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Abstract. Relational Deep Learning (RDL) is an emerging paradigm
that leverages Graph Neural Network principles to learn directly from
relational databases by representing them as heterogeneous graphs. How-
ever, existing RDL models typically rely on task-specific supervised learn-
ing, requiring training separate models for each predictive task, which
may hamper scalability and reuse.
In this work, we propose a novel task-agnostic contrastive pretraining ap-
proach for RDL that enables database-wide representation learning. For
that aim, we introduce three levels of contrastive objectives—row-level,
link-level, and context-level—designed to capture the structural and se-
mantic heterogeneity inherent to relational data. We implement the re-
spective pretraining approach through a modular RDL architecture and
an efficient sampling strategy tailored to the heterogeneous database set-
ting. Our preliminary results on standard RDL benchmarks demonstrate
that fine-tuning the pretrained models measurably outperforms training
from scratch, validating the promise of the proposed methodology in
learning transferable representations for relational data.

Keywords: Relational Deep Learning · Relational Databases · Graph
Neural Networks · Self-Supervised Learning · Contrastive Learning

1 Introduction

From their establishment [7], Relational Databases (RDBs) have played a piv-
otal role in ushering our society into the information age. By storing data as
interconnected tables safeguarded by integrity constraints, RDBs provide a ro-
bust and highly expressive framework for managing structured information. As
a result, they remain a cornerstone of critical systems across a broad spectrum
of domains, ranging from healthcare [34] to government [25].

Despite their widespread adoption, RDBs are inherently misaligned with con-
ventional Machine Learning (ML) pipelines, which assume data in the standard
form of fixed-size, independent and identically distributed (i.i.d.) feature vec-
tors—commonly referred to as the “tabular” learning format. In contrast, RDBs
contain multiple interrelated tables of varying sizes, violating this assumption.
To bridge the gap, traditional approaches have typically relied on proposition-
alization” [23], which is essentially a feature extraction process that aggregates
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relational substructures into flattened attributes (features) of the tabular for-
mat. However, this transformation inevitably results in a loss of structural and
semantic information that is often crucial for relational learning.

Recent advances in Graph Representation Learning [16] have enabled an al-
ternative approach. By representing an RDB as a heterogeneous (and potentially
temporal) graph, where each row becomes a node and inter-table relationships
are captured by edges derived from integrity constraints, it becomes possible
to apply the “message-passing” principles of Graph Neural Network (GNN)[35]
to relational data. This line of work has led to the recent emergence of the
Relational Deep Learning (RDL) [11] field, which adapts various GNN-based
message-passing schemes to the relational setting, achieving some promising ini-
tial results across a variety of supervised tasks [10,37,36,27].

However, most existing RDL methods are designed around specific down-
stream tasks and require training separate models for each, limiting their scal-
ability and reusability in practical, multi-purpose database applications. To ad-
dress this gap, we propose a novel contrastive pretraining methodology for RDL
that enables general-purpose, task-agnostic representation learning over rela-
tional databases. At the core of the approach, we introduce a three-level con-
trastive objective—operating at the row, link, and context levels of the database
graph—that captures both attribute semantics and structural dependencies. The
resulting pretrained models can then be effectively fine-tuned for diverse down-
stream tasks, reducing the need for repeated task-specific training. We imple-
ment this approach within the ReDeLEx framework [28] and demonstrate its
effectiveness on standard relational benchmarks. Our initial experimental results
demonstrate that fine-tuning the pretrained models consistently and measurably
outperforms training from scratch, validating the effectiveness of our approach
in learning transferable representations for relational data, opening doors for
exploring a new frontier of foundational database model training. The imple-
mentation of the approach is readily available on GitHub.1

2 Background

This paper builds on learning from RDBs (Sec. 2.1) with GNN-based models
(Sec. 2.2), forming the backbone of the RDL paradigm (Sec. 2.3).

2.1 Relational Databases

Principles of RDBs are formally based on the relational model [8], which is
grounded in relational logic [12]. This abstraction enables the definition of any
database, regardless of specific software implementation, as a collection of n-
ary relations, which are defined over the domains of their respective attributes,
managed by the Relational Database Management System (RDBMS) to ensure
data consistency with the integrity constraints of the database schema. The key
concepts to be used in this paper are as follows.
1 https://github.com/jakubpeleska/ReDeLEx/tree/develop/experiments/
pretraining

https://github.com/jakubpeleska/ReDeLEx/tree/develop/experiments/pretraining
https://github.com/jakubpeleska/ReDeLEx/tree/develop/experiments/pretraining
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Relational Database A Relational Database (RDB) R is defined as a finite set
of relations R1, R2, . . . , Rn. An instance of an RDB R is implemented through a
RDBMS, enabling to perform Structured Query Language (SQL; [4]) operations,
rooted in relational algebra.

Relation (Table) Formally, an n-ary relation R/n is a subset of the Cartesian
product defined over the domains Di of its n attributes Ai as R/n ⊆ D1 ×D2 ×
· · ·×Dn, where Di = dom(Ai). Each relation R consists of a heading (signature)
R/n, formed by the set of its attributes, and a body, formed by the values of the
respective attributes, commonly represented as a table TR of the relation R.

Attribute (Column) Attributes AR = {A1, . . . , An} define the terms of a
relation R/n, corresponding to the columns of the respective table TR. Each
attribute is a pair of the attribute’s name and a type, constraining the domain
of each attribute as dom(Ai) ⊆ type(Di). An attribute value ai is then a specific
valid value from the respective domain of the attribute Ai.

Tuple (Row) An n−tuple in a relation R/n is a tuple of attribute values
ti = (a1, a2, . . . , an), where aj represents the value of the attribute Aj in R.
The relation can thus be defined extensionally by the unordered set of its tuples:
R = {t1, t2, . . . , tm}, corresponding to the rows of the table TR.

Integrity constraints In addition to the domain constraints dom(Ai), the most
important integrity constraints are the primary and foreign keys. A primary key
PK of a relation R is a minimal subset of its attributes R[PK] ⊆ AR that
uniquely identifies each tuple: ∀t1, t2 ∈ R : (t1[PK] = t2[PK]) ⇒ (t1 = t2).
A foreign key FKR2

in relation R1 then refers to the primary key PK of another
relation R2 as ∀t ∈ R1 : t[FK] ∈ {t′[PK] | t′ ∈ R2} . This constitutes the inter-
relations in the database, with the RDBMS handling the referential integrity of
TR1 [FK] ⊆ TR2 [PK].

2.2 Graph Neural Networks

Graph Neural Networks constitute a comprehensive class of neural models de-
signed to process graph-structured data through the concept of (differentiable)
message-passing [35]. Given an input graph G = (V, E), with a set of nodes V
and edges E , let h(l)v ∈ Rd(l) be the vector representation (embedding) of node
v at layer l. The general concept of GNNs can then be defined through the
following sequence of three functions:

(i) Message function M (l) : Rd(l) × Rd(l) → Rd(l)m computes messages for each
edge (u, v) ∈ E as m(l)

u→v =M (l)(h
(l)
u , h

(l)
v ) .

(ii) Aggregation function A(l) : {Rd(l)m } → Rd(l)m aggregates the messages for each
v ∈ V as M (l)

v = A(l)
(
{m(l)

u→v | (u, v) ∈ E}
)
.
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(iii) Update function U (l) : Rd(l) ×Rd(l)m → Rd(l+1)

updates representation of each
v ∈ V as h(l+1)

v = U (l)(h
(l)
v ,M

(l)
v ) .

The specific choice of message, aggregation, and update functions varies
across specific GNN models, which are typically structured with a predefined
number L of such layers, enabling the message-passing to propagate information
across L-neighborhoods within the graph(s).

2.3 Relational Deep Learning

In this paper, we adopt the concept of RDL as extending mainstream deep learn-
ing models, particularly the GNNs (Sec. 2.2), for application to RDBs (Sec. 2.1).
For completeness, in the relational learning community [9], a number of similar
approaches combining relational (logic-based) and deep learning methods arose
under a similar name of “deep relational learning” [31]. Nevertheless, for compat-
ibility with the recently introduced frameworks [11], we hereby continue with the
contemporary RDL view, where RDBs are first transformed into a graph-based
representation suitable for the GNN-based learning.

Database Representation The fundamental characteristic of RDL [11] is to
represent an RDB as a heterogeneous graph.2 The graph representation can be
defined as G = (V, E , T v, T e), where V is the set of nodes, E is the set of edges,
T v is a set of node types with a mapping ϕ : V → T v, and T e is a set of edge
types with a mapping ψ : E → T e. The node types and edge types collectively
form the graph schema (T v, T e).

Given an RDB schema R, the node types T ∈ T v correspond to the relations
(tables) T within the database T v 1:1→ R, while the edge types T e represent the
inter-relations between the tables, as defined by the primary-foreign key pairs:
T e = {(Ri, Rj) | Ri[FKRj

] ⊆ Rj [PK] ∨ Rj [FKRi
] ⊆ Ri[PK]}. For a specific

instance of an RDB R, the set of nodes V is then defined as the union of all
tuples (rows) ti from each relation V = {vi,j | Ri ∈ R, tj ∈ Ri}, and the set of
edges E is defined as E = {(vi,k, vj,l)| tk ∈ Ri, tl ∈ Rj , (Ri, Rj) ∈ T e}.

The graph representation is further enriched by node embedding matrices,
attribute schema, and optionally a time mapping. Node embedding matrix h(l)v ∈
Rd×dϕ(v) contains the embedding representation of a node v ∈ V in a given
layer l. With an attribute schema AT that provides information about the types
of attributes A1, . . . , An associated with the nodes v of a specific node type
T ∈ T v, the initial embedding tensors h(0)v ∈ Rd(0)×n are computed from the
raw database attribute tuples ti = (a1, a2, . . . , an) through multi-modal attribute
encoders [11]. Finally, the time mapping is a function τ that assigns a timestamp
tv to each node τ : v 7→ tv, effectively creating a dynamically growing graph in
time, enabling the use of temporal graph sampling [30].

2 sometimes referred to as the “relational entity graph”



Task-Agnostic Contrastive Pretraining for Relational Deep Learning 5

Predictive Tasks In RDL, predictive tasks are implemented through the cre-
ation of dedicated training tables Tt that extend the existing relational schema
of R. As introduced in [11], a training table Tt contains two essential compo-
nents: foreign keys Tt[FK] that identify the entities of interest and target labels
y ∈ ATt

\ Tt[FK]. Additionally, timestamps tv ∈ ATt
that define temporal

boundaries for the prediction of y can also be included.
The training table methodology supports a diverse range of predictive tasks,

including node-level predictions (e.g., customer churn, product sales), link pre-
dictions between entities (e.g., user-product interactions), and, crucially, both
temporal and static predictions. In the case of temporal predictions, a times-
tamp attribute tv in the training table Tt specifies when the prediction is to
be made, restricting the model to only consider information available up to the
point tv in time.

Neural Architecture Space Building upon the heterogeneous graph repre-
sentation G, RDL models generally consist of the following four major stages.

1. Table-level attribute encoder creates the initial node embedding ma-
trices h(0)v ∈ Rd(0)×n, i.e. sequences of n embedding vectors Rd

(0)

ϕ(v) for each
attribute A1, . . . , An of ϕ(v) based on its respective semantic data type.

2. Table-level tabular model allows to employ existing tabular learning
models [5,19] to yield more sophisticated node embeddings h(l)v . Notably,
in this stage, an RDL model may reduce the dimensionality of the node at-
tribute matrix embedding h(l)v ∈ Rd(l)×n to a vector embedding h(l)v ∈ Rd

(l)

ϕ(v) .
3. Graph neural model then depends on the chosen embedding dimensional-

ity of h(l)v . If there is a single embedding vector h(l)v ∈ Rd
(l)

ϕ(v) per each node,
the model can employ standard GNN (Sec. 2.2) heterogeneous message-
passing [32,3], otherwise a custom message-passing scheme [27] is required.

4. Task-specific model head finally provides transformation of the resulting
node embeddings into prediction, usually involving simple MLP layers.

3 Database-Specific Task-Agnostic Pretraining

Prior work in the emerging field of RDL has primarily focused on task-specific
models trained using supervised learning [29,27,6]. However, a single relational
database often supports a wide range of predictive tasks, spanning node-level
classification and regression, link prediction, and temporal forecasting. Adhering
to the task-specific paradigm in such settings is both computationally inefficient
and operationally burdensome, as each task requires a separate model trained
from scratch with its own parameters.

To overcome this limitation, we propose a database-specific, task-agnostic
pretraining approach based on self-supervised contrastive learning [2]. Our method
learns transferable representations by capturing structural and semantic signals
across the database graph, without reliance on downstream labels. Specifically,
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we introduce a three-level contrastive objective that operates on different gran-
ularities of the relational data: individual rows, inter-row links, and contextual
neighborhoods. This enables the model to learn rich, reusable embeddings that
generalize well across multiple tasks defined on the same database.

3.1 Three-Level Contrastive Pretraining

Contrastive pretraining has become a standard technique in both tabular learn-
ing [33,38] and (heterogeneous) graph learning [21,17,24]. Since RDL inherently
combines elements from both domains, it is natural to extend contrastive ap-
proaches to this setting as well. To that end, we introduce a three-level contrastive
pretraining framework, designed to capture the heterogeneous structure of rela-
tional databases, where each level targets a different structural aspect:

1. row-level, capturing standard intra-tabular attribute (feature) patterns,
2. link-level, modeling direct inter-tabular referential relationships,
3. and context-level, representing broader relational context through wider neigh-

borhoods in the derived database graph.

This multi-level formulation then enables the model to learn general-purpose
representations that are both semantically meaningful and structurally aware,
supporting a wide range of downstream tasks.

Row-Level Pretraining To learn robust embeddings of individual rows that
reflect the heterogeneity across different database tables, we introduce a con-
trastive pretraining objective based on data corruption. Specifically, for each
(sampled) raw database tuple tj = (a1, a2, . . . , an) from a relation Ri, we gen-
erate a corrupted version t̂j by randomly selecting a subset of attribute values
with uniform probability p. The selected values are then replaced with values
drawn from the empirical marginal distribution of the respective attributes, de-
fined as a uniform distribution over the values observed in the training data.
This approach is inspired by Scarf [1], but extended to the relational setting.

Importantly, primary and foreign key attributes are excluded from corruption
to preserve the integrity constraints of the original database schema. We then
follow the standard RDL pipeline (Sec. 2.3) by passing both the original and
corrupted tuples, tj and t̂j , through the RDL model to obtain their respective
node embeddings: hv and ĥv, where v ∼ tj ∈ Ri denotes the corresponding node.

Given a node v of type ϕ(v), we compute the similarity between the original
embedding hv and its corrupted counterpart ĥv, and contrast it against the
similarity to corrupted embeddings ĥu of other nodes u with the same type.
This leads to the following InfoNCE-style [14] contrastive loss:

Lrow
v = − log

exp (ĥ⊤vWϕ(v)hv)∑
u∈{v}∪V−

v

exp (ĥ⊤uWϕ(v)hv)
, (1)
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where Wϕ(v) ∈ Rd×d is a learnable similarity matrix specific to each node
type, and V−

v ⊆ {w | ϕ(w) = ϕ(v), w ̸= v} is a set of negative samples with
cardinality |V−

v | ≤ N−
max.

Link-Level Pretraining To capture the specific semantics of relationships be-
tween rows connected via primary and foreign key constraints, we introduce a
contrastive learning objective at the level of individual edges. Each such rela-
tionship corresponds to a particular edge type in the graph representation of the
RDB (Sec. 2.3).

Given a directed edge eu,v from source node u to target node v with edge
type ψ(e), we aim to distinguish the actual linked pair (u, v) from randomly
sampled negative pairs. Specifically, we compare the similarity between the true
source and target embeddings (hu, hv) to the similarity between hv and other
nodes hw of the same type as u that are not connected to v via an edge of type
ψ(e). This leads to the following contrastive loss:

Llink
eu,v

= − log
exp (h⊤uWψ(e)hv)∑

w∈{u}∪V−
eu,v

exp (h⊤wWψ(e)hv)
, (2)

where Wψ(e) ∈ Rd×d is a learnable similarity matrix specific to each edge
type ψ(e), and V−

eu,v
⊆ {w | ϕ(w) = ϕ(u), w ̸= u, (w, v) /∈ Eψ(e)} is a set of

negative samples of cardinality |V−
eu,v

| ≤ N−
max.

Context-Level Pretraining While the link-level loss captures local relational
dependencies between pairs of nodes, it remains limited to a single type of con-
nection. To model more complex, higher-order structural interactions, we in-
troduce a context-level contrastive objective, informed by previous successful
works [18,21].

For each node v of type ϕ(v), we first compute its context embedding cv as
the average of transformed embeddings of its neighboring source nodes:

cv =
1

|Nv|
∑
u∈Nv

h⊤uWϕ(u), (3)

where Nv is the set of all source neighbors of node v, and Wϕ(u) ∈ Rd×d is
a learnable transformation matrix specific to the node type ϕ(u). Notably, the
transformation matrices used here are distinct from those used in the row-level
loss (Eq. 1), allowing the model to specialize its representations for context
aggregation.

Next, we compute the similarity between the input node embedding hv and
its aggregated context embedding cv, and contrast it against similarities with
context embeddings of other nodes of the same type. This yields the following
context-level contrastive loss:

Lcontext
v = − log

exp (c⊤v hv)∑
u∈{v}∪V−

v

exp (c⊤u hv)
, (4)
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where V−
v ⊆ {w | ϕ(w) = ϕ(v), w ̸= v} is a set of negative samples with

cardinality |V−
v | ≤ N−

max.

3.2 Pretraining Pipeline

Sampling The sheer scale of many relational databases, which often contain
millions of interconnected rows [26,29], makes training on their full graph repre-
sentations computationally infeasible. This necessitates sampling smaller, tract-
able subgraphs for training. While neighborhood sampling [15] based on breadth-
first search is a common technique for tasks centered on a single node type
predictions (e.g., customer churn), it is ill-suited for our pretraining objectives.
On heterogeneous graphs, such as those generated from RDBs, neighborhood
sampling creates subgraphs with a heavily skewed distribution of node and edge
types. This imbalance is problematic for our global, task-agnostic objectives,
which rely on a balanced view of the graph’s structure (Sec. 3.1). To address
this, we employ a variant of HGSampling [20], specifically designed to create
subgraphs with an equal representation of node and edge types.

We utilize a single mini-batch for both positive and negative samples; conse-
quently, there is minimal computational overhead associated with the generation
of negative samples. More precisely, for the row-level loss, we augment each row
(Sec. 3.1) in the mini-batch and subsequently take the negative samples for each
original row as the augmented rows from the same table, excluding the row cor-
responding to the original entry. Negative samples for the context-level loss are
generated in a similar manner, with the exception of replacing the augmentation
process with the computation of context embeddings. Lastly, the link-level loss
negative samples for a given edge type are drawn from the complement of the
edges present in the mini-batch.

Combined Loss The proposed contrastive losses are designed to encapsulate
the heterogeneous nature of relational databases; however, this very heterogene-
ity makes it difficult to combine them into a single loss function for training the
RDL model. The challenge primarily arises from the varying number of entities
(rows) involved in the computation of each loss component. While HGSampling
can partially address these discrepancies, a fundamental difference in scale re-
mains between the loss components: the link-level loss is driven by edges (links),
whereas the row-level and context-level losses are driven by nodes (rows).

To mitigate the variance between these components, we apply a dynamic
normalization factor, µ, based on the number of negative samples utilized for a
given input. This factor is defined as:

µ(N−) = − log
1

N− + 1
, (5)

where N− is the number of negative samples used in the loss computation.
For a graph representation G = (V, E , T v, T e) of a relational database and

a sampled subgraph G′ = (V ′, E ′, T v, T e), we define the combined loss for the
subgraph as:
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Dataset Tab FK Cols Rows Links Loop Dom. Cat Num Text Time

rel-f1 9 13 45 97.6k 227.7k ✓ Sport 16 13 9 7
rel-stack 7 12 33 5.4M 7.5M ✓ Edu. 10 1 13 7

Table 1: Characteristic features of the databases used for experiments.

L =
1

|V ′|
∑
v∈V′

Lrow
v

µv
+

1

|E ′|
∑

eu,v∈E′

Llink
eu,v

µeu,v

+
1

|V ′|
∑
v∈V′

Lcontext
v

µv
, (6)

where µv = µ(|V−
v |) and µeu,v = µ(|V−

eu,v
|).

4 Experiments

In this section we present our initial experimental assessment of the proposed
pretraining methodology and discuss its strengths and weaknesses.

4.1 Experimental Setup

We evaluate our method across a range of hyperparameters selected according
to standard practices in graph representation learning and previous research in
relational deep learning. These hyperparameters influence both the model archi-
tecture and the learning process itself. As the overall approach is significantly
resource-intensive, we focus our evaluation on two databases from the established
RelBench benchmark [29], whose characteristics are detailed in Table 1.3

Backbone RDL Models The backbone models used for the experiments fol-
low the RDL blueprint and the outlined neural architecture space, as described
in Sec. 2.3. Nevertheless, the backbone models incorporate only the first three
stages, thereby omitting the task-specific model head. To ensure comparability
across the experiments, we present two models featuring distinct table-level ar-
chitectures while utilizing the same attribute encoders for numerical, categorical,
multi-categorical, textual, and temporal values, as well as the same graph neural
model.

GraphSAGE with Linear Transformation This model applies a linear trans-
formation on top of a concatenation of the attribute a1, . . . , an embeddings
h
(0)
v ∈ Rn·d(0) to yield a single embedding vector h(1)v = Wh

(0)
v for each node v.

The projected node embeddings h(1) ∈ Rdϕ(v) then form input into the Graph-
SAGE [15] model, forming the GNN level.

3 A comprehensive description of the features is available in the Appendix A.3.
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GraphSAGE with Tabular ResNet This model is similar to the previous, but it
employs a more sophisticated tabular ResNet model [13] for the tabular-level
stage to reduce the dimensionality of the node embeddings before passing them
to the GraphSAGE layer.

Pretraining In our pretraining experiments, we trained the backbone models
by optimizing the proposed three-level contrastive loss (Eq. 6) using the Adam
optimizer [22] with a learning rate of 0.001. To prevent data leakage from the
validation and test sets, we pruned the database to contain only data available
up to the predefined validation timestamp from RelBench.

We sampled the database’s graph representation using HGSampling, seeded
with a single input node type corresponding to the table with the highest number
of foreign keys (i.e., ‘results‘ for ‘rel-f1‘ and ‘posts‘ for ‘rel-stack‘). HGSampling
was configured to sample 64 nodes for each node type over 3 iterations. Internally,
we set the maximum number of negative samples per input N−

max to a constant
value of 256 for all loss levels. All models had 128 internal hidden channels
and were evaluated over a hyperparameter grid, that included the number of
message-passing layers (2 or 3), the aggregation function (summation or mean),
and the cell value corruption probability (0.2, 0.4, or 0.6), as derived from prior
work [1].

The models were trained with a batch size of 64 for a maximum of 2000
steps, with a time limit of 4 hours. We employed an early stopping procedure with
validation performed every 50 steps and a patience of 10 rounds. Each validation
was performed on 50 new samples, randomly sampled from the database using
the described HGSampling setup.

Task-Specific Fine-Tuning The pretrained models were further trained on
the standardized supervised downstream tasks from RelBench [29], which in-
clude entity binary classification and regression. For each task, we equipped the
backbone model with a distinct, task-specific head formed by an MLP with a
single hidden layer of 128 channels, batch normalization and a ReLU activation
function. The model was then trained by optimizing either the Cross-Entropy
loss for binary classification or the Mean Squared Error loss for regression, re-
spectively, using the Adam optimizer with a learning rate of 0.0001.

Similar to the pretraining phase, we limited the training to a maximum of
2000 steps and a time limit of 2 hours. We also employed an early stopping
procedure, with validation performed every 100 steps and a patience of 5 epochs.
For graph sampling, we used Neighborhood Sampling with a batch size of 512
and 128 neighbors per node, with a sampling depth equal to the number of the
model’s message-passing layers.
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Binary Classification
Model AUC-ROC

Dataset Task Split
Linear SAGE ResNet SAGE

B P P&F B P P&F

rel-f1
driver-dnf

Val 72.91 74.39 73.25 74.69 74.59 78.35
Test 75.58 72.93 73.76 78.07 76.57 78.69

driver-top3
Val 78.02 79.67 78.91 77.40 82.51 82.16
Test 84.60 79.16 82.24 84.57 82.11 71.37

rel-stack
user-badge

Val 89.35 87.72 89.63 89.29 87.25 89.46
Test 88.12 85.96 88.51 87.89 85.56 88.21

user-engagement
Val 90.02 86.93 90.08 89.94 87.06 90.18
Test 90.34 86.99 90.47 90.28 86.55 90.32

Regression
Model MAE

rel-f1 driver-position
Val 3.202 3.227 3.118 3.113 3.208 3.076
Test 3.686 3.424 3.591 3.329 3.581 3.394

rel-stack post-votes
Val 0.099 0.104 0.079 0.089 0.102 0.085
Test 0.105 0.110 0.086 0.095 0.108 0.090

Table 2: Best results on the entity binary classification (AUC-ROC, higher is
better) and regression tasks (MAE, lower is better).

4.2 Results

Table 3 presents the main results4 of our experiments, using the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC) metric for the binary
classification tasks and the Mean Absolute Error (MAE) metric for the regression
tasks, respectively. We evaluated the models in three distinct scenarios to assess
the impact of our pretraining method:

1. A baseline model (B) trained from scratch on the downstream task.
2. A pretrained model (P) where the backbone parameters were frozen, and

only the task-specific head was trained.
3. A pretrained model that was fully fine-tuned (P&F) on the downstream task,

updating the parameters of both the backbone and the head.

Our results show that on the smaller ‘rel-f1‘ dataset, the frozen pretrained
model (P) provides promising performance, performing comparably to the base-
line model (B) and even outperforming it on the ‘driver-top3‘ task within a
validation split. Nevertheless, on the larger ‘rel-stack‘ dataset, the same frozen
models fell behind the performance of the baseline. This might be due to a num-
ber of reasons, such as the limited capacity of the model, too short a training
period, or a missed aspect of the data, which we discuss further in Sec. 5.
4 Additional, more granular, results can be found in Appendix A.1.
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The pretrained and fine-tuned models (P&F), however, consistently outper-
formed the baseline models (B) on the validation splits across all tasks. Im-
portantly, these models provided a significant performance boost on the larger
‘rel-stack‘ database, highlighting the ability of our pretraining procedure to learn
meaningful and transferable representations, agnostic of the downstream task.

5 Conclusion

In this work, we introduced a self-supervised pretraining method for represen-
tation learning on relational databases, building on the emerging paradigm of
Relational Deep Learning (RDL). The approach learns effective relational repre-
sentations by implementing a three-level contrastive objective—at the row, link,
and context levels—without the need for downstream supervision. The evalu-
ated RDL models, coupled with type-balanced heterogeneous graph sampling,
demonstrated promising results across both classification and regression tasks.
Particularly, our findings indicate that pretraining offers measurable benefits,
especially in low-data regimes, and generally enhances model performance when
fine-tuned, paving the way towards the development of foundational models for
relational data.

Future Work Despite these promising initial findings, the scope of our ex-
periments was significantly restricted, and a more thorough study is needed to
fully assess the capabilities of the pretraining regime. Notably, pretrained models
without the finetuning on the downstream task fell behind in performance on the
larger dataset. We hypothesize that this limitation is due to capacity constraints
of the model and, in the future, we would like to enhance the experiments with
larger Transformer-based models with higher representation dimensionality [27].
Additionally, our pretraining method currently neglects the temporal dimen-
sion of relational data, and incorporating time-aware mechanisms is a promising
direction for encoding more complex relationships. Finally, extending the pre-
training paradigm to support cross-database generalization or continual learning
could dramatically improve its usability in real-world applications.

Acknowledgments. This work has received funding from the Czech Science Founda-
tion under the grant No. 24-11664S.
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A Additional Details and Results

A.1 Additional Results

Binary Classification
Model AUC-ROC

Dataset Task Split
Linear SAGE ResNet SAGE

B P P&F B P P&F

rel-f1 driver-dnf val 72.420
± 0.565

73.847
± 0.488

73.052
± 0.190

71.635
± 2.267

74.133
± 0.382

76.505
± 1.231

test 76.533
± 0.699

75.577
± 2.040

74.392
± 2.370

77.782
± 0.345

75.551
± 1.094

76.811
± 2.293

driver-top3 val 76.511
± 1.145

79.010
± 0.532

77.515
± 0.954

75.568
± 2.382

79.245
± 1.899

80.951
± 0.799

test 84.115
± 0.717

82.443
± 2.441

80.921
± 4.466

85.213
± 1.010

82.092
± 0.809

79.930
± 4.919

rel-stack user-badge val 88.850
± 0.555

87.278
± 0.348

89.087
± 0.399

88.821
± 0.459

86.970
± 0.220

89.177
± 0.317

test 87.616
± 0.612

85.696
± 0.159

87.925
± 0.448

87.596
± 0.411

85.263
± 0.348

88.000
± 0.236

user-engagement val 89.409
± 0.497

86.639
± 0.415

89.947
± 0.168

89.329
± 0.615

86.295
± 0.636

90.034
± 0.262

test 89.709
± 0.555

86.347
± 0.665

90.284
± 0.237

89.589
± 0.608

85.916
± 0.522

90.275
± 0.316

Regression
Model MAE

rel-f1 driver-position val 3.317
± 0.181

3.274
± 0.037

3.175
± 0.034

3.549
± 0.536

3.229
± 0.017

3.101
± 0.024

test 3.587
± 0.196

3.596
± 0.162

3.554
± 0.138

3.871
± 0.567

3.638
± 0.170

3.469
± 0.110

rel-stack post-votes val 0.107
± 0.006

0.109
± 0.006

0.084
± 0.003

0.108
± 0.015

0.109
± 0.004

0.091
± 0.004

test 0.113
± 0.005

0.115
± 0.005

0.090
± 0.003

0.113
± 0.014

0.114
± 0.004

0.096
± 0.004

Table 3: Average results with standard deviation of top 5 runs on the entity
binary classification (AUC-ROC, higher is better) and regression tasks (MAE,
lower is better).
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A.2 Computational Requirements

All experiments in Sec. 4 utilized one core of the AMD EPYC 7742 64-Core Pro-
cessor. Figures 1, 2, 3, and 4 display the mean training time for dataset tasks—
self-supervised pretraining (blue) and specific downstream tasks (other colors).
The bar heights indicate total training time per dataset.
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Fig. 1: Average cumulative training time (seconds) on ‘rel-f1’ dataset using 2
message-passing layers.
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Fig. 2: Average cumulative training time (seconds) on ‘rel-f1’ dataset using 3
message-passing layers.
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The relative time spent on the pretraining appears to be negligible when
compared to the time required for training on downstream tasks. The HGSam-
pling [20] employed during pretraining generates significantly less dense sub-
graphs than neighborhood sampling [15]. We hypothesize that this discrepancy
is the primary factor contributing to the fast convergence during pretraining;
however, this fast convergence may also arise from the underutilization of the
self-supervised pretraining task.
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Fig. 3: Average cumulative training time (seconds) on ‘rel-stack’ dataset using 2
message-passing layers.
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A.3 Database Characteristics

A comprehensive description of the features presented in Table 1 is provided
below:

– Tab—number of tables;
– FK—number of primary-foreign key column pairs;
– Cols—total number of columns excluding primary and foreign key columns;
– Rows—total number of rows;
– Links—total number of primary-foreign key pairs;
– Loop—indicates whether the database schema contains a cycle;
– Dom—domain of the contained data;
– Cat—total number of categorical columns;
– Num—total number of numerical columns;
– Text—total number of textual columns;
– Time—total number of time columns.
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