609/aaai.v33i01.33014602,
https://ojs.aaai.org/index.php/AAAI/article/view/4384

57. Namata, G., London, B., Getoor, L., Huang, B.: Query-driven active surveying for
collective classification (2012)

58. Nguyen, K., Nong, H., Nguyen, V., Ho, N., Osher, S., Nguyen, T.: Revisiting over-
smoothing and over-squashing using ollivier-ricci curvature (2023)

59. NT, H., Maehara, T.: Revisiting graph neural networks: All we have is low-pass
filters. ArXiv abs/1905.09550 (2019)

60. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power
for node classification. In: International Conference on Learning Representations
(2020)

61. Pal, B., Biswas, A., Kolay, S., Mitra, P., Basu, B.: A study on the ramanu-
jan graph property of winning lottery tickets. In: Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the
39th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 162, pp. 17186–17201. PMLR (17–23 Jul 2022),
https://proceedings.mlr.press/v162/pal22a.html

62. Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., Prokhorenkova, L.: A crit-
ical look at evaluation of gnns under heterophily: Are we really making progress?
In: The Eleventh International Conference on Learning Representations (2023)

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 17

63. Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C., Shao, C., Metni, H.,
van Hoesel, C., Schopmans, H., Sommer, T., Friederich, P.: Graph neural networks
for materials science and chemistry. Communications Materials 3(1), 93 (2022).
https://doi.org/10.1038/s43246-022-00315-6, https://doi.org/10.1038/s43246-022-
00315-6

64. Roth, A., Liebig, T.: Rank collapse causes over-smoothing and over-correlation in
graph neural networks. In: The Second Learning on Graphs Conference (2023),
https://openreview.net/forum?id=9aIDdGm7a6

65. Rusch, T.K., Bronstein, M.M., Mishra, S.: A survey on oversmoothing in graph
neural networks (2023)

66. Rusch, T.K., Chamberlain, B.P., Mahoney, M.W., Bronstein, M.M., Mishra,
S.: Gradient gating for deep multi-rate learning on graphs. In: The
Eleventh International Conference on Learning Representations (2023),
https://openreview.net/forum?id=JpRExTbl1-

67. Salez, J.: Sparse expanders have negative curvature. Geometric and Functional
Analysis 32(6), 1486–1513 (Sep 2022). https://doi.org/10.1007/s00039-022-00618-
3, http://dx.doi.org/10.1007/s00039-022-00618-3

68. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009).
https://doi.org/10.1109/TNN.2008.2005605

69. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-
Rad, T.: Collective classification in network data. AI Magazine
29(3), 93 (Sep 2008). https://doi.org/10.1609/aimag.v29i3.2157,
https://ojs.aaai.org/index.php/aimagazine/article/view/2157

70. Shlomi, J., Battaglia, P., Vlimant, J.R.: Graph neural networks in parti-
cle physics. Machine Learning: Science and Technology 2(2), 021001 (jan
2021). https://doi.org/10.1088/2632-2153/abbf9a, https://doi.org/10.1088/2632-
2153/abbf9a

71. Stewart, G., Sun, J.: Matrix Perturbation Theory. Computer
Science and Scientific Computing, Elsevier Science (1990),
https://books.google.de/books?id=l78PAQAAMAAJ

72. Topping, J., Giovanni, F.D., Chamberlain, B.P., Dong, X., Bronstein,
M.M.: Understanding over-squashing and bottlenecks on graphs via cur-
vature. In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=7UmjRGzp-A

73. Tönshoff, J., Ritzert, M., Rosenbluth, E., Grohe, M.: Where did the gap go? re-
assessing the long-range graph benchmark (2023)

74. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
Attention Networks. In: ICLR (2018)

75. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural
networks? In: International Conference on Learning Representations (2019),
https://openreview.net/forum?id=ryGs6iA5Km

76. Zheng, C., Zong, B., Cheng, W., Song, D., Ni, J., Yu, W., Chen, H., Wang, W.:
Robust graph representation learning via neural sparsification. In: III, H.D., Singh,
A. (eds.) Proceedings of the 37th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 119, pp. 11458–11468. PMLR (13–
18 Jul 2020), https://proceedings.mlr.press/v119/zheng20d.html

77. Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.H., Hu, X.: Dirichlet
energy constrained learning for deep graph neural networks. Advances in neural
information processing systems (2021)

18 A. Jamadandi et al.

A Proofs

A.1 Proof of Proposition 1

Spectral analysis for general n. For all n, the (normalized) Laplacian matrix of
Rn is circulant: all rows consist of the same elements, and each row is shifted
to the right with respect to the previous one. The first row of L(Rn) is rn =(
1,− 1

2 , 0, . . . , 0,−
1
2

)
. All circulant matrices satisfy that their eigenvectors are

made up of powers of the nth-roots of unity, and that its eigenvalues are the
DFT of the matrix’s first row [40]. With this we easily obtain that its spectral
gap is

λ1 =

n−1∑
k=0

rn(k) · e−i2π
k
n = 1− 1

2

(
e−i2π

1
n + e−i2π

−1
n

)
= 1− cos

(
2π

n

)
.

As stated before, one possible set of eigenvectors is ωj(k) = exp
(
i 2πjkn

)
.

Because their conjugates and their linear combinations are also eigenvectors, we
can get real eigenvectors as xj(k) =

ωj(k)−ω−j(k)
2i = sin 2πjk

n . Alternatively, we
can get yj(k) =

ωj(k)+ω−j(k)
2 = cos 2πjk

n .
We only need to focus on the (pair of) eigenvectors for j = 1. Note that

they are orthogonal to each other. Because they are both eigenvectors with the
same eigenvalue λ1, all linear combinations of them will also be eigenvectors
with eigenvalue λ1. This multiplicity lets us choose any of these vectors to fulfill
Eldan’s criterion. A limitation of our algorithm is that, in cases of multiplicity,
we can only choose one of them, potentially giving that edge a disadvantage
—the Lemma holds as long as there exists one that fulfills it, but not necessarily
the one we have chosen.

The norms of x1 and y1 are
√

n
2 . Therefore, the norm of any linear combina-

tion of them is ∥µx1 + νy1∥ =
√

n
2

√
µ2 + ν2. We denote the normalized linear

combination of x1 and y1 as

f
(µ,ν)
1 =

√
2(µx1 + νy1)√
n(µ2 + ν2)

Our choice will be µ = 3, ν = 1, i.e., f (3,1)
1 = (3x1+y1)√

5n
.

Elements of the criterion for general n. As per [29], the first eigenvector of the

new graph’s normalized Laplacian is f̂0 = D̂
1
21/

√∑
d̂i. In our case: f̂0(k) =

√
3√

2(n+1)
if k ∈ {u, v}, and

√
2√

2(n+1)
if k /∈ {u, v}. With it we calculate the

projection, dependent on the eigenvector f1:

Pf1 =

n−1∑
k=0

f1(k)f̂0(k) =

n−1∑
k=0, k ̸=u,v

√
2√

2(n+ 1)
f1(k) +

√
3√

2(n+ 1)
(f1(u) + f1(v))

=

√
3−

√
2√

2(n+ 1)
(f1(u) + f1(v)) .

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 19

We also have, for all n, u and v, that
√
du+1−

√
du√

du+1
=

√
dv+1−

√
dv√

dv+1
=

√
3−

√
2√

3
=

1−
√

2
3 . We can update the criterion with these considerations: g(u, v,Rn) =

= −P2
f1λ1 − 2(1− λ1)

(√
du + 1−

√
du√

du + 1
f1(u)

2 +

√
dv + 1−

√
dv√

dv + 1
f1(v)

2

)
+

2f1(u)f1(v)√
du + 1

√
dv + 1

= −

(√
3−

√
2√

2(n+ 1)

)2(
1− cos

(
2π

n

))
(f1(u) + f1(v))

2

− 2 cos

(
2π

n

)(
1−

√
2

3

)(
f1(u)

2 + f1(v)
2
)
+

2f1(u)f1(v)

3
.

Case n = 8, (u, v) = {0, 3}. We choose f1 := f
(3,1)
1 = (3x1+y1)√

40
. We have f1(0) =

1
2
√
10

and f1(3) =
1

2
√
5
. Then:

(f1(u) + f1(v))
2
=

(
1

2
√
10

+
1

2
√
5

)2

=
3 + 2

√
2

40(
f1(u)

2 + f1(v)
2
)
=

(
1

2
√
10

)2

+

(
1

2
√
5

)2

=
3

40

f1(u)f1(v) =
1

2
√
10

1

2
√
5
=

√
2

40

Finally, Eldan’s criterion for n = 8, (u, v) = {0, 3}, and our choice of f1 is
g(0, 3, R8) =

= −

(√
3−

√
2√

18

)2 (
1− cos

(π
4

))
(f1(u) + f1(v))

2 − 2 cos
(π
4

)(
1−

√
2

3

)(
f1(u)

2 + f1(v)
2
)

+
2f1(u)f1(v)

3
= −

(√
3−

√
2√

18

)2(
1−

√
2

2

)
3 + 2

√
2

40
−
√
2

(
1−

√
2

3

)
3

40
+

2

3

√
2

40

≈ −0.0002395− 0.0194635 + 0.0235702 ≈ 0.0038672 > 0.

⊓⊔
In Table 6 we check Eldan’s criterion computationally for all examples; we

also check whether both our proxy estimates truthfully indicate the sign of the
real spectral gap difference. Eldan’s criterion g(u, v, ·) is calculated from the
sparser graph’s spectral properties, as well as ∆ProxyAdd —estimating the
spectral gap’s difference when that edge is added. Meanwhile, ∆ProxyDelete
is calculated from the denser graph and tries to estimate the spectral gap of the
pruned one.

When g(u, v, ·) > 0, it theoretically guarantees that ∆λ1 < 0, i.e., that the
addition of said edge is NOT desired. This holds in our table for the first and
third rows, where the addition of each edge lowers the spectral gap. Our proxy

20 A. Jamadandi et al.

values reflect it in both directions: ∆ProxyAdd is negative because the edge
should not be added, and ∆ProxyDelete is positive because the edge should
be pruned.

Note that, because of the aforementioned multiplicity of the ring’s eigen-
vectors, if we choose another f1 for the first row, Eldan’s criterion might not
be satisfied. For example, using the eigenvectors given by the library function
np.linalg.eigh, the criterion yields a value of ≈ −0.005904.

The second row shows an example of an edge that is desirable to be added.
In this case, it is guaranteed that Eldan’s criterion is negative. Our proxy val-
ues are again accurately descriptive of reality: ∆ProxyAdd is positive and
∆ProxyDelete is negative.

Table 6. Computationally calculated criteria for the toy graph examples.

Sparser graph Denser graph {u, v} Eldan’s g(u, v, ·) ∆ProxyDelete ∆ProxyAdd ∆λ1

G− G {0, 3} 0.003867 0.027992 -0.017678 -0.01002
G G+ {0, 5} -0.146246 -0.064550 0.415994 0.071632
G G̃+ {4, 7} 0.004952 0.032403 -0.024739 -0.011584

A.2 Proof of Propositions 2 and 3

We choose one-dimensional features to follow normal distributions dependent on
their class: Xi ∼ N (1, 1) for class (+), and Xi ∼ N (−1, 1) for class (−). After
one round of mean aggregation, class (+) nodes with two intra-class neighbors
will still have an expected mean value of 1, because they will aggregate three
features that follow the same distribution: from themselves and the two neigh-
bors. However, nodes like X2, which have one neighbor of each class, will have a
lower expected value: 2−1

3 = 1
3 . In general, if a (class (+)) node has p same-class

neighbors and q different-class neighbors, their representation after an aggre-
gation round will follow a normal distribution N (1+p−q

1+p+q ,
1

1+p+q). The smaller
its expected mean is, the more it deviates from the original mean, and the less
informative it gets. In Table 7 we show the expected values of each configura-
tion dependent on the neighbors’ classes as they appear on our four considered
graphs. The class (−) configurations are omitted because they are the same as
the ones shown but with the opposite sign.

Now we consider again the four graphs from Figure 1. In Figure 4 we specify
which nodes have which configuration from the set {A, B, C, D, E} as named in
Table 7. We arbitrarily choose orange nodes to be the negative class. After one
round of mean aggregation on each of them, we can estimate the amount of class
information remaining on the two classes by averaging the corresponding node
representations of each node per class —that is, we average the four expected
means for purple nodes and the four expected means for orange nodes. We
calculate these values in Table 8. As we intended to prove, they tend towards

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 21

non-informative zero for both classes as the number of edges increases, and
they follow the same order as the smoothing rate curves plotted in Figure 2(a).
Proposition 2 is proved because values tend to zero —so both classes’ averages
get closer together— from G− to G, and from G to both G+ and G̃+. Proposition
3 is proved because the values from G+ are more informative/further apart than
the values from G̃+. ⊓⊔

B How other label configurations affect the rings’
smoothing rates

In Figure 5 we show how different configuration of labels for our example graphs
affect their smoothing rate tests. In particular, we will analyze the result when
added edges are intra-class instead of inter-class, as well as when the label dis-
tribution actively goes against the graph structure.

As a first modification (Figure 5(c)), we rotate the labels so that edge {0, 3} is
now intra-class; this makes edge {4, 7} from G̃+ intra-class, too. It is reflected in
its smoothing rate plot in two main ways. First, the distance between graph G−

and G is not as wide, because the extra intra-edge in G does not cause as much
smoothing as the inter-class edge from the original configuration does. Second,
graph G̃+ is now the least smoothed. This might be because the two edges aid
in isolating the flow of information between the two, very distinct classes; note
that this graph also has the smallest spectral gap, so the configuration of labels
and the graph structure work towards the same goal.

As a second modification (Figure 5(e)), we alternate classes two by two nodes
at a time. This makes {0, 3} and {4, 7} intra-class again, so it is directly compa-
rable to the previous disposition. However, the edges in G̃+ are not dividing the
two classes so distinctively. This makes its smoothing occur more quickly than
before, now on par with the base graph. We consider this phenomenon to be di-
rectly related to its lower spectral gap. Another relevant aspect of this graph is
that, still, the pruned graph G− smooths less than G, even when the pruned edge
is intra-class, and even if the spectral gap has increased; it is another instance
of both mitigating over-smoothing and over-squashing.

Lastly (Figure 5(g)), we propose a configuration that is actively counterpro-
ductive to the structure of the ring, by alternating nodes of different classes one
by one. As much as the spectral gap increases with the deletion of edge {0, 3},
the ring G− is a worse structure for the right kind of information to flow, and
worse to avoid getting dissipated in this particular case. This unveils the ulti-
mate limitation of not taking into account the task in a rewiring method, which
is a trade-off to assume.

22 A. Jamadandi et al.

Table 7. Expected mean values of each neighboring configuration after one round of
mean aggregation.

Name Neighboring configuration Expected Mean

A + + + 1+1+1
3

= 1

B + + − 1+1−1
3

= 1
3

C + +

−
+

1+1+1−1
4

= 1
2

D − −
+

+
1+1−1−1

4
= 0

E − −
+

+
+

1+1+1−1−1
5

= 1
5

B
A

A

B
-B

-A

-A

-B

(a) G− neighboring con-
figuration

B
A

C

B
-B

-C

-A

-B

(b) G neighboring con-
figuration

B
A

E

B
-B

-C

-A

-D

(c) G+ neighboring con-
figuration

B
C

C

B
-B

-C

-C

-B

(d) G̃+ neighboring
configuration

Fig. 4. Neighboring configurations on each of the four graphs from Figure 1.

Table 8. Neighboring configurations for each graph, and their average value after a
round of mean aggregation.

Node G− G G+ G̃+

X6 B: 1
3

B: 1
3

B: 1
3

B: 1
3

X7 A: 1 A: 1 A: 1 C: 1
2

X0 A: 1 C: 1
2

E: 1
5

C: 1
2

X1 B: 1
3

B: 1
3

B: 1
3

B: 1
3

Average: 2+ 2
3

4
≈ 0.667

1+ 2
3
+ 1

2
4

=≈ 0.542
1+ 2

3
+ 1

5
4

=≈ 0.467
2
3
+ 2

2
4

=≈ 0.417

X2 -B: − 1
3

-B: − 1
3

-B: − 1
3

-B: − 1
3

X3 -A: −1 -C: − 1
2

-C: − 1
2

-C: − 1
2

X4 -A: −1 -A: −1 -A: −1 -C: − 1
2

X5 -B: − 1
3

-B: − 1
3

-D: 0 -B: − 1
3

Average: − 2+ 2
3

4
≈ −0.667 − 1+ 2

3
+ 1

2
4

≈ −0.542 − 1+ 1
3
+ 1

2
4

≈ −0.458 −
2
3
+ 2

2
4

≈ −0.417

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 23

G

6
7

0

1
2

3

4

5

G−

6
7

0

1
2

3

4

5

G+

6
7

0

1
2

3

4

5

G̃+

6
7

0

1
2

3

4

5

(a) Original configuration (#1)

100 101 102

Order of smoothing
0.00

0.05

0.10

0.15

0.20

0.25

M
SE G

G
G+
G+

(b) Smoothing rate (#1)

G 0

1
2

3

4

5
6

7

G− 0

1
2

3

4

5
6

7

G+ 0

1
2

3

4

5
6

7

G̃+ 0

1
2

3

4

5
6

7

(c) Conf. (#2)

100 101 102

Order of smoothing
0.00

0.05

0.10

0.15

0.20

0.25

M
SE G

G
G+
G+

(d) Smoothing rate (#2)

G 0

3

4

75
6

1
2

G− 0

3

4

75
6

1
2

G+ 0

3

4

75
6

1
2

G̃+ 0

3

4

75
6

1
2

(e) Conf. (#3)

100 101 102

Order of smoothing
0.00

0.05

0.10

0.15

0.20

0.25

M
SE G

G
G+
G+

(f) Smoothing rate (#3)

G 0

2

4

6

13

5 7

G− 0

2

4

6

13

5 7

G+ 0

2

4

6

13

5 7

G̃+ 0

2

4

6

13

5 7

(g) Conf. (#4)

100 101 102

Order of smoothing
0.00

0.05

0.10

0.15

0.20

0.25

M
SE G

G
G+
G+

(h) Smoothing rate (#4)

Fig. 5. Different configurations of labels/features for the example graphs of Figure 1,
as well as their respective smoothing rate tests akin to Figure 2(a). Figure 5(a) is the
original configuration, for direct comparison. Figure 5(c) rotates the labels and achieves
more intra-class edges. Figure 5(e) achieves the same amount of intra-class edges but
separates nodes with the same labels. Figure 5(g) alternates between classes and is a
worse configuration to learn.

24 A. Jamadandi et al.

C Algorithms

Here we include the corresponding algorithms: ProxyDelete (1), ProxyAdd
(2), EldanAdd (3), and EldanDelete (4).

Algorithm 1 Proxy Spectral Gap based Greedy Graph Sparsification
(ProxyDelete)
Require: Graph G = (V, E), num. edges to prune N , spectral gap λ1(LG), second

eigenvector f .
repeat

for (u, v) ∈ E do
Consider Ĝ = G \ (u, v).
Calculate proxy value for the spectral gap of Ĝ based on Eq. (1):
λ1(LĜ) ≈ λ1(LG)− ((fu − fv)

2 − λ1(LG) · (f2
u + f2

v))
end for
Find the edge that maximizes the proxy: (u−, v−) = argmax

(u,v)∈E
λ1(LĜ).

Update graph edges: E = E \ (u−, v−).
Update degrees: du− = du− − 1, dv− = dv− − 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges deleted.
Output : Sparse graph Ĝ = (V, Ê).

Algorithm 2 Proxy Spectral Gap based Greedy Graph Addition (ProxyAdd)
Require:Graph G = (V, E), num. edges to add N , spectral gap λ1(LG), second eigen-

vector f of G.
repeat

for (u, v) ∈ Ē do
Consider Ĝ = G ∪ (u, v).
Calculate proxy value for the spectral gap of Ĝ based on Eq. (1):
λ1(LĜ) ≈ λ1(LG) + ((fu − fv)

2 − λ1(LG) · (f2
u + f2

v))
end for
Find the edge that maximizes the proxy: (u+, v+) = argmax

(u,v)∈Ē
λ1(LĜ).

Update graph edges: E = E ∪ (u+, v+).
Update degrees: du+ = du+ + 1, dv+ = dv+ + 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges added.
Output : Denser graph Ĝ = (V, Ê).

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 25

Algorithm 3 Eldan based Greedy Graph Addition (EldanAdd)
Require: Graph G = (V, E), num. edges to add N , spectral gap λ1(LG), top eigenvec-

tor f of G.
repeat

for edges(u, v) ∈ Ē do
Consider Ĝ = G ∪ (u, v).
Compute projection P2

f = ⟨f, f̂0⟩.
Compute Eldan’s criterion g(u, v,LG).

end for
Find the edge that minimizes the criterion: (u+, v+) = argmax

(u,v)∈Ē
−g(u, v,LG).

E = E ∪ (u+, v+).
Update degrees du+ = du+ + 1, dv+ = dv+ + 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges added.
Output : Denser graph Ĝ = (V, Ê).

Algorithm 4 Eldan based Greedy Graph Sparsification (EldanDelete)
Require: Graph G = (V, E), num. edges to prune N , spectral gap λ1(LG), top eigen-

vector f of G.
repeat

for edges(u, v) ∈ E do
Consider Ĝ = G \ (u, v).
{Note that the denser graph is the original G, so we require approximations of
f̂ and λ1(LĜ) from the sparser Ĝ.}
Estimate eigenvector f̂ from f based on the power iteration method.
Estimate corresponding eigenvalue λ1(LĜ) based on Eq. (1).
Compute projection P2

f = ⟨f̂ , f0⟩.
Compute Eldan’s criterion g(u, v,LĜ).

end for
Find the edge that maximizes the criterion: (u−, v−) = argmax

(u,v)∈E
g(u, v,LĜ)

Ê = Ê \ (u−, v−).
Update degrees du− = du− − 1, dv− = dv− − 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges deleted.
Output : Sparse graph Ĝ = (V, Ê).

26 A. Jamadandi et al.

D Spectral pruning can slow down the rate of smoothing

In section §3 we have demonstrated the possibility of addressing both over-
squashing and over-smoothing via spectral gap based pruning in a simple toy
graph setting. Below we present the results on real-world graphs, where spectral
pruning can help slow down the rate of smoothing. We adopt the same Linear
GNN setup [47]. In Figure 6, we present two homophilic datasets (Cora and
Citeseer) and two heterophilic graphs (Texas and Chameleon). For each of these
experiments we add edges using FoSR [46] and ProxyAdd and delete edges
using our proposed ProxyDelete method. FoSR, which optimizes the spectral
gap by adding edges, aids in mitigating over-squashing but inevitably leads to
accelerating the smoothing rate. Conversely, if we delete edges using our Prox-
yDelete method, the rate of smoothing is slowed down. It is also evident that
our pruning method is more effective in heterophilous graph settings. This is
likely due to the deletion of edges between nodes with different labels, thus pre-
venting detrimental smoothing. We substantiate this by measuring the distance
between nodes that have different labels, which should stay distinguishable. That
is, our method deletes edges between nodes of different labels thus preventing
unnecessary aggregation. We report the cosine distance for heterophilic graphs
in Table 9 before training, after training on the original graph, and after training
on the pruned graph. From the table it is clear that pruning edges increases the
distance between nodes of different labels. Another popular metric in the lit-
erature to measure over-smoothing is Dirichlet energy, which can only measure
the degree of smoothing, but not whether it is helpful for a learning task. To
keep up with the trend, we plot the Dirichlet energy vs. Layers [64] in Figure
7 on Cora and Texas. It is clear from the figure that our method slows down
the decay of Dirichlet energy. Note that, since our method works purely on the
graph topology, it cannot improve the Dirichlet energy like specialised methods
[77, 64, 66].

In a recent work by [4], the authors also show similar experiments by in-
troducing additional nodes to slow down the rate of message passing and thus
slowing down the rate of smoothing. We achieve a similar effect just by pruning
edges instead of introducing additional nodes.

Table 9. Cosine distance between nodes of different labels before and after deleting
edges using ProxyDelete.

Dataset Before
Training

After
Training

(OriginalGraph)

After
Training

(PrunedGraph)

Cornell 0.72 0.87 0.83
Wisconsin 0.72 0.77 0.86

Texas 0.68 0.62 0.80
Chameleon 0.99 0.91 0.96

Squirrel 0.98 0.82 0.89
Actor 0.83 0.95 0.99

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 27

(a) Cora dataset with 200
edges added (FoSR, Prox-
yAdd) and 20 deleted
(ProxyDelete).

(b) Citeseer dataset with
200 edges added (FoSR,
ProxyAdd) and 100 deleted
(ProxyDelete).

(c) Texas dataset with
200 edges added (FoSR,
ProxyAdd) and 5 deleted
(ProxyDelete) .

(d) Chameleon dataset with
200 edges added (FoSR,
ProxyAdd) and 250 deleted
(ProxyDelete).

Fig. 6. We show on real-world graphs that spectral pruning can not only mitigate over-
squashing by improving the spectral gap but also slows down the rate of smoothing,
thus effectively preventing over-smoothing as well.

E Additional results

E.1 Node classification.

We perform semi-supervised node classification on the following datasets: Cora
[54], Citeseer [69] and Pubmed [57]. We report results on Chameleon, Squirrel,
Actor and the WebKB datasets3 consisting of Cornell, Wisconsin and Texas.
Our baselines include GCN [48] without any modifications to the original graph,
DIGL by [35], SDRF by [72], and FoSR by [46]. We adopt the public implemen-
tations available and tune the hyperparameters to improve the performance if
possible. Our results are presented in Table 10. We compare GCN with no edge
modifications, GCN+DIGL, GCN+SDRF, GCN+FoSR, GCN+RandomDelete,
GCN+EldanDelete where we delete the edges, GCN+EldanAdd where we
add the edges according to the criterion from Lemma 1 and ProxyAdd and
ProxyDelete which use Equation (1) to optimize the spectral gap directly.
The results for GCN+BORF [58] are taken from the paper directly, hence NA
for some datasets. The top performance is highlighted in bold. GCN+FoSR

3 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

28 A. Jamadandi et al.

(a) Cora dataset with 50 edges
added (FoSR) and 50 deleted
(ProxyDelete).

(b) Texas dataset with 50
edges added (FoSR) and 100
deleted (ProxyDelete) .

Fig. 7. We measure the Dirichlet energy and plot it for increasing depth on a ho-
mophilic dataset, Cora and a heterophilic dataset, Texas. For increasing depth, we can
see Proxydelmax slows the decay of Dirichlet energy.

outperforms all methods on Cora, Citeseer and Pubmed, which are homophilic.
Yet, GCN+ProxyAdd is more effective in increasing the spectral gap (see Ta-
ble 16). On the remaining six datasets, our proposed methods both with edge
deletions and additions outperform FoSR and SDRF, while outperforming all
other baselines on all datasets. For training details and hyperparameters, please
refer to the Appendix 19.

Table 10. We compare the performance of GCN augmented with different graph
rewiring methods on node classification.

Method Cora
H = 0.8041

Citeseer
H = 0.7347

Pubmed
H = 0.8023

Cornell
H = 0.1227

Wisconsin
H = 0.1777

Texas
H = 0.060

Actor
H = 0.2167

Chameleon
H = 0.2474

Squirrel
H = 0.2174

GCN 87.22±0.40 77.35±0.70 86.96±0.17 50.74±1.63 53.52±1.50 50.40±1.47 29.12±0.24 31.15±0.84 26.00±0.69
GCN+DIGL 83.21±0.79 73.29±0.17 78.84±0.008 42.04±4.43 44.22±5.02 57.35±6.46 26.33±1.22 38.95±0.99 32.45±0.88
GCN+SDRF 87.84±0.68 78.43±0.62 87.36±0.14 53.54±2.65 58.78±3.22 60.25±4.97 31.67±0.36 41.30±1.36 38.98±0.46
GCN+FoSR 91.44±0.39 82.13±0.31 91.49±0.10 53.91±1.47 58.63±1.46 63.50±1.75 38.01±0.21 46.64±0.63 50.73±0.37

GCN+EldanDelete 87.60±0.18 78.68±0.54 87.33±0.07 65.13±1.50 67.84±1.45 70.53±1.23 43.65±0.21 52.51±0.55 48.89±0.40
GCN+EldanAdd 88.38±0.12 79.45 ±0.37 87.17±0.14 69.05±1.50 64.08±1.63 67.10±1.13 43.64±0.25 48.09±0.59 51.66±0.45
GCN+ProxyAdd 89.10±0.70 78.94±0.54 87.54±0.24 66.54±1.41 67.75±1.64 74.21±1.25 43.45±0.20 54.30±0.59 48.85±0.39

GCN+ProxyDelete 87.51±0.81 78.68 ±0.55 87.39±0.11 66.60 ± 1.67 66.36±1.33 72.36±1.35 43.52±0.22 55.88±0.70 48.90±0.39
GCN+RandomDelete 87.30±0.31 78.34±0.38 87.15±0.16 63.97±2.50 61.71±2.73 63.97±5.41 29.57±0.44 44.07±1.04 40.63±0.41

GCN+BORF 87.50±0.20 73.80±0.20 NA 50.80±1.11 50.30±0.90 49.40±1.20 NA 61.50±0.40 NA

E.2 Graph classification with GCN and R-GCN

We conduct experiments on graph classification with a GCN [48] and R-GCN [7]
backbone to demonstrate the effectiveness of our proposed rewiring algorithms.
Our experimental setting is the same as that of FoSR by [46], with the difference
being we tune our hyperparameters on 10 random splits instead of 100. The final
test accuracy is averaged over 5 random splits of data. We compare our results
with FoSR by [46]. For the IMDB-BINARY, REDDIT-BINARY and COLLAB
datasets there are no node features available and have to be created. For fair

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 29

comparison we run FoSR on these datasets. For ENZYMES and MUTAG the
results are taken from the values reported in the paper. The results are reported
in Table 11 and 12. From the tables it is clear that our proposed algorithms are
effective in increasing the generalization performance even for graph classification
tasks.

Table 11. Graph classification with GCN comparing FoSR, EldanAdd and Prox-
yAdd.

Method ENZYMES MUTAG IMDB-BINARY REDDIT-BINARY COLLAB PROTEINS

GCN+FoSR 25.06±0.50 80.00±0.80 68.80±4.04 80.01±0.02 80.30±0.00 73.42 ± 0.41
GCN+EldanAdd 26.36±0.01 82.16±0.03 75.84±0.01 81.03±0.02 81.82±0.97 70.53±0.86
GCN+ProxyAdd 27.39±0.01 85.00±0.00 75.00±0.02 78.20±0.01 79.52±0.01 76.53±0.02

Table 12. Graph classification with R-GCN comparing FoSR, EldanAdd and Prox-
yAdd.

Method ENZYMES MUTAG IMDB-BINARY REDDIT-BINARY COLLAB PROTEINS

R-GCN+FoSR 35.63±0.58 84.45±0.77 70.16±3.67 80.01±0.02 78.04±0.84 73.79±0.35
R-GCN+EldanAdd 30.55±0.16 85.80±0.20 76.32±0.07 79.76±0.17 80.69±0.01 72.01±0.04
R-GCN+ProxyAdd 33.12±2.74 78.0±5.51 73.96±2.25 87.93±0.61 80.22±1.13 73.32±2.78

E.3 Node classification using Relational-GCN

In Table 13 we compare FoSR [46] and our proposed methods that use Eldan’s
criterion for adding edges and the ProxyAdd method with a Relational-GCN
backbone on 9 datasets. We adopt the experimental setup and code base of [46],
with the exception of averaging over 10 random splits of data instead of 100.

Table 13. Node classification using Relational-GCNs comparing FoSR, Eldan’s crite-
rion and ProxyAdd.

Method Cora Citeseer Pubmed Cornell Wisconsin Texas Actor Chameleon Squirrel

R-GCN+FoSR 87.28±0.67 73.81±0.10 88.61±0.28 71.62±2.88 76.07±5.16 75.40±3.77 35.19±0.49 39.83±2.70 34.80±1.34
R-GCN+EldanAdd 87.38±1.03 73.72±1.15 88.58±0.20 73.78±6.30 77.45±3.19 78.37±2.75 34.75±0.40 43.20±1.24 33.79±0.81
R-GCN+ProxyAdd 87.42±0.01 75.82±0.09 89.17 ± 0.42 70.00±0.20 77.45±0.40 75.67±0.40 35.05±0.35 42.58±1.20 33.03±1.40

F Update period, empirical runtimes and spectral gap
comparisons

In §4.1, we have discussed the time complexity analysis of our proposed al-
gorithms. Recall, that our algorithm has a hyperparameter M , the number of
edges to delete after ranking the edges using our proxy. For edge additions, the

30 A. Jamadandi et al.

candidate edges that can be added are large, thus we can resort to sampling
a constant set of edges to speed up the process. All of our experiments in §5
were conducted with M = 1. However, it is possible to further reduce the overall
runtimes by tuning the value of M , that is, how many edges we can modify
before we have to recalculate the proxy to rank the edges again. This is shown
in Table 15, where we compare our algorithms with M = 1 and M = 10, for
50 edge modifications. It is clear that although M = 1 leads to better spectral
gap improvement, M = 10 is also a valid updating period which induces enough
spectral gap change while simultaneously bringing down the runtime (also pre-
sented in Table 14) considerably, especially for large graphs. To further evaluate
the trade-off between the update period and its effect on GNN test accuracy,
we use ProxyAdd and ProxyDelete with different M updates on Cora and
Texas datasets to modify 50 and 20 edges respectively. This is shown in Figure 8.
Although a more frequent update points to better test accuracy, update periods
with {5, 10} also yield competitive results. Thus reinforcing the fact that our
proposed methods can be computationally efficient and can help in improving
the generalization. In Table 16 we report the spectral gap changes induced by
FoSR [46], our proposed Eldan criterion based addition and deletions and also
the Proxy versions of addition and deletions. In Table 17 we provide the runtimes
for large heterophilic datasets [62].

(a) Test accuracy for Cora
with M = {1, 5, 10, 25} up-
date periods. We add/delete
50 edges.

(b) Test accuracy for Texas
with M = {1, 5, 10, 20} up-
date periods. We add/delete
20 edges.

Fig. 8. We investigate the trade-off between how frequently we need to update the
ranking criterion vs. the test accuracy for GCN on Cora and Texas for node classifica-
tion.

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 31

Table 14. Runtimes for 50 edge modifications in seconds.

Method Cora Citeseer Chameleon Squirrel

FoSR 4.69 5.33 5.04 19.48
SDRF 19.63 173.92 17.93 155.95

ProxyAdd 4.30 3.13 1.15 9.12
ProxyDelete 1.18 0.86 1.46 7.26

Table 15. Empirical runtime (RT) comparisons with different update periods for the
criterion for 50 edges. We also report the spectral gap before (SG.B) and after rewiring
(SG.A).

Method Cora Citeseer Chameleon Squirrel

Measures SG.B SG.A RT SG.B SG.A RT SG.B SG.A RT SG.B SG.A RT

ProxyAdd (M=1) 0.00478 0.0240 41.82 0.0015 0.012 27.70 0.0063 0.018 9.24 0.051 0.069 75.89
ProxyDelete (M=1) 0.00478 0.0059 12.82 0.0015 0.0018 5.47 0.0063 0.0064 7.51 0.051 0.053 66.00
ProxyAdd (M=10) 0.00478 0.018 4.30 0.0015 0.0067 3.13 0.0063 0.0160 1.15 0.051 0.058 9.12

ProxyDelete (M=10) 0.00478 0.0074 1.04 0.0015 0.0021 0.86 0.0063 0.0065 1.46 0.051 0.0527 7.26

Table 16. We compare the spectral gap improvements of different rewiring methods
for 50 edge modifications. From the table it is evident that our proposed ProxyAdd
and ProxyDelete methods improve the spectral gap much better than FoSR.

Method Cora Citeseer Chameleon Squirrel

Spectral Gap Changes SG. Before SG. After SG. Before SG. After SG. Before SG. After SG. Before SG. After

FoSR 0.0047 0.0099 0.0015 0.0027 0.0063 0.0085 0.051 0.052
ProxyAdd 0.0047 0.024 0.0015 0.012 0.0063 0.018 0.051 0.069

ProxyDelete 0.0047 0.0059 0.0015 0.0018 0.0063 0.0064 0.051 0.053
EldanAdd 0.0047 0.0047 0.0015 0.0039 0.0063 0.0085 0.051 0.052

EldanDelete 0.0047 0.0074 0.0015 0.0099 0.0063 0.0059 0.051 0.053

Table 17. Spectral gap changes and empirical runtimes for Large Heterophilic
Datasets.

Dataset SG. Before #EdgesAdded SG. After AddingTime #EdgesDeleted SG. After PruningTime

Roman-Empire 3.6842e-07 5 7.5931e-07 124.34 20 3.6875e-07 9.23
Amazon-Ratings 0.000104825 10 0.000230704 380.62 50 0.000104840 62.69

Minesweeper 0.000376141 20 0.000375844 164.44 20 0.000376141 15.5

32 A. Jamadandi et al.

G Pruning at initialization for graph lottery tickets

In Table 18, we present the results for Pruning at Initialization for finding graph
lottery tickets. We first prune the input graph to the required sparsity level
and then the weights are iteratively pruned by magnitude similar to the ap-
proach proposed by [23]. From the table it is clear that, at least for moderate
graph sparsity (GS) levels for Cora dataset, that is around GS = 18.75%, our
proposed EldanDelete-UGS and ProxyDelete attain comparable perfor-
mance to UGS. On Pubmed for different graph sparsity levels we outperform
UGS. Meanwhile, our method fails to identify winning tickets for Citeseer. We
use the public implementation by the authors [23] for all our lottery ticket ex-
periments. For all experiments we report the test accuracy on node classification
averaged over 3 runs. Except for Pubmed which could only be averaged over 2
runs.

Table 18. We perform pruning at initialization to find graph lottery tickets. We com-
pare UGS with our proposed methods for varying graph sparsity (GS) and weight
sparsity (WS) levels.

Cora - GS(18.75%); WS(89.88%) Citeseer - GS(19.46%);WS(89.80%) Pubmed - GS(19.01%);WS(89.33%)

Method Acccuracy Method Accuracy Method Accuracy

UGS 79.54±1.20 UGS 72.20±0.60 UGS 77.75±1.04
Eldan-UGS 79.10±0.07 Eldan-UGS 68.15±0.65 Eldan-UGS 79.80±0.00

ProxyDelete-UGS 78.66±0.73 ProxyDelete-UGS 69.76±0.65 ProxyDelete-UGS 78.20±0.20

Cora - GS(57.59%) WS(98.31%) Citeseer- GS(59.12%);WS(98.12%) Pubmed - GS(56.47%);WS(98.21%)

UGS 72.65±0.55 UGS 68.70±0.20 UGS 76.80±0.00
Eldan-UGS 72.40±0.40 Eldan-UGS 66.55±0.15 Eldan-UGS 77.70±0.00

ProxyDelete-UGS 70.49±0.27 ProxyDelete-UGS 67.96±1.72 ProxyDelete-UGS 77.80±0.00

Cora - GS(78.81%) WS(98.23%) Citeseer- GS(82.63%);WS(98.59%) Pubmed - GS(81.01%);WS(97.19%)

UGS 68.65±0.95 UGS 66.05±0.45 UGS 76.25±0.45
Eldan-UGS 67.20±0.10 Eldan-UGS 62.60±0.60 Eldan-UGS 72.80±0.00

ProxyDelete-UGS 64.46±0.47 ProxyDelete-UGS 61.19±0.29 ProxyDelete-UGS 74.70±0.00

H Training details and hyperparameters

We instantiate a 2-layered GCN [48] for semi-supervised node classification, the
Planetoid datasets (Cora, Citeseer and Pubmed) are available as pytorch geomet-
ric datasets. For the WebKB datasets we use the updated ones given by [62]. We
use a 60/20/20 split for training/testing/validation respectively for all datasets.
We perform extensive hyperparameter tuning on the validation set and finally re-
port test accuracy averaged over 10 splits of the data [21]. We use the largest con-
nected component wherever available. The same experimental settings hold for

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 33

other baselines DIGL, SDRF and FoSR. For node classification using R-GCNs,
we also use a 3 layered GCN, this is highlighted in Table 20 with other hyperpa-
rameters. For graph classification, we use the same experimental setup as [46], we
use a 4-layered GCN and R-GCN versions. For the larger heterophilic datasets,
we use the experimental setup given by the authors [62]. We set the learning rate
to {3e − 3, 3e − 4}, dropout to 0.32, and the hidden dimension size to 512. For
GATs, the attention heads are set to 8. The datasets are split into 50%/25%/25%
for train, test and validation respectively. We tune our edge modification algo-
rithms on the validation set. The final test accuracy is reported as averaged over
10 random splits run for 1000 steps. Skip connections and normalization [5] is
used to facilitate training deeper models. We use PyTorch Geometric and DGL
library for our experiments. All experiments were done on 2 V100 GPUs. Our
code https://github.com/RelationalML/SpectralPruningBraess is available.

Table 19. Hyperparameters for GCN+our proposed rewiring algorithms.

Dataset LR HiddenDimension Dropout EldanAdd EldanDelete ProxyAdd ProxyDelete

Cora 0.01 32 0.3130296 50 20 100 100
Citeseer 0.01 32 0.4130296 50 20 50 50
Pubmed 0.01 128 0.3130296 50 100 20 50
Cornell 0.001 128 0.4130296 100 5 50 20

Wisconsin 0.001 128 0.5130296 100 5 50 10
Texas 0.001 128 0.4130296 100 5 50 76
Actor 0.001 128 0.2130296 100 10 25 500

Chameleon 0.001 128 0.2130296 100 50 50 200
Squirrel 0.001 128 0.5130296 50 100 10 1000

Table 20. Hyperparameters for R-GCN+ProxyAdd on node classification

Dataset LR Layers HiddenDimension Dropout ProxyAdd

Cora 0.01 2 32 0.3130296 50
Citeseer 0.01 2 64 0.3130296 250
Pubmed 0.01 2 32 0.4130296 100
Cornell 0.001 3 128 0.3130296 05

Wisconsin 0.001 3 128 0.3130296 25
Texas 0.01 3 128 0.3130296 20
Actor 0.001 3 128 0.5130296 25

Chameleon 0.001 3 128 0.4130296 100
Squirrel 0.001 3 128 0.3130296 5

34 A. Jamadandi et al.

Table 21. Hyperparameters for graph
classification with GCN+EldanAdd

Dataset LR Dropout Hidden
Dimension EldanAdd

ENZYMES 0.001 0.2130296 32 20
MUTAG 0.001 0.3130296 32 20

IMDB-BINARY 0.001 0.3130296 32 10
REDDIT-BINARY 0.001 0.2130296 32 10

COLLAB 0.001 0.21 32 10
PROTEINS 0.001 0.3130296 32 10

Table 22. Hyperparameters for graph
classification with GCN + ProxyAdd

Dataset LR Dropout Hidden
Dimension ProxyAdd

ENZYMES 0.001 0.2130296 32 20
MUTAG 0.001 0.3130296 32 20

IMDB-BINARY 0.001 0.3130296 32 10
REDDIT-BINARY 0.001 0.2130296 32 10

COLLAB 0.001 0.21 32 10
PROTEINS 0.001 0.3130296 32 10

Table 23. Hyperparameters for SDRF.

Dataset LR Dropout Hidden
Dimension

SDRF
Iterations τ C+

Cora 0.01 0.3130296 32 100 163 0.95
Citeseer 0.01 0.2130296 32 84 180 0.22
Pubmed 0.01 0.4130296 128 166 115 1443
Cornell 0.001 0.2130296 128 126 145 0.88

Wisconsin 0.001 0.2130296 128 89 22 1.64
Texas 0.001 0.2130296 128 136 12 7.95
Actor 0.01 0.4130296 128 3249 106 7.91

Chameleon 0.01 0.2130296 128 2441 252 2.84
Squirrel 0.01 0.2130296 128 1396 436 5.88

Table 24. Hyperparameters for FoSR.

Dataset LR Dropout Hidden
Dimension

FoSR
Iterations

Cora 0.01 0.5130296 128 50
Citeseer 0.01 0.3130296 128 10
Pubmed 0.01 0.4130296 128 50
Cornell 0.001 0.2130296 128 100

Wisconsin 0.001 0.2130296 128 100
Texas 0.001 0.4130296 128 100
Actor 0.01 0.4130296 128 100

Chameleon 0.01 0.4130296 128 100
Squirrel 0.01 0.2130296 128 100

Table 25. Hyperparameters for DIGL.

Dataset LR Dropout Hidden
Dimension α κ

Cora 0.01 0.41 32 0.0773 128
Citeseer 0.01 0.31 32 0.1076 -
Pubmed 0.01 0.41 128 0.1155 128
Cornell 0.001 0.41 128 0.1795 64

Wisconsin 0.001 0.31 128 0.1246 -
Texas 0.001 0.41 128 0.0206 32
Actor 0.01 0.21 128 0.0656 -

Chameleon 0.01 0.41 128 0.0244 64
Squirrel 0.01 0.41 128 0.0395 32

Spectral Graph Pruning Against Over-Squashing and Over-Smoothing 35

Table 26. Hyperparameters for graph
classification with R-GCN+EldanAdd

Dataset LR Dropout Hidden
Dimension EldanAdd

ENZYMES 0.001 0.2130296 64 50
MUTAG 0.001 0.3130296 64 40

IMDB-BINARY 0.001 0.3130296 32 50
REDDIT-BINARY 0.001 0.2130296 32 50

COLLAB 0.01 0.4130296 32 05
PROTEINS 0.01 0.4130296 32 05

Table 27. Hyperparameters for graph
classification with R-GCN + ProxyAdd

Dataset LR Dropout Hidden
Dimension ProxyAdd

ENZYMES 0.001 0.2130296 32 10
MUTAG 0.001 0.3130296 32 10

IMDB-BINARY 0.001 0.3130296 32 10
REDDIT-BINARY 0.001 0.2130296 32 20

COLLAB 0.01 0.4130296 32 10
PROTEINS 0.01 0.4130296 32 10

