
Iterative Graph-Based Radius-Constrained
Clustering

Quentin Haenn[0009-0009-1663-0107], Brice Chardin[0000-0002-9298-9447],

Mickael Baron[0000-0002-3356-0835], and Allel Hadjali[0000-0002-4452-1647]

ISAE-ENSMA, LIAS, France
{quentin.haenn, brice.chardin, mickael.baron, allel.hadjali}@ensma.fr

Abstract. Clustering aims at grouping data into homogeneous clusters.
However, setting parameters such as a cluster count or a dissimilarity
bound can be challenging. This paper introduces Curgraph, a novel it-
erative approach for radius-constrained clustering. Curgraph identifies
optimal partitions with respect to maximum cluster radius by comput-
ing minimum dominating sets across partial graphs. Experimental results
demonstrate Curgraph’s effectiveness compared with state-of-the-art al-
gorithms.

Keywords: Constrained Clustering · Radius Based Clustering · Min-
imum Dominating Set

1 Introduction

Cluster analysis involves several sub-problems, including: (1) partitioning a set
of points into homogeneous and well-separated subsets, called clusters, (2) fac-
toring in domain-specific knowledge, and (3) identifying representative points,
or prototypes. To solve the second issue, user supervision may be required in the
form of various constraints, such as a target number of cluster, an expected den-
sity, or examples of points that should (or should not) be grouped together [8].
The third issue is usually solved as a post-processing step. Unfortunately, once
clusters are defined, it might be impossible to identify a prototype that is similar
to every other point of the cluster.

This work builds upon radius-constrained clustering algorithms, for their
ability to provide strong similarity bounds on resulting prototypes [1, 2, 4, 10].
However, these algorithms rely on a user-provided radius threshold, which can
be challenging to set. To alleviate this requirement, iterative (both hierarchical
and non-hierarchical) algorithms can compute multiple candidate partitions for
various thresholds. In this paper, we introduce a novel non-hierarchical iterative
clustering algorithm, called Curgraph, to compute the sequence of partitions
with minimal radius.

2 Q. Haenn et al.

Paper organization Section 2 provides formal definitions of the minimum radius
clustering problem. Section 3 gives an overview of related work. Section 4 intro-
duces the Curgraph algorithm. Section 5 presents experimental evaluations. A
discussion of the results concludes the paper.

2 Problem Statement

In hard partitional clustering [12], a valid result is a partition of the input set
of points, or population.

Definition 1 (Partitional clustering). Let X be a population. A clustering
is a partition P = {C1, C2, . . . , Ck} of X :

– ∀Ci ∈ P, Ci 6= ∅ (non-emptiness)
– ∀Ci, Cj ∈ P, i 6= j ⇒ Ci ∩ Cj = ∅ (disjointness)
–

⋃
Ci∈P Ci = X (coverage)

As a measure of homogeneity, the radius of a cluster C is the minimum
eccentricity within C. By extension, the radius of a partition is the maximum
radius of its clusters. Clustering algorithms usually seek to minimize this radius.

Definition 2 (Radius). Given a dissimilarity function d, the radius of a cluster
C and the radius of a partition P are:

R(C) = min
a∈C

max
b∈C

d(a, b)

R(P) = max
C∈P

R(C)

With radius-based clustering, the natural definition of a prototype—the rep-
resentative element of a cluster—is the point that offers the best worst-case
dissimilarity to any other point in the cluster, that is, the point a of C such that
a = argmina∈C maxb∈C d(a, b). This definition of a prototype guarantees that,
for every point of C, the representation error is bounded by R(C).

In this paper, the problem we aim to solve is to find the partitioning of a
population into k clusters, such that the radius of the partition is minimal.

Definition 3 (Minimum radius clustering). Let X be a population, k a
desired number of clusters. We denote Pk the set of all partitions P of X such
that |P| = k. The minimum radius clustering problem consists in finding one
minimum radius partitioning P∗

k of X into k clusters. Note that P∗
k is not

necessarily unique.
P∗
k = argmin

P∈Pk

R(P)

The minimum radius clustering problem may be associated with the following
decision problem: given a dataset X , a dissimilarity d, a dissimilarity threshold
t and a number of clusters k, is there a partition of X into k clusters such that
R(P ∗

k) ≤ t?

Iterative Radius-Constrained Clustering 3

Theorem 1. The minimum radius clustering decision problem is NP-complete.

To establish a theoretical framework, we introduce the concept of graph-based
clustering. A simple graph Gt = (X , Et) is a couple where X = {x1, x2, . . . , xn}
is a set of vertices and Et is a set of undirected edges associated with a threshold
t: Et = {{xi, xj} | d(xi, xj) ≤ t}. Namely, xi and xj are adjacent in Gt if their
pairwise dissimilarity is at most t.

A set Dt ⊆ X is a dominating set if and only if, for each vertex xi ∈ X , either
xi ∈ Dt or there exists an adjacent vertex xj ∈ Dt : {xi, xj} ∈ Et. A minimum
dominating set is a dominating set with the smallest possible cardinality. This
minimum cardinality is called the domination number of the graph, γ(Gt).

Proof of Theorem 1. We establish an equivalence with the minimum dominating
set (MDS) problem, which is NP-complete. The MDS (or domination number)
decision problem is formulated as: given a graph G and a number k, is γ(G) ≤ k?
(⇒) Consider the graph Gt = (X , Et) and compute a minimum dominating set.
If γ(Gt) ≤ k then R(P ∗

k) ≤ t, else R(P ∗
k) > t.

(⇐) Consider a graph G = (X , E) and associate a dissimilarity d as: d(x, y) = 1
if {x, y} ∈ E, else d(x, y) = 2. Compute a minimum radius clustering with k
clusters. If R(P ∗

k) ≤ 1, then γ(G) ≤ k, else γ(G) > k.
Since the MDS problem, which is NP-complete, is equivalent to the minimum
radius clustering problem, the latter is also NP-complete.

As a consequence of Theorem 1, finding the minimum radius partition for
k clusters is computationally intensive regardless of the algorithm used. How-
ever, computing a graph’s minimum dominating set may be more practical than
spending hours tuning parameters for traditional algorithms that yield subop-
timal results. This is the primary motivation behind the proposed algorithm.
Nevertheless, to be able to scale on larger datasets, approximate solutions will
also be explored.

3 Related Work

In constraint-based clustering, various wideness measures like diameter, radius,
and average distance have been introduced as cluster-level dissimilarity con-
straints [1, 2, 4, 6, 8, 9]. Past research has mostly focused on diameter con-
straints [1, 6, 11], and radius constraints have remained underexplored [1, 2,
4, 13]. A key difference between diameter and radius constraints is that iden-
tifying a prototype with a diameter-based algorithm has to be performed as a
post-processing step. Additionally, diameter constraints can be translated into
cannot-link instance-level constraints [6, 7], while radius constraints cannot.

Clustering under radius constraints (CRC) consists in finding a partition
whose radius is at most equal to a user-provided threshold [4]. Since a trivial
solution would be to assign each point to its own cluster, a secondary goal is
usually to minimize the number of clusters. Like minimum radius clustering,

4 Q. Haenn et al.

CRC has been linked to the minimum dominating set problem in graphs [1],
where a dominating set is a candidate set of prototypes for the resulting partition.

Besides graph-related solutions, the equiwide clustering algorithm [1] is a
notable approach to the CRC problem, using an exact linear programming im-
plementation that efficiently handles small datasets. Alternatively, hierarchical
agglomerative clustering (HAC) algorithms with minimax linkage [2, 4] comply
with radius constraints but are suboptimal for both minimizing the number of
clusters and the partition radius. The most efficient minimax HAC variant iden-
tified is Protoclust [4, 16]. As with other hierarchical algorithms, getting a single
partition requires a cut of the resulting hierarchy, using either a radius threshold
or a number of clusters.

The last related problem is the k-center optimization problem. It involves se-
lecting k points to minimize the maximum distance from any point to its nearest
center. Having centers drawn from within the input set of points is similar to
radius constraints, while being able to place centers anywhere on a vector space
is related with diameter constraints. Efficient approximate algorithms exist, even
for large datasets [15].

However, these solutions assume a metric space that satisfies the triangle
inequality, which makes them unusable with other dissimilarities, e.g., dynamic
time warping (DTW) used to classify time series [3].

Recent advancements in exact and approximate algorithms for the MDS
problem [5, 14] allow for some efficient solutions in graph related work for the
CRC problem [10]. Like other CRC solutions, MDS requires a predefined dissim-
ilarity threshold, relying on data-specific user knowledge – a challenge this paper
aims to address. Without a clear dissimilarity threshold, analysts may have to
examine clustering results across varying thresholds or cluster counts.

For diameter constraints, the Clustergraph algorithm [11] has been designed
to efficiently compute a sequence of optimal partitions, each with the minimum
diameter for every possible number of cluster. In this paper, we drew inspiration
from Clustergraph, adapting it to handle radius constraints. The main differences
are the underlying graph algorithms and how the dataset is modeled as a graph.

4 Curgraph

Curgraph (Clustering under radius constraints using graphs) considers a se-
quence of partial graphs Gt, where the dissimilarity threshold t takes its values
in the pairwise dissimilarities between points of X , ranked in decreasing order.
A minimum dominating set Dt is computed for each partial graph. Since a dom-
inating set does not properly define a partition, we need to assign each vertex xi

to a cluster based on the nearest dominating vertex that covers it, resulting in
|Dt| clusters. As stated in theorem 2, the set of all partitions P of X from 1 to
|X | clusters obtained in this way contains all minimum radius partitions of X .

Theorem 2. The partition derived from a minimum dominating set of the last
partial graph Gt = (X , Et) dominable by k vertices is a minimum radius partition
of X into k clusters.

Iterative Radius-Constrained Clustering 5

Proof. Let ti represent the i-th value of t in the sequence of decreasing distinct
values of t: ti > ti+1. The associated partial graph is Gti = (X,Eti), and assume
it is the last k-dominable partial graph. The assignment of vertices to the nearest
dominating vertex defines a partition, denoted Pi

k. For any xi and xj in X such
that d(xi, xj) > ti, xi and xj are not adjacent in Gti and neither can dominate
the other. Therefore, R(P i

k) ≤ ti. As the next partial graph in sequence, Gti+1
, is

not k-dominable, any partition of X into k clusters with D its set of prototypes
must contain at least one vertex x such that ∀c ∈ D, d(x, c) > ti+1. Hence, no
partition P ′

k of X with R(P ′
k) ≤ ti+1 < ti exists and Pi

k has minimum radius
among Pk with R(Pi

k) = R(P∗
k) = ti.

Following this sequential approach, we need to compute a minimum domi-
nating set for each partial graph. As the underlying problem is NP-hard, this
represents a major drawback of the approach, and it will be the bottleneck of the
algorithm, especially on larger datasets. However, we can improve this behavior
by considering a dominating set Dti as a potential solution for the next par-
tial graph. Since the partial graphs are built sequentially by gradually removing
edges in decreasing dissimilarity order, typically only one edge is removed at a
time. If this removal does not affect a vertex’s link to its dominant point, the ex-
isting dominating set remains valid for Gti+1

. In practice, as shown in section 5,
most iterations of the algorithm do not have to compute a new dominating set.
Nevertheless, since even a single MDS call can be prohibitive, we also consider
approximate MDS algorithms to identify suboptimal partitions.

4.1 General Algorithm

The algorithm takes a set of points X and an optional maximum cluster count,
kmax. It outputs a minimum radius partition for each number of clusters up to
kmax, or up to |X | if kmax is not set. The current cluster count is denoted k,
and the current dominating set is D. The outline of the algorithm is shown in
Algorithm 1.

First, the Initialize function is called. This function handles the special
case for k = 1, and computes the ranked list, noted T , of pairwise dissimilarities
between points in X lower than R(P∗

1), in decreasing order. The algorithm then
iterates over values t in T . For each t, the partial graph G′

t is generated. If the
previous graph’s dominating set D no longer dominates G′

t, a new dominating
set is calculated. If the cardinality of this new dominating set exceeds the current
cluster count, the Partition function computes the optimal partition associated
with the previous iteration, and k is updated. In this Partition function, each
point in X is assigned to the nearest dominating vertex. The algorithm stops
once kmax clusters are reached and returns the sequence of optimal partitions
(P∗

1 ,P∗
2 , . . . ,P∗

kmax
) for X .

Example 1. The operation of Curgraph is illustrated on a sample dataset with
4 points for which the dissimilarity matrix is given in figure 1a. This dataset
is also represented as a graph, displayed in figure 1b. The first partition, P1, is

6 Q. Haenn et al.

Algorithm 1 The Curgraph algorithm
Input: A dataset X and a maximum number of clusters kmax (defaults to |X |).
Output: A Sequence of partitions of X (P∗

1 ,P∗
2 , . . . ,P∗

kmax
), each having the minimum

radius for the corresponding cardinality.
1: function Curgraph(X , kmax)
2: T,P∗

1 , D1 ← Initialize(X)
3: Gt ← PartialGraph(X , R(P∗

1))
4: D ← D1; k ← 2
5: while k ≤ kmax do
6: t← Next(T)
7: G′

t ← PartialGraph(X , t)
8: if D is not a dominating set of G′

t then
9: D′ ← ComputeMds(G′

t)
10: if |D′| > k then
11: P∗

k ← Partition(Gt, D)
12: k ← |D′|
13: D ← D′; Gt ← G′

t

14: return (P∗
1 ,P∗

2 , . . . ,P∗
kmax

)


x1 x2 x3 x4

x1 0 2 1 4
x2 2 0 1 4
x3 1 1 0 4
x4 4 4 4 0



(a) Pairwise dissimilarities

x1

x2

x3 x42
1 4

1 4
4

P∗
1 , t ∈ {4}

P∗
2 , t ∈ {2, 1}

P∗
3 , t ∈ {0}

(b) Curgraph clusters with all possible thresholds

Fig. 1: Example of Curgraph partitions

computed from its prototype a = argmina∈X maxb∈X d(a, b). In this case, any
point can be elected as the prototype. We suppose D1 = {x1} is chosen. The
radius of this partition is R(P∗

1) = 4. The ranked list of dissimilarities lower
than 4 is T = [2, 1, 0].

Then, t = 2, and {x1} no longer dominates the partial graph with edges
greater than 2 removed. A call to the MDS solver is then performed to compute a
new MDS. There are three solutions in this case: {x1, x4}, {x2, x4} and {x3, x4},
one of which is returned by the solver. We suppose {x3, x4} is chosen.

Then, t = 1, and {x3, x4} still dominates the new partial graph. If any
other dominating set had been chosen in the previous step, a new call to the
MDS solver would have been required, leading in all cases to the only solution
D′ = {x3, x4}.

Iterative Radius-Constrained Clustering 7

Finally, t = 0 and {x3, x4} does not dominate the new partial graph. The
MDS solver is called and provides {x1, x2, x3, x4} as a new dominating set. Its
cardinality, 4, is greater than k = 2. The previous result, {x3, x4}, is therefore
the minimum radius partition P∗

2 for k = 2.

4.2 Tackling the MDS bottleneck

As discussed in Section 5, computing an exact dominating set can be costly, even
if this occurs only on few iterations. Casado et al. [5] proposed an efficient MDS
heuristic that could replace the exact method for large datasets, reducing the
execution time without significantly affecting the accuracy [10]. The Curgraph
algorithm presented in Algorithm 1 remains mostly the same, but since it is based
on the assumption that the cardinality of the dominating set is nondecreasing, an
additional verification of this property is included, and the algorithm backtracks
to update previous results if an inconsistency is detected. Specifically, if |D′| < k
after computing a new dominating set D′, then partitions P∗

|D′|, . . . ,P
∗
k−2,P∗

k−1

are invalidated, and the current cluster count k is reset to |D′|. Furthermore,
in Algorithm 1 the whole while loop can be parallelized to compute partitions
concurrently, as each iteration only depends on the previous iteration. To do so,
the list of thresholds T is split into n sublists, where n is the number of available
threads. Each thread computes the partition for its sublist of thresholds. The
results are then merged to obtain the final sequence of partitions. In case of
overlapping partitions (e.g. multiple threads found a partition with 3 clusters),
the partition with the smallest radius is kept. Parallelization induces the extra
cost of having to call the MDS solver on the first iteration of each sublist.

5 Experiments & Results

We evaluate Curgraph in its exact and approximate versions, and compare it
against Protoclust on seven OpenML datasets [17].

Exact optimal dominating sets are computed using the reference implemen-
tation of a branch a bound MDS algorithm proposed by Jiang et al. [14]. The
approximate MDS solver used in this paper is a re-implementation in C++ of
the algorithm proposed by Casado et al. [5]. Curgraph has no specific feature
linked with either implementation, and other exact or approximate MDS solvers
could have been considered. Curgraph is written in Python, version 3.11. Pro-
toclust [4] is written in R, version 4.2. All experiments were conducted inside
Docker containers on a machine with an Intel Xeon G5118 CPU with 12 cores
at 2.30GHz and 64GB of RAM. Each algorithm is run three times to evaluate
their stability, with a time limit of 10 minutes1.

The experiments produce partitions for each dataset from one to a maximum
of kmax = |X | clusters. Computation times and partition radii are recorded. If
1 The experiment code and data are available at https://forge.lias-lab.fr/

curgraph-experiments

https://forge.lias-lab.fr/curgraph-experiments
https://forge.lias-lab.fr/curgraph-experiments

8 Q. Haenn et al.

2 4 6 8 10

Clusters

0

500

1000

1500

R
(P

)

Protoclust
Cur-Approx
Cur-Exact

2 4 6 8 10

Clusters

0

500

1000

1500

t

Fig. 2: Compactness of Curgraph and Protoclust partitions on WDBC

Table 1: Mean execution time (in seconds) for each algorithm
Dataset (size) Protoclust Cur-Exact Cur-Approx Cur-Parallel

Iris (150) 0.03±0.00 10.16±0.01 7.99±0.01 2.82±0.07
Wine (178) 0.04±0.00 14.61±0.01 17.37±0.02 8.28±0.20
Glass (214) 0.06±0.00 35.01±0.15 24.76±0.04 8.13±0.05
Ionosphere (351) 0.12±0.00 334.56±0.69 96.34±0.08 23.48±0.04
WDBC (569) 0.58±0.12 TL1 (14) 379.25±0.48 121.88±0.52
Synt. Cont. (600) 0.49±0.00 TL1 (10) 257.85±0.77 115.93±2.56
Vehicle (846) 0.99±0.08 TL1 (3) 497.60±0.90 339.50±8.22

1 When the time limit is reached, the size of the last optimal partition is given.

one algorithm hits the time limit, the experiment is stopped, but partitions found
up to this point are retrieved.

Curgraph-Exact always finds optimal partitions. Curgraph-Approx results
are not guaranteed to be optimal and, in practice, 37 % of resulting partitions
are not. With Protoclust, 92 % of partitions are suboptimal. Curgraph-Approx
partitions are almost always as compact (19.8 %) or more compact (79.7 %) than
with Protoclust. Fig. 2 (left) illustrates this behavior by showing R(Pk) for Cur-
graph and Protoclust on the WDBC dataset. Curgraph-Exact produces a Pareto
front of minimal radius and minimal size partitions, and both Curgraph-Appox
and Protoclust generate partitions relatively close to this front. The difference
can still have an impact on partitions resulting from cuts performed with a user-
provided dissimilarity threshold or target number of clusters. On Fig. 2 (right),
a cut at t = 560 results in a partition with cardinality 7 with Curgraph-Exact,
but cardinality 8 with Curgraph-Approx and 9 with Protoclust.

Table 1 presents total execution times on each dataset. The parallel version
of Curgraph—with the approximate MDS solver—is denoted as Cur-Parallel.
If an algorithm hits the time limit, the cadinality of the last optimal partition
found is indicated in parentheses. Curgraph-Exact does not scale well with larger

Iterative Radius-Constrained Clustering 9

1 1000 2000 3000
Iteration number

0.0

2.5

5.0

7.5

10.0
C

um
ul

at
iv

e
ti

m
e

(s
)

Iris

Cur-Exact
Cur-Approx
New partition

1 50000 100000 150000
Iteration number

0

200

400

600

WDBC

1 10000
Iteration

0

10

C
um

ul
at

iv
e

ti
m

e
(s

)

Wine

1 20000
Iteration

0

20

Glass

1 50000
Iteration

0

200

Ionosphere

1 100000
Iteration

0

500

Synt. Cont.

1 100000
Iteration

0

500

Vehicle

1 2 3 4 5 10 20 148
#clusters

1 2 3 4 5 7 8 10 20 30 50 569
#clusters

Fig. 3: Cumulative execution time for Curgraph

datasets, and hits the time limit on the three largest, even if those are relatively
small. As previously noted, the difficulty of the underlying MDS problem and
the frequency of algorithm invocations contribute to Curgraph’s computational
cost.

Figure 3 shows the cumulative execution time for each non-parallelized vari-
ant of Curgraph on each dataset. Surprisingly, on small datasets, Curgraph-
Exact is faster than Curgraph-Approx for determining partitions containing
small number of clusters. This is a direct consequence of the performance profile
of the underlying MDS solver. However, as the threshold t gets smaller—in later
iterations—, more calls to the MDS solver are required, which significantly in-
creases the execution time. When kmax = |X |, Curgraph-Approx is more reliable
than Curgraph-Exact, and generally faster—the only exception being the wine
dataset. Nevertheless, an analyst might be interested only in partitions with a
relatively small number of clusters. In this case, Curgraph can be stopped early,
when the specified maximum number of clusters is reached, saving time.

Figure 4 illustrates the internal behavior of Curgraph, between the 2850th
to 3050th iterations with the Iris dataset—where 68% of the total execution
time is spent using the exact version. This figure highlights that most iterations
do not require the computation of a minimum dominating set. Each of these
no MDS call iterations is computed in less than 80 µs. By comparison, iterations
that perform an MDS call last between 5 ms and 1.2 s. Table 2 shows that this
behavior remains true for all datasets, as iterations relying on MDS occur at
most 8% of the time, but account for at least 90% of the total execution time.
Overall, results suggest that our assumption of an MDS remaining valid for

10 Q. Haenn et al.

2850 2875 2900 2925 2950 2975 3000 3025 3050

Iteration number

0

5

10
C

um
ul

at
iv

e
ti

m
e

(s
)

0.0

0.5

1.0

It
er

at
io

n
du

ra
ti

on
(s

)14 15 16 18 19 20 2122 23 25
Partition size (#clusters)

Cur-Exact New partition MDS call No MDS call

Fig. 4: Analysis of Curgraph-Exact iterations on the Iris dataset

Table 2: Curgraph computation statistics
Curgraph-Exact Curgraph-Approx

Dataset # Iter.
% MDS

calls
% MDS
duration # Iter.

% MDS
calls

% MDS
duration

Iris 3,369 8.04 99.2 3,369 7.01 99.0
Wine 13,765 4.28 97.5 13,765 3.14 97.9
Glass 21,435 2.38 97.9 21,435 2.19 97.1
Ionosphere 51,668 4.67 98.8 51,668 1.79 95.4
WDBC 102,4761 0.26 97.4 157,419 0.85 93.1
Synt. Cont. 110,0081 0.09 97.5 142,423 0.85 90.2
Vehicle 85,1561 0.11 95.9 123,455 0.93 92.4

1 Time limit reached.

a significant amount of successive partial graphs is correct. Moreover, results
suggest that the larger the dataset, the more MDS computations are skipped
relatively to the total number of iterations. This might be the basis for potential
further optimization of the algorithm.

As shown in Figure 4, every optimal partition (depicted by a vertical line)
requires an MDS call during the subsequent iteration. This step is necessary
to guarantee that the previous radius is minimal. An optimal run would only
require two MDS calls for each partition size: one at the threshold—or slightly
before with the same dominating set—and one just after.

Finally, these results underline the effectiveness of Curgraph for solving the
minimum radius clustering problem (Definition 3). The enhanced partition com-
pactness achieved with this method over Protoclust offers a valuable trade-off
despite the increased computation time.

6 Discussions and Conclusions

Optimal algorithms for clustering under radius constraints remain underex-
plored, with prior work using alternative paradigms like a diameter constraint,
a mathematical norm, a dissimilarity threshold or a fixed cluster count, which
are not aligned with our goals.

We introduce Curgraph, addressing these challenges to deliver optimal or
near-optimal solutions for radius-based clustering. Experimental results show
that Curgraph achieves optimal solutions at the cost of longer execution times
compared to current state-of-the-art algorithms. Given the NP-hardness of the
problem, this limitation was expected. Curgraph remains valuable for applica-
tions needing compact clusters and minimal parameter tuning, especially for
smaller datasets

To address scalability, we developed an approximate approach, significantly
reducing execution time while maintaining compact partitions, though this so-
lution remains much slower than HAC with minimax linkage (Protoclust) on
larger datasets. To the best of our knowledge, Curgraph is the first alternative
solution to Protoclust to generate sequences of compact partitions w.r.t. their ra-
dius. Experimentally, both the exact and the approximate versions of Curgraph
offer greater compactness over Protoclust. These better results come at the ex-
pense of higher computational costs, and the loss of the hierarchical structure of
resulting partitions. For the most part, the execution time of Curgraph is due
to the underlying MDS solver. Faster heuristics could make Curgraph compete
with Protoclust.

Apart from work on the MDS solver, future directions include enhancing the
parallelization process of Curgraph, taking into account the density distribution
of dissimilarities to better divide the workload among threads. We might also re-
think the implementation of the main loop in Algorithm 1 to reduce the overhead
of non MDS calling iterations and improve the overall efficiency of Curgraph,
while maintaining the quality of the partitions. This could be achieved, for ex-
ample, by skipping some inconsequential iterations or by using more efficient
data structures.

Overall, Curgraph offers a promising direction for radius-constrained cluster-
ing, although more work is needed to close the efficiency gap.

Acknowledgments. This work was supported by the @LIENOR ANR LabCom
(ANR-19-LCV2-0006) and the French region Nouvelle-Aquitaine.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

12 Q. Haenn et al.

Bibliography

[1] Andersen, J., Chardin, B., Tribak, M.: Clustering to the Fewest Clusters
Under Intra-Cluster Dissimilarity Constraints. In: 2021 IEEE 33rd Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI), pp. 209–216
(2021), https://doi.org/10.1109/ICTAI52525.2021.00036

[2] Ao, S.I., et al.: CLUSTAG: hierarchical clustering and graph methods for
selecting tag SNPs. Bioinformatics pp. 1735–1736 (2005), https://doi.org/
10.1093/bioinformatics/bti201

[3] Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in
time series. In: Proceedings of the 3rd international conference on knowledge
discovery and data mining, pp. 359–370 (1994)

[4] Bien, J., Tibshirani, R.: Hierarchical Clustering With Prototypes via Mini-
max Linkage. Journal of the American Statistical Association pp. 1075–1084
(2011), https://doi.org/10.1198/jasa.2011.tm10183

[5] Casado, A., Bermudo, S., López-Sánchez, A.D., Sánchez-Oro, J.: An iter-
ated greedy algorithm for finding the minimum dominating set in graphs.
Mathematics and Computers in Simulation pp. 41–58 (2023), https://doi.
org/10.1016/j.matcom.2022.12.018

[6] Dao, T.B.H.e.a.: Constrained clustering by constraint programming. Artifi-
cial Intelligence pp. 70–94 (2017), https://doi.org/10.1016/j.artint.2015.05.
006

[7] Davidson, I., Ravi, S.: Clustering with constraints: Feasibility issues and
the k-means algorithm. In: Proceedings of the 2005 SIAM international
conference on data mining, pp. 138–149, SIAM (2005)

[8] Dinler, D., Tural, M.K.: A Survey of Constrained Clustering. In: Unsuper-
vised Learning Algorithms, pp. 207–235 (2016), https://doi.org/10.1007/
978-3-319-24211-8_9

[9] Gordon, A.D.: A survey of constrained classification. Computational
Statistics & Data Analysis pp. 17–29 (1996), https://doi.org/10.1016/
0167-9473(95)00005-4

[10] Haenn, Q., Chardin, B., Baron, M.: Clustering Under Radius Constraints
Using Minimum Dominating Sets. In: 27th International Symposium on
Methodologies for Intelligent Systems (2024), https://doi.org/10.1007/
978-3-031-62700-2_2

[11] Hansen, P., Delattre, M.: Complete-Link Cluster Analysis by Graph Col-
oring. Journal of the American Statistical Association pp. 397–403 (1978),
https://doi.org/10.1080/01621459.1978.10481589

[12] Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming.
Mathematical programming 79(1), 191–215 (1997)

[13] Hubert, L.J.: Some applications of graph theory to clustering. Psychome-
trika pp. 283–309 (1974), https://doi.org/10.1007/BF02291704

[14] Jiang, H., Zheng, Z.: An Exact Algorithm for the Minimum Dominating
Set Problem. In: Proceedings of the 32nd International Joint Conference

https://doi.org/10.1109/ICTAI52525.2021.00036
https://doi.org/10.1109/ICTAI52525.2021.00036
https://doi.org/10.1093/bioinformatics/bti201
https://doi.org/10.1093/bioinformatics/bti201
https://doi.org/10.1093/bioinformatics/bti201
https://doi.org/10.1093/bioinformatics/bti201
https://doi.org/10.1198/jasa.2011.tm10183
https://doi.org/10.1198/jasa.2011.tm10183
https://doi.org/10.1016/j.matcom.2022.12.018
https://doi.org/10.1016/j.matcom.2022.12.018
https://doi.org/10.1016/j.matcom.2022.12.018
https://doi.org/10.1016/j.matcom.2022.12.018
https://doi.org/10.1016/j.artint.2015.05.006
https://doi.org/10.1016/j.artint.2015.05.006
https://doi.org/10.1016/j.artint.2015.05.006
https://doi.org/10.1016/j.artint.2015.05.006
https://doi.org/10.1007/978-3-319-24211-8_9
https://doi.org/10.1007/978-3-319-24211-8_9
https://doi.org/10.1007/978-3-319-24211-8_9
https://doi.org/10.1007/978-3-319-24211-8_9
https://doi.org/10.1016/0167-9473(95)00005-4
https://doi.org/10.1016/0167-9473(95)00005-4
https://doi.org/10.1016/0167-9473(95)00005-4
https://doi.org/10.1016/0167-9473(95)00005-4
https://doi.org/10.1007/978-3-031-62700-2_2
https://doi.org/10.1007/978-3-031-62700-2_2
https://doi.org/10.1007/978-3-031-62700-2_2
https://doi.org/10.1007/978-3-031-62700-2_2
https://doi.org/10.1080/01621459.1978.10481589
https://doi.org/10.1080/01621459.1978.10481589
https://doi.org/10.1007/BF02291704
https://doi.org/10.1007/BF02291704

Iterative Radius-Constrained Clustering 13

on Artificial Intelligence, pp. 5604–5612 (2023), https://doi.org/10.24963/
ijcai.2023/622

[15] Shi, M., Hua, K., Ren, J., Cao, Y.: Global optimization of k-center clus-
tering. In: Proceedings of the 39th International Conference on Machine
Learning, vol. 162, pp. 19956–19966 (2022)

[16] Tai, X.H., Frisoli, K.: Benchmarking Minimax Linkage (2019)
[17] Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked

science in machine learning. SIGKDD Explorations pp. 49–60 (2013), https:
//doi.org/10.1145/2641190.2641198

https://doi.org/10.24963/ijcai.2023/622
https://doi.org/10.24963/ijcai.2023/622
https://doi.org/10.24963/ijcai.2023/622
https://doi.org/10.24963/ijcai.2023/622
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198

	Iterative Graph-Based Radius-Constrained Clustering

