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Abstract. Accurate multi-step forecasting of node-level attributes on
dynamic graphs is critical for applications ranging from financial trust
networks to traffic monitoring. Existing spatio-temporal graph neural
networks typically assume a static adjacency, and seldom deal with mul-
tidimensional timeseries prediction. In this work, we propose an end-to-
end dynamic edge-biased spatio-temporal model that ingests a multidi-
mensional timeseries of node attributes and a timeseries of adjacency
matrices, to predict multiple future steps of node attributes. At each
time step, our transformer-based model injects the given adjacency as
an adaptable attention bias, allowing the model to focus on relevant
neighbors as the graph evolves. We further deploy a masked node/time
pretraining objective that primes the encoder to reconstruct missing fea-
tures, and train with scheduled sampling and a horizon-weighted loss to
mitigate compounding error over long horizons. Unlike prior work, our
model accommodates dynamic graphs that vary across input samples, en-
abling forecasting in multi-system settings such as brain networks across
different subjects, financial systems in different contexts, or evolving so-
cial systems. Empirical results demonstrate that our method outperforms
strong STGCN, DCRNN, and MTGNN baselines by 10–20%.
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1 Introduction

Many real-world systems, ranging from brain connectivity networks to social
trust platforms, are naturally represented as dynamic graphs, where the set of
edges and node attributes evolve over time. In these settings, the underlying
relationships between entities (i.e., the graph structure) change due to exter-
nal stimuli or internal dynamics. For example, in functional brain networks,
edges correspond to time-varying functional connections between brain regions,
which reconfigure dynamically in response to cognitive states or external tasks.
In Bitcoin-OTC and Alpha trust networks, the trust scores exchanged between
users evolve as a result of transactions, leading to changing connectivity over
time. Similarly, in dynamic social or biological systems, interactions are not only
sparse but also transient, making edge evolution a critical modeling component.
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While considerable progress has been made in learning from dynamic graphs,
much of this work focuses on node classification or link prediction, often assum-
ing fixed node connectivity or event-stream representations of edge changes. In
contrast, predicting future node attributes, such as a node’s behavioral signal,
risk score, or physiological state, is both important and underexplored, especially
in the presence of dynamic edge structures.

In this work, we address the problem of node attribute prediction in fully
dynamic graphs, where both node features and edges change over time, but the
node set remains fixed. This setting arises naturally in domains where node states
are observed over time and influenced by evolving interactions. We propose a
novel architecture that combines dynamic graph learning, graph attention, and
temporal self-attention to model both short- and long-range spatiotemporal de-
pendencies. We propose two variants of our model, one that learns a time-varying
graph structure relevant to the node attribute prediction, and one that uses a
given dynamic graph structure with edge biases to predict the node attributes.

To evaluate our method, we consider synthetic and real-world datasets includ-
ing the LA traffic network and Bitcoin-OTC and Alpha trust networks, where
node features represent things like traffic volume at an intersection or average
trust ratings given and received. We also compare against strong baselines like
STGCN[18] and MTGNN[16], showing that our model achieves superior perfor-
mance on root mean squared error and mean absolute error metrics. This work
is, to the best of our knowledge, the first to explicitly address node attribute
prediction using dynamic graphs with fully evolving edge structures.

2 Related Work

Dynamic Graph Representation Learning. A large body of work has been
devoted to learning on dynamic graphs, primarily targeting tasks such as link
prediction and node classification. Methods such as EvolveGCN [13], TGAT [3],
TGN [14], and DyRep [15] model temporal interactions in graphs by evolving
either node embeddings or graph parameters over time. However, these meth-
ods typically focus on classification or event prediction and do not address the
task of predicting continuous-valued node attributes. Furthermore, many prior
works model graphs as streams of discrete events (e.g., interactions between
node pairs), rather than explicitly modeling evolving graph snapshots with dense
temporal node attributes. Event-stream models are flexible but cannot always
handle rich node attribute time series directly (e.g., vectors of features at each
time step). Our method is better suited for settings where both topology and
node attributes evolve continuously and are available at regular intervals.

Time Series Forecasting with GNNs. Several methods have explored
forecasting node values in spatiotemporal settings, especially in traffic and sen-
sor networks. STGCN [18], DCRNN [11], and Graph WaveNet [17] operate on
static graphs and combine temporal convolution or recurrent modules with graph
convolution for short-term forecasting. These models assume fixed connectivity
between nodes, making them inapplicable to domains where the underlying net-
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work structure evolves. While some extensions like DGCRN [10] and AGCRN [1]
incorporate latent or adaptive graphs, they often do not model fully dynamic
edge sets or permit per-timestep graph changes.

Learning Graph Structure for Forecasting. MTGNN [16] addresses
multivariate time series forecasting by learning graph structure jointly with tem-
poral prediction. However, it assumes a shared graph across the entire sequence
(or batch), rather than modeling a dynamic graph that changes at each timestep.
Additionally, the node attributes are assumed to be single dimensional, which
is suitable for the traffic forecasting use case, but limits its generalizability to
real-world dynamic graphs such as social or trust networks with potentially mul-
tivariate node features.

Node Attribute Prediction in Dynamic Graphs. Surprisingly few works
explicitly address multivariate node attribute prediction in dynamic graphs with
changing edge structure. In this setting, both the input and output are time se-
ries of node features, and the evolving topology provides contextual relational
information. Our work differs from prior approaches in three key ways:

– we predict continuous, multidimensional node attributes (not classifica-
tion labels),

– we incorporate edge dynamics, allowing the adjacency matrix to evolve over
time, and

– we combine graph attention with temporal attention, enabling simultaneous
modeling of spatiotemporal dependencies.

To the best of our knowledge, this is the first architecture to address the
regression task of node attribute prediction using fully dynamic graphs that
doesn’t assume a single global graph structure shared across inputs.

3 Method

We propose DySTFormer, a novel architecture for multistep, multivariate node
attribute prediction in fully dynamic graphs, where both node features and edge
structures evolve over time while the node set remains fixed. We introduce two
variants of the model. The first, DySTFormer, learns time-varying graph struc-
tures and captures spatiotemporal dependencies through a combination of dy-
namic graph learning, graph attention, and temporal self-attention. The second
variant, preDySTFormer, operates on predefined dynamic graphs rather than
learning them. This distinction is motivated by application domains: in systems
such as Bitcoin trust networks, where edge relationships are explicitly observed,
it is advantageous to incorporate this structure directly. In contrast, for domains
like the METR-LA traffic dataset, where the graph is latent, learning the struc-
ture from node attributes may be more appropriate.

3.1 Problem Formulation

Let Gt = (V, Et) denote a graph snapshot at time t, where V is a fixed set of N
nodes and Et is the edge set at time t. Let Xt ∈ RN×D be the matrix of node
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features at time t. Given a sequence {X1, . . . , XL}, the goal is to predict future
node features {XL+1, . . . , XL+H} (Figure 1), conditioned on both node feature
evolution and the dynamic graph structure (given or inferred).

Input Representation. Each training sample consists of:

– A node attribute history tensor Xhist ∈ RN×D×L, where N is the number of
nodes, D is the feature dimension of each node and L is the input sequence
length.

– A dynamic graph sequence Ahist ∈ RN×N×L, representing one adjacency
matrix per time step. This is optional, and in case predefined graphs are
not provided, our model is able to learn the dynamic relationships that best
align with the task (node attribute prediction).

The forecasting target is a trajectory Y ∈ RN×D×H of node attributes over
H future time steps.

Fig. 1: High Level Problem Overview

3.2 Architecture Overview

The model architecture consists of four key components:

Dynamic Graph Learner. When the graph is not provided as input, to ac-
count for evolving connectivity, we learn a separate adjacency matrix At ∈ RN×N

at each time step. We pass node features through an MLP-based encoder and
compute pairwise attention scores:

At = softmax(EtE
⊤
t ), where Et = MLP(Xt)
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This component allows the model to dynamically infer the graph topology as a
function of node features. The main distinction between preDySTFormer and
DySTFormer is that preDySTFormer does not have this module, and operates
on the given dynamic graphs directly.

Encoding and Temporal Position We begin by linearly projecting each
node’s input feature vector to a hidden dimension d, and add learnable temporal
positional encodings:

Z = Linear(Xhist) + PEtime

This produces Z ∈ RN×d×L, which is then passed through a stack of spatiotem-
poral transformer layers.

Spatiotemporal Transformer Layers Each transformer layer integrates dy-
namic edge-aware multi-head attention by injecting per-time-step adjacency in-
formation as a learnable bias in the attention scores. This allows the model to
adapt spatial attention to changing graph structure, which is critical for domains
like brain networks and evolving trust graphs. At each layer, node i attends to
node j at time t using:

scoreij =
Q⊤

i Kj√
d

+ Biasij(At)

where Biasij is computed via a small MLP over At[i, j]. The output is passed
through a residual feedforward block. We apply edge dropout during training to
encourage robustness to noise.

Forecasting Decoder The output from the encoder, Zenc ∈ RN×d×L, repre-
sents the encoded history of node features across the L input time steps, where
N is the number of nodes and d is the hidden dimension. This tensor is first re-
shaped and permuted into a format suitable for sequence modeling, and passed
through a GRU encoder to obtain an initial hidden state h0 that summarizes
the historical dynamics of each node.

The decoder then operates autoregressively over the prediction horizon H.
At each future time step t, the decoder GRU generates an output zt and new
hidden state ht based on the previous hidden state and the current input. The
output is passed through a forecast-step MLP to produce the predicted node
features at time t, denoted as yt ∈ RN×D, where D is the feature dimension.
These outputs are collected over the entire forecast horizon to yield the final
output tensor Ypred ∈ RN×D×H .

Scheduled Sampling. During training, we employ scheduled sampling to bridge
the gap between the training and inference conditions, a technique introduced
by [2]. In traditional teacher forcing, the decoder is always fed the ground truth
from the previous time step. However, at inference time, ground truth is not
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available, and the decoder must rely entirely on its own predictions. To mitigate
this train-test discrepancy, we probabilistically choose between using 1. only the
decoder’s previous prediction zt−1 and 2. a weighted combination of the ground
truth Y true

t−1 and the model’s own previous prediction zt−1 as input at each time
step during training. This probability is governed by a decaying function of
the training epoch, such that early in training, the decoder relies mostly on
ground truth, and gradually transitions to using its own predictions as training
progresses. This improves robustness and reduces error accumulation over long
forecasting horizons.

The complete forecasted sequence is generated by unrolling the decoder over
H time steps, using either sampled or predicted inputs, and projecting the hidden
states back to the feature space through the MLP head.

Loss Functions Our loss function is a combination of Mean Absolute Error
and a Variation loss:

L = LMAE + λ · Lvar

where λ is a weighting coefficient, and:

LMAE =

H∑
t=1

wt · MAE(Y pred
t , Y true

t ) (1)

Lvar = MSE(Y pred
t+1 − Y pred

t , Y true
t+1 − Y true

t ) (2)

The weights wt are exponentially decaying to emphasize short-term accuracy.
Variation loss penalizes differences in temporal derivatives (i.e., frame-to-frame
changes) between the prediction and ground truth, and discourages oversmooth
predictions by explicitly penalizing when the predicted signal lacks the expected
variability over time.

Masked Pretraining To enhance the model’s representation of spatiotem-
poral dependencies before supervised forecasting, we introduce a self-supervised
masked pretraining objective. Inspired by masked language modeling in NLP [4],
we randomly mask a subset of entries across nodes and timesteps in the input
history tensor Xhist ∈ RN×D×L and train the model to reconstruct these val-
ues using the corresponding adjacency sequence Ahist. This technique improves
representation learning and has shown success in both sequence modeling and
graph neural networks [4, 12, 6].

Masking Strategy. For each training sample, we generate a binary mask M ∈
{0, 1}N×D×L by sampling entries uniformly at random with probability pmask =
0.15. The masked input X̃hist is created by zeroing out the selected entries:

X̃hist = Xhist ⊙ (1−M)

We feed X̃hist and Ahist into the encoder and decode a full reconstruction X̂hist
using the same projection head used in forecasting.
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Loss Function. We compute a masked reconstruction loss that penalizes recon-
struction error only at masked positions:

Lpretrain =
∥(X̂hist −Xhist)⊙M∥2

∥M∥1 + ϵ

where ϵ is a small constant to avoid division by zero. This objective trains the
model to learn generalizable spatiotemporal representations, even in the absence
of forecasting supervision.

Pretraining Schedule. We first train the model for a fixed number of epochs using
Lpretrain only, and then fine-tune on the forecasting task with the supervised loss
L = LMAE + λLvar. We observe that masked pretraining improves performance,
particularly on datasets with noisy or irregular structure such as traffic and trust
networks.

Training Procedure We train using Adam with a learning rate of 10−3 for
up to 100 epochs, using early stopping based on validation RMSE. During early
epochs, we apply curriculum learning by gradually increasing the forecast hori-
zon.

4 Datasets and Baselines

Bitcoin Trust Networks : The Bitcoin Alpha and OTC trust networks from
the SNAP repository [9, 8] consist of timestamped interactions, where users rate
one another on a scale from -10 to 10. We derive two-dimensional node features
at a daily resolution: the average rating given and the average rating received
by each user. These features are used to construct time series of length 20, along
with corresponding dynamic graphs. For prediction, we use the first 12 time
steps as input and forecast the subsequent 8.

Traffic data : The METR-LA traffic dataset contains speed measurements
from sensors distributed across the Los Angeles metropolitan area. The under-
lying network is static, defined by the physical distances between sensors [7].
To simulate dynamic topology, we generate semi-synthetic dynamic graphs by
randomly removing 10% of the edges at each time step. We use sequences of 12
time steps as input and predict the following 12 time steps.

We split the datasets into training (70%), validation (20%), and test (10%)
sets and normalize inputs. The output from the models are denormalized before
calculating evaluation metrics.

Baselines and Metrics We compare against the most popular benchmark
methods in this domain, namely, STGCN, DCRNN, and MTGNN, using MAE,
and RMSE as evaluation metrics. We also compare our model against a fully con-
nected long short-term memory network (LSTM) [5] that ignores graph structure
and models the temporal dynamics of each node independently. It serves as a
strong non-graph baseline for time series forecasting.
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Table 1: Network Statistics
Dataset Nodes Input length Output length Feature dimension
Bitcoin Alpha 1254 12 8 2
Bitcoin OTC 1304 12 8 2
METR-LA 207 12 12 1

5 Results

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) results
are presented in Table 2. For the Bitcoin trust datasets, node features are two-
dimensional, whereas most baseline models operate on univariate time series. In
such cases, we report the average of the two feature dimensions. All reported val-
ues are means over 10 independent runs, with standard deviations between 0.009
and 0.06. Our method outperforms existing approaches in all scenarios consid-
ered. The version that learns the adjacency matrix performs better in the traffic
dataset, where the ground truth network is not explicitly observed, but inferred
from node attribute similarities. On the other hand, preDySTFormer performs
better on the trust networks, since it leverages explicitly observed relationships
between nodes.

Table 2: Performance (MAE and RMSE) of different methods on various
datasets.

Dataset Bitcoin Alpha Bitcoin OTC METR
Method MAE RMSE MAE RMSE MAE RMSE
LSTM 2.1 3.8 2.89 3.6 4.57 9.5
STGCN 1.8 3.6 1.09 4.7 4.5 9.5
DCRNN 1.81 3.47 1.3 2.8 3.9 7.56
MTGNN 2.18 4.5 2.2 3.2 3.42 7.23
preDySTFormer 1.65 2.8 1.02 2.39 3.25 6.9
DySTFormer 1.89 2.94 1.37 2.82 3.42 6.12

6 Conclusion

We introduced DySTFormer, a spatio-temporal transformer architecture de-
signed for node attribute prediction on dynamic graphs. The model integrates a
dynamic graph learner with attention-based mechanisms to jointly capture spa-
tial and temporal dependencies. Empirical results on traffic datasets with evolv-
ing edge structures demonstrate improved predictive performance over strong
spatiotemporal graph neural network (STGNN) baselines. In future work, we
aim to extend this framework to more complex real-world dynamic systems,
such as brain fMRI signals and animal movement networks.
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