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Abstract. The integration of structural and functional brain connectiv-
ity provides a holistic view of the brain’s organization, but its application
in Graph Neural Network (GNN) models for predicting "brain age" is
understudied, and a systematic benchmark of optimal data fusion strate-
gies is currently lacking. We systematically benchmark the performances
of early and late fusion multimodal architectures against single-modality
models for brain age prediction using structural and functional connect-
comes, using five different GNN backbones on 747 healthy participants
(median age, 16.3 years; IQR 13.5-18.5 years) obtained from the Philadel-
phia Neurodevelopmental Cohort. The late fusion architecture improved
performance over the structural-only baseline in three of five models, with
the GCN model achieving the highest overall score in cross-validation (
R2 = 0.639 ± 0.05). The early fusion architecture showed inconsistent
results and did not offer a reliable improvement over the single-modality
baseline. Finally, is observed that optimal model architecture depends
on the data type: structural brain graphs favors deep, narrow models to
capture their hierarchy, whereas functional brain graphs requires wider,
shallower models.

Keywords: machine learning · neuroimaging · connectome · multi-layer
graph
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1 Introduction

The human brain’s capacities emerge from an intricate interplay between its
physical structure and dynamic functional activity. Among the most prevalent
imaging modalities used to model the brain as a network are Diffusion Weighted
Imaging (DWI), which maps the white matter tracts to construct a structural
connectome (SC), and functional Magnetic Resonance Imaging (fMRI), from
which temporal correlations in blood-oxygen-level-dependent (BOLD) signals
are calculated to derive a functional connectome (FC). While DWI provides the
anatomical scaffold of potential communication pathways, it is a static represen-
tation. In contrast, fMRI captures the brain’s dynamic functional organization
but lacks direct information about the underlying anatomical pathways.

The integration of both modalities is a promising avenue for research, offer-
ing a more holistic view by combining the complementary strengths of each ap-
proach [25, 31, 24, 45, 44, 30]. The principle of structure-function coupling, which
posits that the brain’s anatomical structure constrains and shapes its functional
dynamics, is central to this scientific pursuit. Seminal work has demonstrated
that regions with strong structural connections often exhibit highly correlated
functional activity, highlighting a direct relationship between the physical con-
nectome and its functional expression [13]. However, this coupling is not uni-
directional. Recent studies suggest that neural activity can also actively shape
structural connectivity; for instance, frequently co-active regions may become
more myelinated and thus form stronger, clearer anatomical connections in a
process known as activity-dependent myelination [26]. Consequently, investi-
gating this reciprocal relationship is fundamental to understand the neurobi-
ological mechanisms that govern cognitive processes such as learning, memory,
and emotion [30, 41, 8, 21, 12, 7, 28]. Furthermore, disruptions in this relationship
are increasingly correlated with the pathophysiology of various neurological and
psychiatric disorders, making integrative analyses critical for identifying robust
imaging biomarkers [39, 38].

A powerful application of this framework is the prediction of "brain age",
a composite biomarker reflecting the brain’s maturational and aging trajectory.
"Brain age" estimated from MRI reflects patterns of cortical atrophy, white
matter loss, and network disruption, which are linked to cognitive decline and
neurodegenerative risk [36, 37, 22, 32, 19]. Importantly, brain age is recognized as
a significant confounding variable in studies aiming to predict cognitive scores,
making its accurate estimation essential for disentangling the effects of normal
development from pathological processes [29].

In recent years, Graph Neural Networks (GNNs) have emerged as a state-of-
the-art method for analyzing brain connectomes. By design, GNNs can effectively
model the complex, non-linear relationships inherent in graph-structured data,
making them particularly well-suited for the non-Euclidean geometry of brain
networks [23]. While numerous studies have successfully applied GNNs to clinical
classification tasks using single-modality data [20, 16, 5], the application of mul-
timodal GNNs to brain age prediction remains comparatively understudied. Ex-
isting multimodal studies have primarily focused on classifying brain disorders[6,
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14, 42, 3, 11], often using small datasets and lacking direct comparisons with uni-
modal counterparts. Moreover, most of the literature in multimodal brain age
prediction still relies on traditional machine learning algorithms [17, 27]. This
has created significant gaps in our understanding: it is not yet clear whether
combining SC and FC within a GNN framework enhances predictive perfor-
mance for brain age, nor is it established which architectural or fusion strategies
are optimal for this task[23]. The methodological heterogeneity in preprocess-
ing, connectome construction, and model implementation further complicates
cross-study comparisons and impedes the establishment of reliable benchmarks.

To address these gaps, this paper presents a comprehensive benchmark of
GNN backbones and fusion architectures for brain age prediction using a large,
multimodal and publicy available dataset. We systematically investigate the
impact of combining structural and functional connectivity on predictive per-
formance. Specifically, we explore and compare two distinct fusion methodolo-
gies—early fusion, where modalities are combined at the input level, and late
fusion, where information is integrated at higher levels of the model. By keep-
ing the GNN backbones consistent across experiments, we provide a controlled
comparison of fusion techniques across a variety of GNN architectures. In this
paper, we make the following contributions:
– We present a systematic comparison of different fusion methods for com-

bining connectome data derived from DWI and fMRI. The evaluation is
conducted within a Graph Neural Network (GNN) framework using a large,
publicly available dataset.

– We provide a comprehensive hyperparameter analysis across various GNN
backbones and data modalities (structural, functional, and multimodal).
This analysis reveals novel, recurrent patterns in optimal model configu-
rations across these different settings.

2 Materials and Methods
2.1 Data
The data used in this study are from the publicly available Philadelphia Neu-
rodevelopmental Cohort (PNC) [33]. All PNC data used in this study is available
through the database of Genotypes and Phenotypes (dbGaP), a NIH-designated
repository, under the project name “Neurodevelopmental Genomics: Trajectories
of Complex Phenotypes" (accession number: phs000607.v3.p2.c1).

This multi-modal dataset consists of cross-sectional magnetic resonance imag-
ing (MRI) data of 1342 healty children and adolescents from 8 to 21 years of age.
For this study, after removal of participants with a high-level of motion artefacts
(see below), a subset of 747 participants were included, for whom both structural
and resting-state functional neuroimaging data were available. The median age
was 16.3 (IQR 13.5-18.5, min 8.2, max 23.1). Participants for the neuroimaging
portion of the PNC were recruited from the greater Philadelphia area.

Image Acquisition Neuroimaging data were acquired on a single 3T Siemens
TIM Trio scanner.
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Structural MRI: A T1-weighted Magnetization-Prepared Rapid Gradient-
Echo (MPRAGE) sequence was used to acquire high-resolution anatomical im-
ages. The parameters were as follows: TR = 1810ms; TE = 3.5ms; TI =
1100ms; FA = 9◦; 160 slices; slice thickness = 1 mm; matrix size = 192x256;
field of view (FOV) = 180x240 mm.

Diffusion-weighted imaging (DWI): DWI scans were obtained using a twice-
refocused spin-echo (TRSE) single-shot EPI sequence. The sequence consisted of
64 diffusion-weighted directions with b = 1000 s/mm2 and 7 interspersed scans
where b = 0 s/mm2.

Resting-State fMRI (rsfMRI): Resting-state functional connectivity data were
acquired using a blood-oxygen-level-dependent (BOLD) sequence. The parame-
ters were: TR = 3000ms; TE = 32ms; FA = 90◦; 46 slices; slice thickness = 3
mm; matrix size = 64x64; FOV = 192x192 mm; 124 volumes.

2.2 Image processing
2.3 Brain Network Representation

The processed neuroimaging data for each participant is converted into a brain
graph, or connectome. In this network model, the components are defined as
follows:
– Nodes: These are the fundamental units of the network and represent 400

distinct, predefined anatomical regions of the brain according to a precom-
puted template called atlas.

– Edges: These represent the relationship or connection between any two
nodes (brain regions):
• Structural Edges: Derived from diffusion-weighted imaging (DWI),

these edges represent the physical white matter tracts that form the
brain’s anatomical "wiring". A strong structural edge implies a robust
physical pathway between two regions (i.e. fiber count).

• Functional Edges: Derived from resting-state fMRI (rsfMRI), these
edges represent the statistical synchronization of activity between two
regions over time. A strong functional edge means two regions tend to
activate together, suggesting they are part of a coordinated system.

Diffusion-weighted imaging Single-shell diffusion-weighted images were pre-
processed using QSIprep [4]. Streamline tractography was performed using the
ss3t_csd_beta1 algorithm [9] from MRtrix to estimate fiber orientation distri-
butions (FODs) for white matter, and cerebrospinal fluid using single shell ac-
quisitions. The white matter FODs are used for tractography with no T1w-based
anatomical constraints. Structural connectivity matrices based on the number
of streamlines were extracted using the Schaefer400 atlas [34].

Resting-state fMRI The preprocessing used fMRIprep (v.23.1.4) [10]. The
pipeline first generated a reference volume and corresponding brain mask. Slice-
timing correction was then applied to adjust for temporal differences in slice
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acquisition, followed by head motion correction. Functional data were then coreg-
istered to each subject’s T1-weighted anatomical scan, and subsequently normal-
ized to MNI152NLin2009cAsym (adult) standard space using nonlinear registra-
tion. Participants with a mean framewise displacement (FD) greater than 0.5
mm, or a maximum FD exceeding 6 mm, were excluded due to excessive motion.
Functional time-series data were band-pass filtered (0.01–0.08 Hz).

Subsequent denoising and interpolation were performed using the Nilearn
Python package. Confound regressors were extracted by fMRIPrep and included
the six motion parameters (translations and rotations) and their temporal deriva-
tives. The functional connectivity matrices were calculated using Pearson’s cor-
relation on the same atlas as for the structural connectivity matrices. At the end
of the processing, we obtain two conformable adjacency matrices, one from the
DWI and one from the rsfMRI, of size 400× 400, denoted AS and AF .

Thresholding The matrices AS and AF generated from the neuroimaging
pipelines were thresholded to minimize structural noise while preserving the
maximum amount of information [23]. However, the selection of a specific thresh-
olding value is arbitrary and lacks a universal optimum. Therefore, we evaluated
three different proportional thresholds as part of our hyperparameter tuning:
retaining the strongest 5%, 10%, and 20% of edges.

To ensure the input graph for the Graph Neural Network remains connected,
which is a prerequisite for information propagation, a naive edge thresholding
approach is insufficient as it can result in a disconnected graph with multiple
components. To circumvent this, we first fit a Maximum Spanning Tree to the
original graph. Subsequently, the remaining strongest edges are added back until
the desired edge density is achieved, guaranteeing a single connected component.

2.4 Multimodal fusion strategies

As illustrated in Figure 1, we evaluated two families of fusion strategies, Early
Fusion and Late Fusion, against the single-modality baselines.

Single-Modality Architecture This network takes a unique graph as input,
either AS or AF . The architecture consists of a stack of GNN layers to extract
node-level features. These features are then aggregated through a mean global
pooling into a single graph-level representation, which is subsequently fed into
a Multi-Layer Perceptron (MLP) for regression.

Late Fusion Multimodal Architecture This model processes structural and
functional connectivity graphs through two independent streams, each a distinct
graph neural network with distinct features. Each stream generates a latent
graph-level representation for its respective modality. These two representations
are first passed through separate linear layers and then aggregated to create a
final, unified multi-modal representation of the subject’s brain. This final repre-
sentation is then passed to an MLP for the regression task.
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Fig. 1. Three distinct model architectures used in our study: a) Single-Modality, b)
Early Fusion, and c) Late Fusion. All architectures share a common initial step where
identity matrix connectivity is used for node feature initialization. The "GNN-Layer"
blocks represent a generic graph neural network layer, which, in our implementation,
can be instantiated as one of several types: GCN, GAT, GATv2, ARMA, or Trans-
former. Abbreviations: MLP: Multi-Layer-Perceptron; th.: thresholding; agg.: aggrega-
tion; pool.: pooling
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Early Fusion Multimodal Architecture This approach constructs a sin-
gle, unified heterogeneous graph representation for each subject, where distinct
modalities are treated as different edge types connecting a common set of nodes
representing brain regions - a multi-layer graph.

For a given node, the aggregation of features from its neighbors is condi-
tioned on the type of edge connecting them. This is achieved by employing a
set of distinct, scalable weight matrices for each edge type separately. Conse-
quently, the model learns to weigh the contributions of structural and functional
connectivity information differently during the feature aggregation process at
each layer. The final graph-level representation, which captures the processed
multimodal information, is obtained by pooling the node-level embeddings. This
unified representation is then fed into a multilayer perceptron (MLP) for the
final regression analysis.

2.5 Node and edge features
Node Feature Initialization A challenge in brain graph analysis is the ab-
sence of intrinsic initial features for nodes representing brain regions. These
features must therefore be constructed. Building upon the findings of [5], we
implemented two node initialization strategies within our framework:
– Identity Matrix: Each node is one-hot encoded, allowing the neural network

to implicitly track individual node identities and positions.
– Connectivity Matrix: Nodes are initialized with their weighted degree, ef-

fectively representing their total connectivity strength within the graph. This
provides the network with explicit structural information.

Edge Weight Considerations The inclusion of edge weights is treated as
a tunable hyperparameter during training. When used, edge weights directly
correspond to the values in the adjacency matrix, and are processed using the
standard PyTorch Geometric implementations. Conversely, configurations that
do not incorporate edge weights treat all edges as binary. In such cases, structural
information is solely derived from the applied thresholding or, if used, from node
features initialized with the connectivity matrix.

2.6 Experimental Setup

Data Partitioning To ensure a robust evaluation of our models, we use 5-
fold cross-validation. For each fold, the dataset was partitioned into training,
validation, and test sets, comprising 80%, 10%, and 10% of the data, respectively.
To prevent data leakage, the splits were stratified by subject, ensuring that data
from any given subject was contained within a single fold.

Backbones To comprehensively evaluate our proposed architectures, we bench-
marked their performance using several distinct GNN models, hereafter referred
to as backbones. Each backbone implements a unique mechanism for aggregat-
ing and transforming node features within the graph. The selected backbones
are described below:
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– GCN (Graph Convolutional Network) [18]: A foundational model that
learns node representations by aggregating feature information from immedi-
ate neighbors using a fixed, normalized weighting scheme.

– GAT (Graph Attention Network) [40]: Introduces an attention mecha-
nism to dynamically learn and assign different levels of importance to various
nodes within a neighborhood during feature aggregation.

– GATv2 [2]: An improved version of GAT that modifies the attention mech-
anism to be more expressive, allowing it to capture a wider range of depen-
dencies between nodes.

– ARMA (Auto-Regressive Moving Average) [1]: A graph filter inspired
by classical signal processing that captures information from multi-hop neigh-
borhoods, allowing it to model longer-range dependencies more efficiently.

– Transformer (Graph Transformer) [35]: Adapts the successful Trans-
former architecture to graph data, treating all nodes as fully connected and
using self-attention to dynamically learn graph structure and node relation-
ships, often enhanced with positional or structural encodings.

Table 1. Total number of learnable
parameters for each backbone under
fixed hyperparameter configuration.

Backbone Parameters

GCN 17,281
GAT 17,473
GATv2 32,417
ARMAConv 35,201
GraphTransformer 62,113

We report the total number of learn-
able parameters for each model backbone
in Table 1, using a standardized configura-
tion for all other hyperparameters: a single-
modality architecture with a 3-layer back-
bone with 32 hidden channels, followed by
a 2-layer MLP head with 32 hidden dimen-
sions.

Evaluation Metric The performance of
our regression models was quantified using
the coefficient of determination (R-squared,
R2) on held-out data. The R2 score indicates the proportion of the variance in
the dependent variable that is predictable from the independent variable(s). It
is calculated as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where yi is the true value, ŷi is the predicted value, and ȳ is the mean of the
true values. R2 closer to 1 indicates a better fit of the model to the data.

Training and Hyperparameter Optimization Our proposed framework was
developed in PyTorch and run on an NVIDIA RTX 6000 GPU. All models were
trained using the Adam optimizer for 300 epochs with early stopping after 35
epochs. A systematic hyperparameter search was conducted to identify the opti-
mal configuration for each model architecture. This search encompassed various
groups of parameters, including general training parameters, data preprocess-
ing hyperparameters, single-modality encoder hyperparameters, and Multi-Layer
Perceptron (MLP) specific parameters. Additionally, for the multimodal archi-
tectures, we explored different feature aggregation strategies. The specific hy-
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perparameters and their relative search spaces are detailed in the Appendix A.1.
Briefly, they include optimizer settings (e.g. learning rate), graph representation
settings (e.g. edge thresholding density), backbone architecture (e.g. number of
layers, residual connections), MLP architecture (e.g. activation function), as well
as different aggregation functions for late and early fusion.

For the late fusion model, we allowed the hyperparameters to be independent
between modalities. This approach is motivated by the inherent differences in
the nature of the data from each stream. For instance, the structural modality
may require a network with a different depth or a larger number of features to
effectively capture its intricate spatial information. In contrast, the functional
modality might benefit from a distinct set of hyperparameters tailored to its tem-
poral or correlational characteristics. Therefore, decoupling the hyperparameter
tuning process for each modality enables a more tailored and effective feature
learning process, ultimately enhancing the performance of the combined model.
To find the optimal hyperparameters for each model, we utilized the Bayesian
search functionality of the wandb Python library using the validation loss as the
minimizing objective, with a time budget of 10 hours for single-modality models
and 20 hours for dual-modality models.

3 Results

Cross-validation results are shown in Table 2, comparing single modality net-
works to early and late fusion architecture in terms of the R2 value on held-out
data. Table 3 shows a summary of the hyperparameters that achived the best
prediction. The complete list of all hyperparameters is in appendix A.2.
Table 2. Cross-validation results showing average and standard deviation of R2 across
folds (higher is better) and percentage change over structural baseline (N=373). TF:
GraphTransformer. In bold are highlighted the best performing modality for each
model

Model Single modality (↑) Fusion Architectures (↑)
Structural Functional Early Chg. Late Chg.

GCN 0.583± 0.06 0.388± 0.12 0.600± 0.08 +0.017 0.639± 0.05 +0.056
GAT 0.515± 0.07 0.376± 0.11 0.526± 0.04 +0.011 0.506± 0.06 −0.009
GATv2 0.507± 0.05 0.335± 0.12 0.506± 0.09 −0.001 0.571± 0.06 +0.064
ARMA 0.585± 0.02 0.380± 0.11 0.554± 0.04 −0.031 0.608± 0.06 +0.023
TF 0.581± 0.03 0.314± 0.11 0.526± 0.08 −0.055 0.523± 0.06 −0.058

Median Change −0.001 +0.023

3.1 Baseline Performance

The ‘Structural connectivity’ input modality consistently yields a better model
fit than the ‘Functional connectivity’ modality across all tested graph neural net-
work architectures. The GCN and ARMA models demonstrate the highest pre-
dictive performance on structural data, achieving mean R2 scores of 0.583±0.06
and 0.585 ± 0.02, respectively. Conversely, all models exhibit a significant drop
in efficacy when trained exclusively on functional connectivity graphs, with the
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proportion of explained variance ranging from 0.314± 0.11 for the Transformer
to 0.388± 0.12 for the GCN.

3.2 Impact of Fusion Architectures

The introduction of multi-modal fusion architectures yields varied results on
the models’ performance. Overall four out of five models show improved perfor-
mances using a multimodal architecture. Three out of the five models (GCN,
GATv2, ARMA) show an improvement over their respective structural base-
lines when using a Late Fusion model. Notably, the GATv2 model achieves the
most substantial relative gain, with its R2 value increasing by +12.62%, from
0.507 to 0.571. The GCN model also sees a benefit, with a +9.61% improve-
ment that results in the highest absolute score across the entire experiment
(R2 = 0.639± 0.05).

In contrast, the Early Fusion architecture shows a less consistent and more
modest impact. Only the GCN (+2.92%) and GAT (+2.14%) models register an
improved score with this method. For the other three models (GATv2, ARMA,
Transformer), the Early Fusion architecture results in a degradation of predictive
performance compared to the structural baseline, with the most significant drop
observed for the Transformer (−9.47%).

A summary of the fusion strategies is provided by the median percentage
improvement in R2. The Late Fusion architecture shows a positive impact, with a
median improvement of +0.023 (+3.93% relative) across all models. Conversely,
the Early Fusion architecture has a median improvement of −0.001 (−0.20%).
The highest performing model-architecture combination is the GCN with Late
Fusion, which explains the largest proportion of variance observed in the study.

3.3 Hyperparameters results

Table 3 shows a summary of the best hyperparameters for each backbone. The
full list of hyperparameters are reported in Appendix A.1 in Tables 4, 5 and
6. Analysis of GNN hyperparameters (Table 3) reveals distinct patterns across
modalities and architectures. Structural connectivity branches in Late Fusion
models use no dropout in three backbones, suggesting a stable signal, while
functional branches apply it in four backbones. Initial node feature choice is
architecture-dependent: GCN uses identity matrices, Transformers use adja-
cency, and GAT, GATv2, and ARMA switch from identity for unimodal to
adjacency for multimodal tasks, indicating the benefit of explicit connectivity
information in complex data integration.

Architectural paradigms also differ by data type. Structural-only models fa-
vor deep, narrow configurations (5-6 layers, 16-32 channels), suggesting hier-
archical feature extraction. Models incorporating functional data (unimodal or
multimodal) prefer wider, shallower architectures (2-4 layers, 128-256 channels),
indicating high-dimensional representation in early layers is more effective.

Finally, no single optimal fusion strategy exists. For Early Fusion, all aggre-
gation methods were optimal for at least one backbone, and Late Fusion showed
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Table 3. Core GNN Hyperparameters. This table provides an overview of best-
performing hyperparamters, including aggregation and fusion methods, across all back-
bones and architectures.

Backbone Architecture Layers Hidden Channels Dropout Fusion

GCN

Structural 5 32 0.2
Functional 2 128 0
Early Fusion 3 256 0.1 mul
Late Fusion S: 5, F: 3 S: 128, F: 128 S: 0, F: 0.1 sum

GAT

Structural 6 16 0.2
Functional 2 256 0.1
Early Fusion 2 256 0.2 min
Late Fusion S: 5, F: 3 S: 16, F: 32 S: 0, F: 0.1 w_sum

GATv2

Structural 6 32 0
Functional 2 64 0.2
Early Fusion 3 256 0.2 min
Late Fusion S: 5, F: 4 S: 128, F: 16 S: 0, F: 0.1 sum

ARMA

Structural 2 32 0
Functional 2 64 0.2
Early Fusion 3 256 0.3 mean
Late Fusion S: 4, F: 5 S: 128, F: 32 S: 0.1, F: 0.2 concat

Transformer

Structural 3 64 0
Functional 4 256 0.2
Early Fusion 2 32 0 max
Late Fusion S: 2, F: 5 S: 64, F: 32 S: 0.3, F: 0.2 sum

similar variability. This underscores that the ideal fusion mechanism is contin-
gent on the backbone’s message-passing scheme, with examples like GAT/GATv2
preferring ’min’ and GCN favoring ’mul’.

4 Discussion

Our results underscore the significant potential of multimodal data fusion for
improving brain age prediction using Graph Neural Networks.

Our primary finding is that the integration of structural and functional con-
nectivity data, when managed by an appropriate fusion architecture, can yield
substantial performance gains over models trained on a single modality. This is
shown by the Late Fusion strategy, which produced the study’s top-performing
model (GCN with R2 = 0.639± 0.05), and achieved the most significant relative
performance increase (a +12.62% increase for the GATv2 model).

Our findings also reveal that the choice of fusion architecture is critical. The
inconsistent and, in several cases, detrimental performance of the Early Fusion
architectures highlights that simply combining modalities is not a guaranteed
path to improvement.

Comparison with Prior Work Our findings align with and extend existing
research in the field of brain age prediction. A recent systematic review ob-
served that multimodal architectures consistently yielded better performance in
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brain age prediction using traditional machine learning algorithms [17], although
few studies in the review used connectivity data. Our work confirms that this
principle holds true in the context of deep learning, specifically with Graph
Neural Networks. Furthermore, our results mirror the established hierarchy of
neuroimaging modalities observed in traditional machine learning approaches.
Consistent with prior studies, we found that structural data (in our case DWI)
serves as a more robust single-modality predictor than functional data, and that
the fusion of both enhances predictive accuracy beyond what is achievable with
either modality alone. To our knowledge, this is one of the first studies to system-
atically compare different GNN backbones and fusion strategies for multimodal
brain age prediction, thus providing a valuable benchmark for future deep learn-
ing research in this area.

Interpretation of Architectural Performance A key result of our study is
the clear superiority of the Late Fusion architecture over the Early Fusion one.
There are several potential explanations for this difference.

First, the Late Fusion approach allows for the independent optimization of
modality-specific architectures. Each branch can learn to extract the most salient
features from its respective data type without interference, before a final, simpler
integration step. Training two separate, well-understood architectures and then
concatenating their high-level feature representations could be beneficial due to
a more stable and less complex optimization landscape.

Conversely, the Early Fusion architecture, which processes different edge
types within a single layer, may introduce a more complex and potentially unsta-
ble training dynamic. The direct interaction between kernels operating on struc-
turally and functionally derived graphs could hinder effective feature learning,
especially if the feature spaces are highly disparate. This may explain why three
of the five models experienced a performance degradation with this method.

Limitations of the Study The findings of this study should be considered
in light of several limitations. First, the models were trained and validated on
a single dataset (N = 747). This may limit the generalizability of our findings
to other populations or datasets with different demographic characteristics or
acquisition parameters. Second, the present study was focused only on brain age
prediction. A primary future goal is to extend the utility of these models to
predict other relevant cognitive and clinical scores, which is the ultimate aim of
our larger research project as detailed in our study protocol [15].

Finally, the normalization of neuroimaging data to the adult-adapted MNI1
52NLin2009cAsym standard space is suboptimal given the relatively young age
of all subjects.

Significance and Future Directions Despite these limitations, our work sug-
gests that GNN-based fusion is a promising strategy for predicting brain age,
and establishes a methodological benchmark to compare fusion architectures.
Furthermore, the insights derived from the hyperparameter search offer a valu-
able guide for future research employing GNNs on brain graphs. The superior
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performance of the Late Fusion approach, in particular, offers a practical baseline
for studies aiming to integrate multimodal connectomics data.

To push the field forward, future investigations should prioritize several key
areas. First, it is necessary to validate these models on larger, multi-site datasets
to establish their robustness and generalizability. Secondly, the integration of
multiple data streams introduces a significant challenge of interpretability. Fu-
ture efforts require advanced explainable AI to address opacity in multimodal
models. We must isolate unimodal predictive features and deconstruct multi-
modal fusion interactions. This dual explainability is vital for neurobiologically
plausible conclusions. Third, systematic evaluation of sophisticated fusion mech-
anisms is crucial. Though cross-modal attention architectures exist, their value is
often shown against traditional machine learning, not strong deep learning base-
lines. Future work must rigorously benchmark complex architectures against
well-defined baselines to clarify genuine performance benefits.

5 Conclusion
We conducted a systematic evaluation of early and late fusion Graph Neural
Network architectures for brain age prediction using multimodal structural and
functional brain connectivity. Our primary finding is that the choice of fusion ar-
chitecture is critical for unlocking performance gains. We demonstrate that a late
fusion approach, which processes each modality in a separate, optimized stream
before integration, consistently outperforms both single-modality baselines and
an early fusion strategy. This approach yielded the study’s top-performing model,
a GCN with late fusion that achieved an R2 of 0.639. Furthermore, our hyper-
parameter analysis revealed distinct optimal configurations for structural and
functional data, suggesting that modality-specific model design is essential for
effective feature extraction.
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A Appendix

A.1 Hyperparameter search space

The search space for the general training parameters was as follows:

– Learning Rate: {0.001, 0.005, 0.01}
– Weight Decay: {0.0, 0.001}
– Batch Size: {16, 32, 64}
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Data hyperparameters:

– Node feature initialization: {Identity matrix, Connectivity matrix}
– Edge threshold percentage: {5, 10, 20}

Given the architectural diversity of our backbone models, we explored a com-
prehensive set of hyperparameters for the single-modality encoders:

– Hidden Channels: {16, 32, 64, 128, 256}
– Number of Layers: {2, 3, 4, 5, 6}
– Dropout: {0.0, 0.1, 0.2, 0.3}
– Normalization: {LayerNorm, BatchNorm1d}
– Jumping Knowledge Strategy [43]: {’max’, ’last’, ’cat’}
– Residual Connections: {True, False}

For the final Multi-Layer Perceptron (MLP) used for regression, the hyper-
parameter search space was defined as:

– Number of Hidden Layers: {1, 2, 3}
– Hidden Channels: {32, 64}
– Dropout: {0.0, 0.1, 0.2, 0.3}
– MLP Activation Function: {’ReLU’, ’LeakyReLU’, ’ELU’}

The early and late fusion architectures introduced an additional hyperpa-
rameter governing the feature aggregation strategy.

For the late fusion models, which combine features after they have been
processed by modality-specific encoders, the following aggregation functions were
evaluated:
– Concatenation (’concat’): Appends the feature vectors from each modal-

ity end-to-end, creating a single, larger vector that preserves all information.
– Summation (’sum’): Performs an element-wise sum of the feature vectors,

requiring them to be of the same dimension. This approach assumes features
occupy a similar semantic space.

– Attention (’attention’): Employs a learned attention mechanism to com-
pute a weighted combination of the feature vectors, allowing the model to
dynamically prioritize the most informative modalities for a given input.

– Weighted Sum (’weighted_sum’): Calculates a linear combination of
the feature vectors, where the scalar weights for each modality’s feature
vector are learnable parameters.

For the early fusion models, which combine raw or minimally processed
features at the input level, the search space for the element-wise aggregation
function included:
– Summation (’sum’): An element-wise addition of the input feature ten-

sors.
– Mean (’mean’): The element-wise average of the input feature tensors,

which normalizes the combined representation.
– Maximum (’max’) / Minimum (’min’): An element-wise selection of

the maximum or minimum value across the input tensors, respectively.
– Multiplication (’mul’): An element-wise product of the input feature ten-

sors, which can be used to scale features by one another.
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A.2 Hyperparameter search results

Table 4. Comparison of hyperparameters for unimodal structural models versus the
structural part of late fusion models across different GNN backbones. Abbreviations:
Uni (Unimodal), LF (s) (Late Fusion, structural part), L. ReLU (Leaky ReLU), BN1d
(BatchNorm1d), ID (Identity), Adj (Adjacency), T (True), F (False).

GCN GAT GATv2 ARMA Transformer
Hyperparameter Uni LF (s) Uni LF (s) Uni LF (s) Uni LF (s) Uni LF (s)
batch_size 32 64 64 32 64 64 64 64 64 32
dropout 0.2 0 0.2 0 0 0 0 0.1 0 0.3
hidden_channels 32 128 16 16 32 128 32 128 64 64
jk last cat cat cat last last max max last max
learning_rate 0.001 0.001 0.005 0.01 0.001 0.001 0.001 0.005 0.001 0.005
mlp_activation relu elu L. ReLU L. ReLU relu L. ReLU elu elu L. ReLU relu
mlp_dropout 0.2 0.3 0.3 0.2 0.3 0 0.3 0.3 0.3 0.1
mlp_hidden_channels 32 32 32 64 64 32 32 64 64 64
mlp_hidden_layers 2 2 3 3 3 3 1 3 3 1
node_features ID ID ID Adj Adj Adj ID Adj Adj Adj
norm_type BN1d BN1d BN1d BN1d BN1d BN1d BN1d BN1d BN1d BN1d
num_layers 5 5 6 5 6 5 2 4 3 2
threshold 0.2 0.1 0.1 0.05 0.2 0.1 0.05 0.2 0.1 0.1
use_residual F T F T T T T F F F
use_weights T T T T T T T F F T
weight_decay 0.001 0.001 0.001 0 0 0 0 0 0 0

Observing Table 3, several distinctions arise between modalities and archi-
tectures. The first observation regards the regularization strategies and feature
representation, particularly within multimodal frameworks. In the Late Fusion
models, the structural branch consistently operates without dropout (dropout_s
= 0), whereas the functional branch regularly applies it. This may indicate that
the structural connectome provides a more stable, less noisy signal that requires
minimal regularization. A notable pattern also emerges in the choice of initial
node features. The GCN backbone exclusively prefers identity matrices, while
the Transformer exclusively uses adjacency matrices. Interestingly, the GAT,
GATv2, and ARMA backbones show a clear dependency on modality: they use
identity features for unimodal tasks but switch to adjacency features for the
more complex multimodal architectures. This suggests that providing the model
with explicit connectivity information as node features is particularly advanta-
geous when integrating diverse data types.

An analysis of the optimal hyperparameters also reveals distinct architectural
paradigms for processing structural versus functional data. Models processing
only structural connectivity (i.e., the Structural architecture) consistently ben-
efit from deep, narrow configurations, typically employing a higher number of
layers (5–6) with fewer hidden channels (16–32). This suggests that capturing
the hierarchical nature of structural information is best achieved through deeper
feature extraction. Conversely, models incorporating functional data, both in uni-
modal (Functional) and multimodal (Early Fusion) settings, exhibit a preference
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Table 5. Comparison of hyperparameters for unimodal functional models versus the
functional part of late fusion models across different GNN backbones. Abbreviations:
Uni (Unimodal), LF (f) (Late Fusion, functional part), L. ReLU (Leaky ReLU), BN1d
(BatchNorm1d), LN (LayerNorm), ID (Identity), Adj (Adjacency), T (True), F (False).

GCN GAT GATv2 ARMA Transformer
Hyperparameter Uni LF (f) Uni LF (f) Uni LF (f) Uni LF (f) Uni LF (f)
batch_size 64 64 32 32 64 64 64 64 64 32
dropout 0 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2
hidden_channels 128 128 256 32 64 16 64 32 256 32
jk cat last last cat max max cat last cat cat
learning_rate 0.001 0.001 0.001 0.01 0.01 0.001 0.001 0.005 0.001 0.005
mlp_activation elu elu elu L. ReLU elu L. ReLU L. ReLU elu elu relu
mlp_dropout 0.1 0.3 0.3 0.2 0.2 0 0 0.3 0.1 0.1
mlp_hidden_channels 32 32 64 64 32 32 64 64 32 64
mlp_hidden_layers 2 2 3 3 3 3 2 3 1 1
node_features ID ID ID ID ID Adj ID Adj Adj Adj
norm_type BN1d BN1d BN1d LN BN1d BN1d LN BN1d BN1d LN
num_layers 2 3 2 3 2 4 2 5 4 5
threshold 0.05 0.1 0.05 0.1 0.05 0.2 0.05 0.2 0.05 0.05
use_residual F F T F F F T F F F
use_weights T F T T T F T T F F
weight_decay 0.001 0.001 0.001 0 0 0 0.001 0 0 0

Table 6. Comparison of hyperparameters for Early Fusion models across different
GNN backbones. Abbreviations: L. ReLU (Leaky ReLU), BN1d (BatchNorm1d), ID
(Identity), Adj (Adjacency), T (True), F (False).

Hyperparameter GCN GAT GATv2 ARMA Transformer
batch_size 64 64 32 64 64
dropout 0.1 0.2 0.2 0.3 0
hetero_aggr mul min min mean max
hidden_channels 256 256 256 256 32
jk cat cat last max max
learning_rate 0.001 0.001 0.001 0.005 0.001
mlp_activation relu relu elu L. ReLU relu
mlp_dropout 0 0.2 0.3 0.3 0.3
mlp_hidden_channels 64 32 64 64 64
mlp_hidden_layers 1 1 2 1 2
node_features ID Adj Adj Adj Adj
norm_type BN1d BN1d BN1d BN1d BN1d
num_layers 3 2 3 3 2
threshold_functional 0.05 0.05 0.2 0.1 0.05
threshold_structural 0.1 0.05 0.2 0.1 0.1
use_residual T F F F T
use_weights T T T F F
weight_decay 0 0 0.001 0 0
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for wider, shallower architectures. These models achieve optimal performance
with a larger number of hidden_channels (frequently 128 or 256) across fewer
layers (2–4), implying that functional connectivity patterns are more effectively
captured by high-dimensional representations in the initial layers.

Finally, our results underscore that there is no universally optimal strategy
for fusing structural and functional information. For the Early Fusion architec-
ture, every evaluated aggregation method (mul, min, mean, and max) was optimal
for at least one backbone. Similarly, for Late Fusion, sum, weighted_sum, and
concat were all chosen as the best-performing methods for different models. This
highlights that the ideal fusion mechanism is highly contingent on the backbone’s
specific message-passing scheme. For instance, attention-based models such as
GAT and GATv2 performed best with the min aggregator, while the simpler
GCN model favored mul, illustrating the strong interplay between model archi-
tecture and data fusion techniques.


