From Pixels to Graphs: Deep Graph-Level
Anomaly Detection on Dermoscopic Images
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Abstract. Graph Neural Networks (GNNs) have emerged as a powerful
approach for graph-based machine learning tasks. Previous work applied
GNNs to image-derived graph representations for various downstream
tasks such as classification or anomaly detection. These transformations
include segmenting images, extracting features from segments, mapping
them to nodes, and connecting them. However, to the best of our knowl-
edge, no study has rigorously compared the effectiveness of the numer-
ous potential image-to-graph transformation approaches for GNN-based
graph-level anomaly detection (GLAD). In this study, we systematically
evaluate the efficacy of multiple segmentation schemes, edge construc-
tion strategies, and node feature sets based on color, texture, and shape
descriptors to produce suitable image-derived graph representations to
perform graph-level anomaly detection. We conduct extensive experi-
ments on dermoscopic images using state-of-the-art GLAD models, ex-
amining performance and efficiency in purely unsupervised, weakly su-
pervised, and fully supervised regimes. Our findings reveal, for example,
that color descriptors contribute the best standalone performance, while
incorporating shape and texture features consistently enhances detection
efficacy. In particular, our best unsupervised configuration using OCGTL
achieves a competitive AUC-ROC score of up to 0.805 without relying
on pretrained backbones like comparable image-based approaches. With
the inclusion of sparse labels, the performance increases substantially to
0.872 and with full supervision to 0.914 AUC-ROC.

Keywords: Image-to-Graph Transformation - Deep Graph Anomaly
Detection

1 Introduction

Anomaly detection in images plays a pivotal role across a wide range of ap-
plications, from identifying cracks or surface defects in industrial inspection [4]
to spotting unusual activities in security footage [9], and detecting tumors or
lesions in medical imaging [6]. State-of-the-art convolutional neural networks
and vision transformers excel at these tasks when large, labeled datasets are
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Fig. 1: Overall process of our two-step evaluation study. Images are transformed
into graph representations, on which we conduct graph anomaly detection.

available. However, they treat every pixel uniformly and often require extensive
pretraining. In anomaly detection, where normal examples vastly outnumber the
rare, unpredictable anomalies, this pixel-level redundancy can obscure subtle de-
viations, inflate computational and data availability costs, and demand powerful
hardware that may be impractical in resource-limited clinical or edge settings.

Graph-structured representations offer a compelling alternative by abstract-
ing an image into a compact set of nodes and edges [S/TTI28]. Nodes correspond to
locally homogeneous regions, defined by superpixels, learned patches, or provided
segmentation masks, and can be associated with higher-level features, abstracted
from these regions’ low-level pixel content. Edges capture spatial adjacency, fea-
ture similarity, or both. For anomaly detection, this compressed representation
sharply reduces input dimensionality and noise, enabling models to focus on
semantically meaningful units rather than millions of individual pixels. The re-
lational inductive bias of graphs likewise confers robustness to small rotations or
translations, ensuring that a tiny shift in position does not mask critical devi-
ations without needing data augmentation. Moreover, their compactness allows
training lightweight graph-anomaly detectors from scratch, eschewing massive
pretrained backbones, thereby reducing both runtime and energy consumption.

In this work, we explore these potential advantages in conjunction with
raw anomaly detection performance systematically and build a bridge between
image-based and graph-based anomaly detection. To ground this in a high-stakes
medical scenario, we focus on the HAM10000 image dataset [32]. This corpus of
high-resolution skin-lesion images contains a clear majority of benign nevi as nat-
ural “normal” samples alongside multiple smaller, clinically significant classes as
diverse anomalies (melanoma, basal cell carcinoma, vascular lesions, and others)
and provides pixel-level segmentation masks. Crucially, node features, like shape
descriptors, texture histograms, size measures, and color moments, directly align
with the established ABCDE criteria [12] (Asymmetry, Border irregularity, Color
variation, Diameter, Evolving) used by dermatologists. As is most common in
anomaly detection, we evaluate our pipelines primarily in the unsupervised set-
ting (training exclusively on nevi examples) while also investigating supervised
variants that leverage varying degrees of labeled anomalies.
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As our main contribution, we systematically analyze the effectiveness of var-
ious combinations of segmentation strategies, edge-construction methods, node-
feature sets, and state-of-the-art graph anomaly detection algorithms in the
aforementioned context. By isolating each component, we quantify how region
compression, relational robustness, and model compactness translate into de-
tection performance, data reduction, as well as training and inference speed.
We focus on identifying bottlenecks in each step of the process, highlighting ar-
eas for improvement and future research. Our findings reveal that comparable
performance to the results of other image-based studies can still be achieved,
even with the reduction of the available data features via segmentation. Fur-
thermore, this data reduction has distinct advantages in both runtime and data
efficiency. To ensure reproducibility, our implementation is publicly available at
https://github.com/deX-de/Deep-GLAD-on-Dermoscopic-Images.

2 Related Work

Researchers have applied the concept of converting images into graphs in various
machine learning studies. Han et al. [T4] proposed an end-to-end approach that
transforms images into non-overlapping patches, extracts features using a CNN-
stem, and trains on a GNN. Most other works employed a two-step approach
with a separate image-to-graph transformation and downstream task. Specifi-
cally, they focused on superpixel algorithms such as SLIC [I], Quickshift [35] or
Felzenszwalb [I0] to first segment the image into meaningful regions, extract rel-
evant features from these regions and assign edges between the nodes [SITTI28].
Subsequently, they utilized GNNs to learn on extracted image-derived graph rep-
resentations. The study conducted by Annaby et al. [3] converted images into
graphs in the context of melanoma classification. Similarly, they transformed
the image into a region adjacency graph using the SLIC algorithm. However, in
their downstream task, they handcrafted graph- and node-level features in the
spatial and spectral domain. They then used these features in shallow machine
learning models in combination with conventional image-based features.

Graph anomaly detection (GAD) seeks to uncover irregularities or non-
conformity in graph-structured data at varying granularities [26]. Usually, this is
done in an unsupervised or weakly supervised setting. Principal methodological
paradigms encompass reconstruction-based models that learn to regenerate nor-
mal graph elements and flag high reconstruction error as anomalous [20J23]; con-
trastive techniques that derive normality by discriminating between augmented
or heterogeneous views [I8/T921]; and one-class classification approaches that en-
close normal instances within a compact decision region, treating outliers beyond
its boundary as anomalies [27I39]. For GAD on image-derived graph representa-
tion, the aim is either (1) detecting unusual objects or patterns in an image (es-
sentially node-level anomaly detection) [2I33I34136], (2) detecting if a whole im-
age is anomalous (graph-level anomaly detection) [40], or both [I3I2538]. While
GAD on image-derived graphs is not a new phenomenon, a thorough analysis of
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the specific performances of diverse candidate combinations of image-to-graph
transformations with current state-of-the-art GLAD methods is missing.

3 Preliminaries and Problem Definition

A graph G is an ordered pair (V,€) of n = |V| nodes forming the node set
V = {v1,...,v,} that can be considered as abstract representations of entities
together with the edge set £ C V x V that show the relationships between
aforementioned entities. Two nodes u,v € V are adjacent if (u,v) € € or (v,u) €
E. An attributed graph, represented as G = (V, €, X), includes an attribute set
X = {x, € R?|v € V}, where d is the node feature dimension. In principle,
an image I € RW>XHXC of width W, height H, and color channels C, can be
thought of as a 4 - D-connected graph with V = {v; |i € [W - H]}, where ¢ :
V — [W] x [H] is a bijective mapping from nodes to pixel coordinates, & =
{(viy 03} [0 # 03, 19(0) — 6(v)]| < VDY, and X = {Ly,,. | () € [W] x [H]}.

The task of graph-level anomaly detection (GLAD) is to distinguish anoma-
lous graphs from normal ones within a given graph dataset [22]. Traditionally,
researchers used graph kernels to extract graph-level features. They subsequently
applied general shallow anomaly detection methods (e.g., Local Outlier Factor
(LOF) [5] or One-Class Support Vector Machines (OC-SVM) [31]) to detect
anomalous graphs. With advances in deep learning and graph representation
learning, more sophisticated GNN-based methods automatically extract rele-
vant graph features end-to-end. These models primarily operate unsupervised,
with most training data containing only the normal class. However, specific
GLAD model architectures can incorporate semi-supervision through minor ad-
justments to the objective function.

The problem statement of our work can be formalized as follows: Given the
image set Dimg = {(I1,91),-- -, (In,yn)}, we evaluate different graph construc-
tion configurations composed of various segmentation methods, node features,
and edge assignments to construct graphs Dgrapr, = {(G1,¥1),.- -, (Gn,yn)} in
the context of anomaly detection. For anomaly detection, the labels y1,...,y,
denote whether a sample is either normal (y = 0) or anomalous (y = 1). The
evaluation of these configurations considers various state-of-the-art GLAD meth-
ods trained on the training split D;:‘;’;}L C Dgyraph to predict whether unseen
graphs are normal or anomalous. In an unsupervised setting, we only consider
normal data during training. For (semi-)supervised learning, additional labeled

: : : train
anomalies are incorporated into D i%%% .

4 Benchmark Design

In this section, we design a two-step graph-based benchmark pipeline tailored to
skin lesion analysis on the HAM10000 dataset [32]. Beginning with a clinically
relevant, high-resolution dataset, we convert dermoscopic images into graphs
through segmentation-based node construction, rich visual feature extraction,
edge assignments, and optionally virtual nodes. This representation allows for
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akiec  bcc bkl df mel nv vasc Total

327 514 1099 115 1113 6705 142 10015
Table 1: Image distribution of HAM10000.

effective GLAD, which we evaluate using recent state-of-the-art models. Our
benchmark is designed to grasp irregular, heterogeneous patterns of dermato-
logical anomalies and allows both unsupervised and semi-supervised detection
settings.

4.1 Dataset Description

The Human Against Machine dataset (HAM10000) consists of 10,015 dermo-
scopic high-resolution skin lesion images, each with respective diagnoses that are
benign or malignant. Correctly diagnosing skin lesions through machine learning
is both clinically and economically meaningful, as it makes saving lives possible
with fewer human resources. Moreover, the HAM10000 dataset includes segmen-
tation masks, hand-drawn by a professional dermatologist, that match each skin
lesion.

Though the availability of specific diagnosis labels facilitates supervised clas-
sification, the imbalanced nature of this dataset, as shown in Table [T} with the
majority of images belonging to the nevus (nv) class, makes it well-suited for
anomaly detection [6]. Additionally, labeling skin lesions demands the exper-
tise of dermatologists, which involves considerable time and capital. Therefore,
HAM10000 is particularly relevant in an unsupervised and semi-supervised con-
text. Furthermore, the ABCDE schema [12], used to differentiate between benign
and malignant skin lesions, motivates the application of meaningful node features
given by their color, shape, and texture.

HAM10000 shares structural homogeneity across all classes. Unlike natural
image datasets, where objects possess distinct geometric features, dermatolog-
ical lesions appear as blob-like regions without a consistent structure. The ir-
regular structure in skin lesions reduces the importance of position encoding,
which is often critical in image-based classification. This characteristic aligns
well with GNNs on graph-level tasks, which naturally handle nodes permutation-
invariantly.

4.2 Image-to-Graph Transformation

The intuitive image-to-graph transformation, as detailed in Section[3] is generally
impractical due to the sheer amount of pixels in high-resolution images.

Hence, the solution explored in our approach is to partition the image into
segments of pixels with a segmentation algorithm such as Patch-based decom-
position, as visualized in Figure With this method, the image is divided into
a grid of non-overlapping patches S = {S; | i = 1,2,...,n}, where each patch S;
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Fig.2: HAM10000 melanoma image, segmented @ as patches and (]EI) with
SLICO, followed by edge construction via RAG, KNNg and KNNj..

is a rectangle of size P x P pixels with |H/P] - |W/P| = n. Another technique
is using a superpixel algorithm, specifically Simple Linear Iterative Clustering
(SLIC) [1], to segment images, commonly in the context of graph classification
on images [28|. This algorithm assigns pixel coordinates (z,y) € [W]x [H] to seg-
ments S; through local k-means over a five-dimensional vector space of the pixels’
color and spatial features. We utilize a variant of SLIC, SLIC-zero (SLICO, see
Figure, which dynamically chooses the compactness parameter that controls
the weight between the color and spatial distance for each superpixel.

The resulting segments S = {S1,...,5,} can then be used to construct the
nodes of the graph V = {vy,...,v,}. Subsequently, different edge construction
techniques are used to connect these nodes. The Region Adjacency Graph (RAG)
is built analogously to the grid graph. For any two pixel coordinates (z,y), (z',y’)
of differing segments S;,S;, and connectivity D, if ||(z,y) — (z/,¢')| < VD we
connect the nodes v; and v;. A connectivity of 1 and 2 leads to 4-connected and
8-connected neighborhoods, respectively. Assuming pre-computed node features
from the feature extraction process, a more efficient approach is using k-nearest
neighbors (KNN) on features such as spatial centroid coordinates (KNNj) or a
combination of these coordinates with mean color values (KNNy,). For our work,
all edges are set to be undirected.

Descriptive features are extracted from the image segments to enable com-
prehensive learning of visual patterns. These features transform the raw pixel
values of segmented regions into a concise set of numerical attributes. We cat-
egorize relevant visual information into three types, which are evaluated both
independently and in combination: color, texture, and shape. For color-based
node features, we assign each node the mean color, standard deviation, and
skewness of the pixel intensities within its segments in the RGB, HSV, and
CIELAB color spaces. Texture features are derived from the Local Binary Pat-
tern (LBP) [24] with P = 8, R = 1 and the Gray-level Co-occurrence Matrix
(GLCM) [16] on contrast, dissimilarity, energy, correlation, and homogeneity
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Fig. 3: Virtual nodes used on HAM10000. Segmented nodes are each connected
to the lesion node, which in turn is connected to the skin node.

at angles {0°,45°,90°,135°}. Moreover, we extracted a total of 38 translation-,
scaling-, and rotation-invariant moments proposed by [I1] as shape features.

Since the HAM10000 dataset includes bitmasks, isolation of skin lesions is
feasible. This process is clinically relevant due to its simplified ABCDE schema
application. However, it also results in the loss of information from the surround-
ing skin tissue. To address this limitation, we introduce two virtual nodes: v,
and v,. Node v, represents the isolated skin lesion, while node v, represents
the surrounding skin tissue. Both virtual nodes possess an identical number of
node features as those derived from the image segmentation method. As illus-
trated in Figure @ node v, is connected to all other nodes, serving as a global
communication hub. In contrast, node vy is linked only to v,.

4.3 Graph Anomaly Detection Methods

Next, we evaluated the three best-performing state-of-the-art GLAD models
from the most recent graph-level anomaly detection benchmark [37], namely
SIGNET [19], CVTGAD [18], and OCGTL [27] on the obtained graph rep-
resentations. SIGNET is a contrastive learning-based approach that optimizes
bottleneck subgraphs by enhancing shared structural information across graph
views while suppressing irrelevant details. Similarly, CVTGAD extends con-
trastive learning to both node and graph levels using a simplified transformer
with cross-view attention. Finally, OCGTL is an ensemble of K + 1 feature ex-
tractors with a two-part objective function. Each normal graph embedding is
mapped to a minimal hypersphere through the one-class classification objective
Locc(G) = 25:1 IGINg(G) — cl|, while the contrastive loss LgTL(G) between
embeddings of GINg and {GIN;}£ | ensures relevance with diversity.

Motivated by [29], we similarly extend the one-class classification objective
of OCGTL to enable a semi-supervised approach to subsequently evaluate the
impact of (weak) supervision. Given the original loss function in [27]:

Locarr = Eg[Locc(G) + LaTL(9)),

where Eg[] is the expectation over the distribution of G, we modify it such that
training maximizes the distance between labeled anomalies and the center:

Eg[Y ey IGINL(G) — ] 7 + Larn(9)], y=—1

[/ emi- = ’
Semi-OCGTL {Eg[ﬁocc(g) + Latn(6)], otherwise
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Here, y € {—1,0,1} corresponds to labeled anomalies, unlabeled samples, and
labeled normal samples, respectively. We apply semi-supervision exclusively to
OCGTL, as extending the other models requires modifications to their architec-
ture, e.g., adding a separate classification head, implementing one-class classifi-
cation, or introducing a reconstruction-based loss term.

5 Experiments

To rigorously evaluate the various combinations of image-to-graph transforma-
tions and graph-based anomaly detection methods introduced in Section [4 we
first construct two types of graphs on every lesion image, namely patch-based
graphs, where each image is divided into a non-overlapping 4 x 5 grid of 20
patches, as well as superpixel graphs, with SLICO segmentation using n = 20.
Each strategy is evaluated with and without virtual nodes and the provided
ground truth segmentation masks.

For both segmentation strategies, we evaluate edge construction via Region
Adjacency Graphs (connectivity = 2) and k-nearest-neighbor graphs based on
spatial adjacency with and without color similarity (k = 6). Node features span
the categories from Section from basic color statistics to advanced texture
and shape descriptors (see Appendix [A| for more details on the specifics of the
image-to-graph transformations). All anomaly-detection models introduced in
Section[f.3]are evaluated, each with a lightweight backbone of two GIN layers and
hidden dimension = 16, to mitigate the well-known issue of over-smoothing [30]
on these small graphs. Details regarding specific hyperparameters are provided
in Appendix [B]

5.1 Experimental Setup

We employ five-fold class-stratified cross-validation on the official HAM10000
training set with a fixed random seed. In each split, four folds (=~ 80%) form
the training set, and the remaining fold (=~ 20%) is held out for testing. We
frame anomaly detection as one-vs-rest: nevus is “normal”, with other lesion
types (melanoma, basal cell carcinoma, etc.) being “anomalous”.

For the unsupervised experiments, we trained each model exclusively on ne-
vus samples from the training folds, ignoring the anomalous samples. Evalu-
ation then proceeded on the entire test fold. Motivated by literature indicat-
ing that even a small fraction of labeled anomalies can substantially improve
performance [I5], we also explored two supervised regimes applying the semi-
supervised adaptation of OCGTL under identical conditions. For weak super-
vision, we retained random samples of anomalies (in addition to all nevus ex-
amples) from the training folds, s.t. the respective training folds comprised of
5% labeled anomalies. For full supervision, we included every labeled anomaly
from the training folds alongside the nevus samples. Contrary to classification,
we still do not differentiate between anomalous classes.
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ParcH SLICO
RAG KNN; KNN.. RAG KNN; KNNg.

RGBave 70.9£2.4 71.842.2 66.5£2.3 66.8+3.4 64.4+2.0 64.94+3.7
Color  74.2+2.0 72.5+1.8 70.9+2.0 73.0+1.8 71.84+2.0 72.3+1.4

Features

\l\;lgsi X Texture 68.3£2.4 69.2£1.6 66.9£1.9 68.2+1.8 67.6+£2.2 67.5+1.6
Shape — — — 59.6£1.2 55.1+1.4 55.9+£1.7
All 73.8£3.0 75.0+£2.3 70.9+£1.5 72.4+1.6 71.4+1.4 71.2£2.1
RGBaveg 68.7£2.4 67.7£3.0 67.7£2.0 72.8+£2.2 71.7+2.5 70.2+2.9
Mask v Color  69.54+1.3 69.3+1.6 70.24+1.5 80.6+1.6 77.5+1.9 78.6+1.7
VN v Texture 59.44+1.6 59.74+3.0 61.3£2.0 66.5£2.0 63.6+£2.1 64.6+1.6
Shape — — — 59.2£1.9 59.7£1.4 60.4+1.5
All 69.5+£1.8 71.3+2.3 71.3+1.7 76.9+1.7 75.4+1.8 76.6+1.3

Table 2: Mean AUC-ROC and SD values in % per image-to-graph transformation
pipeline across all GLAD models, averaged over all splits. Best performance per
column in bold, best performance per row underlined. For the features, All’
corresponds to the complete feature set.

All models are trained for 20 epochs with Adam (learning rate = 0.001) and a
batch size of 128. To counter the curse of dimensionality, we apply PCA to each
feature set (except for RGBayg) prior to training, retaining 95% of the variance;
this reduces computational cost while preserving the informative signal.

5.2 Performance Comparison

In the following, we analyze how image-to-graph transformation pipelines, GLAD
models, and supervision levels influence the image-level AUC-ROC performance
(reported in %). Analogous plots and tables for AUC-PR, along with the exact
per-configuration results, are provided in Appendix [D} For patch-based segmen-
tation, shape features are excluded, as they are not informative.

Table 2] summarizes performance by graph-construction pipeline, averaged
over all GLAD models and data splits. In this table, combinations with Mask
but without VN are omitted, as their performance was generally similar to or
worse than the corresponding VN variant; detailed plots including these variants
are provided in Appendix [D} For SLICO, using both VN and Mask yields bet-
ter performance, whereas for Patch, the configuration without either performs
best. RAG is (bar one exception) the strongest edge-construction strategy with
SLICO, with no clear winner for Patch-based segmentation. Node feature choice
has a pronounced effect: Color alone is the strongest single feature set (appearing
in all three top average configurations) and performs comparably to variants that
additionally include Texture and Shape. However, the benefit of adding Texture
and Shape depends strongly on supervision and the GLAD model. The complete
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Fig. 4: AUC-ROC performance distribution including median, lower quartile, and
upper quartile per GLAD model, as well as mean and SD, across all image-to-
graph transformations.

feature set substantially improves the best unsupervised method (SIGNET) and
all supervised OCGTL variants in the absence of virtual nodes and segmentation
masks.

Performance differences across GLAD models and supervision regimes are
substantial. Figure[d]shows the distribution of AUC-ROC values across all image-
to-graph pipelines and data splits. In the unsupervised setting, SIGNET achieves
the strongest average performance, while the overall best result is obtained with
OCGTL. With Mask and VN, SIGNET reaches up to 77.4 £ 1.4 and OCGTL
80.5 £ 1.9; without Mask and VN, the respective values are 72.0 £+ 1.2 and
68.1 &+ 2.2. In comparison, CVTGAD attains up to 66.8 + 5.1 with Mask and
VN, and 66.4 + 3.8 without either. Notably, with the complete node feature
set, SIGNET is relatively insensitive to the segmentation and edge-construction
choices. Under weak supervision with only 5% anomalies in the training set,
OCGTL improves to 87.2 £ 0.6, and in the fully supervised setting it reaches
91.4 + 0.2. In general, the supervised variants benefit less from VN and Mask
but more from the complete feature set.

To contextualize these findings, a recent study [6] reports image-level AUC-
ROC scores for a variety of image-based anomaly-detection methods employing
ImageNet-pretrained feature extractor backbones on the ISIC2018 dataset [7]
(with HAM10000 constituting its training set, and all images originating from
the same source). The results are obtained under unified evaluation protocols
and averaged over three independent runs per method. The authors adopt the
same one-vs-all setup, using nevus as the normal class and the other six classes
as anomalies, with training conducted on 6,705 normal images and testing on
1,512 images (909 normal, 603 anomalous). Here, the best reconstruction-based
method configuration achieves an AUC-ROC of 79.2 + 0.6, while the best self-
supervised configuration reaches 80.7 £ 0.5. This places our best unsupervised
GLAD configuration with Mask and VN (OCGTL with RAG+SLICO+Color,
80.5 £ 1.9) within the range of the strongest image-based baselines on a closely
comparable task definition.
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Fig. 5: Total runtime (scaled 1:21) for each graph transformation on the
dataset. (b)) Average model runtimes per dataset split (train & inference) (c)) Fea-
ture counts for feature sets and when reduced via PCA, across all runs.

5.3 Efficiency Analysis

In addition to anomaly detection performance, the runtime of both models and
pre-processing steps is crucial for practical applicability. To contextualize these
values, Appendix [C] provides details on the execution environment.

Figure [5a] shows the average time required for each step of the image-to-
graph transformation pipeline when converting the whole HAM10000 dataset
to graphs. While the division into patches takes virtually no time, the segmen-
tation via SLICO averages approx. 19 minutes. Edge creation, performed after
computing spatial and color node features, is negligible for KNN and under
one minute for RAG. Node feature extraction varies more substantially: average
RGB and texture features require only 2-3 minutes, whereas general color and
shape features take on average 25 and 28 minutes, respectively.

Strictly converting each image into a graph with an average of 20 nodes
and up to 94 features (depending on the feature set) drastically reduces the
feature dimensionality per image. Figure |bc| provides an overview of the original
number of features per feature set and the average reduced size after applying
PCA to respective node segmentations included in the experiments. Notably, the
performance reported in Section [5.2] was achieved with a maximum of just over
20 features per node. This compression corresponds to a feature dimensionality
per graph representation of roughly 400 on average, compared to the original
600 x 450 = 270,000 pixels per image.
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Beyond reducing memory requirements, the image-to-graph conversion also
constrains model complexity and runtime. Hence, runtimes on these graph repre-
sentations are modest: the average total runtime per dataset split (train + test)
across all GLAD models ranges between 1 and approx. 2 minutes (Figure .

5.4 Limitations

Due to the focus on HAM10000, our study is constrained by its focus on a single
medical domain, where benign intra-class lesion variability can closely resemble
genuine anomalies, and image artifacts (such as calibration markers) remain
unmodeled. The competitiveness of these approaches on higher resolution images
of the same domain, for example, the data set of the ISIC Challenge 2024 [17],
also remains to be explored. Moreover, we have yet to directly compare our two-
step graph-based pipeline with pixel-level anomaly detectors or fully end-to-end
image-to-graph methods under a unified experimental setup, which would clarify
their exact relative runtime efficiency and detection performance. Finally, we
did not systematically explore alternative hyperparameter configurations, opting
instead for sensible default values.

6 Conclusion and Outlook

In this work, we systematically evaluated the impact of graph-structured rep-
resentations on image anomaly detection using the HAM10000 dermatoscopic
image dataset. Our findings demonstrate that simple region-based graph ab-
stractions, with drastically reduced feature dimensionality, not only significantly
reduce runtime and overall dependence on pretrained models but can also achieve
performance competitive to image-based models in specific domains. While high-
lighting the potential of graph-based approaches, several avenues remain to in-
vestigate further application potentials and enhance performance.

Image datasets with more heterogeneous and higher-resolution content could
benefit from more sophisticated node segmentation and feature extraction ap-
proaches. This approach may involve applying off-the-shelf, pretrained segmen-
tation networks coupled with lightweight, pretrained deep feature extractors on
each node region. Furthermore, we see promise in exploring more sophisticated
edge construction methods, along with the inclusion of edge features that capture
richer relationships between nodes. For instance, incorporating geometric prop-
erties, such as distances or angles between nodes or higher-order relationships,
could provide additional context that enhances anomaly detection performance.
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A TImage-to-Graph Transformation Details

We applied two segmentation methods to each 450 x 600 HAM10000 image: di-
viding the image patch-based into a 4 x5 grid (20 patches) and SLICO superpixel
segmentation with n = 20 segments. We then extracted edges via two strategies:
a region adjacency graph (RAG) with connectivity = 2 and a k-nearest-neighbor
graph with k = 6 (either based strictly on spatial or spatial and color similarity).
Given two centroid coordinates (x;, y;), (z;,y;) € [W]x[H], and their mean RGB
values (1, gi,bi), (5, 95,b5) € {0,...,255}3, the spatial distance is calculated as:

dspatial = ||(xuyz) - (xjvyj)” )

and the spatial-color distance as:

2 * 3

o (qu)

\f \f \f V3'V3 V2 V2 \f f f
The full dataset yielded roughly the same average node and edge counts, as seen
in Table [3

Qo atial—ool _\/(zz‘—l‘jV*—(yi—yj)Q (ri —75)% + (9i — g5)* + (bi — b;)?
spatia color —

Mask  [Vlovg [Vimin  [Vimax  [E[E €l [Elave™

avg

Patch X 20.00 20 20 86.00 144.00 139.75
v 20.00 20 20 86.00 144.00 140.37
SLICO X 19.97 16 20 86.00 143.66 142.02
v 19.99 17 21 88.24 142.22 140.49

Table 3: Graph Metrics for the transformed HAM10000 dataset.

B GLAD Model Parameterization

All models were trained using the same learning rate, number of epochs, batch
size, and optimizer settings as detailed in Section [5.I} We uniformly set the
hidden dimensionality to 16 and employed two GIN message-passing layers across
all architectures. For OCGTL, we additionally evaluated two semi-supervised
variants: one in which anomalies comprised 5% of the overall training set and
another that included all available anomalous samples from the training split.
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Model-specific configurations were chosen to highlight each method’s de-
fault configuration biases. CVTGAD employs a global mean-pooling readout
and maintains a 16-dimensional embedding in its feature-view encoder, while its
structure-view encoder uses a 32-dimensional hidden space. SIGNET, by con-
trast, uses its default sum-pooling aggregation. Finally, OCGTL stabilizes its
one-class objective via an ensemble of one reference feature extractor and five
additional feature extractors.

C Execution Environment

All experiments were performed on Ubuntu 22.04.3 LTS running on an Intel®
Xeon® W9-3495X processor (48 cores, 96 threads; 3.4 GHz base, 4.5 GHz turbo)
and a single NVIDIA RTX™ 6000 GPU (Ada; 48 GB GDDR6 ECC; CUDA
12.0). The timings for image-to-graph transformations and GLAD models were
obtained using single-core execution and single GPU utilization to ensure a fair
comparison.

D Additional Performance Comparison

To complement the main results, Figures [6] and [7] provide an overview of the
AUC-ROC performance across different image-to-graph transformation pipelines
for the different GLAD models and supervision regimes, respectively. These fig-
ures visualize the relative impact of segmentation method, feature set, edge
construction, and the use of segmentation masks and virtual nodes. In addition
to the AUC-ROC analysis in the main paper, Table [d] and Figure [§ provide the
corresponding AUC-PR versions of their counterparts in Section [5.2] Moreover,
Tables 5] and [6] present the complete AUC-ROC results, while Tables [7] and [§] list
the corresponding AUC-PR values for each individual experiment.
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Fig.6: AUC-ROC across image-to-graph pipelines for the three unsupervised
GLAD models (OCGTL, SIGNET, CVTGAD). Each row shows one model with
an identical x-layout (segmentation via Patch/SLICO, grouped by features).
Lines encode the use of segmentation masks (Mask) and virtual nodes (VN);
markers encode edge construction (RAG, KNNy, KNN,.); shaded bands indicate
+10 over splits.
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Fig.7: AUC-ROC across image-to-graph pipelines for OCGTL under three su-
pervision regimes (Unsupervised, Weakly Supervised, Fully Supervised). The
visualization mirrors Fig. [6} rows correspond to supervision levels; lines encode
the use of segmentation masks (Mask) and virtual nodes (VN); markers encode
edge construction; shaded bands show +10.
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Parcu SLICO
RAG KNN; KNN.. RAG KNN; KNNg.

RGBave 52.1£2.7 52.3£2.2 47.7£2.5 48.5£3.6 46.7£2.7 46.5+3.3
Color  58.14+2.2 54.64+1.9 53.74+2.2 56.24+2.2 54.34+2.8 55.7+1.8

Features

\h//vlgsi X Texture 50.9£2.6 51.5£1.9 50.2+2.3 52.1£2.0 51.6+3.0 51.0+1.8
Shape — — —  41.7+1.3 38.0+1.1 38.7£1.7
All 59.0£2.3 59.3+£2.4 56.6+2.0 56.9+1.7 55.94+1.8 56.1+2.0

RGBaveg 53.6+£2.2 53.2+2.3 52.2+2.6 59.1+2.4 56.5+3.0 54.2+3.2
Color  55.64+1.7 55.3+2.2 55.64+1.5 66.94+-2.5 63.11+-2.3 64.11+-2.4

¥N 1}/ Texture 42.74+2.1 42.54+2.9 43.6£2.1 51.0£2.3 46.7+2.2 47.3+1.8
Shape — — —  41.3+£2.0 41.5+1.5 41.9£1.7
All 55.7+1.9 56.94+2.7 57.3+1.9 63.6+£1.8 61.2+2.3 62.0£1.8

Table 4: Mean AUC-PR and SD values in % per image-to-graph transformation
pipeline across all GLAD models, averaged over all splits. Best performance per
column in bold, best performance per row underlined. For the features, All’
corresponds to the complete feature set.
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Fig.8: AUC-PR performance distribution including median, lower quartile, and
upper quartile per GLAD model, as well as mean and SD, across all image-to-
graph transformations.
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SIGNET CVTGAD OCGTL

Features PATCH SLICO ParcH SLICO Parcu SLICO

RAG KNN; KNN,., RAG KNN; KNN,. RAG KNN; KNN,, RAG KNN; KNN,. RAG KNN; KNN,., RAG KNN; KNN,.

RGBavg 49.7£3.5 47.740.9 49.5+1.6 48.844.0 49.443.3 49.1+£2.9 44.643.4 47.14+3.8 34.7+4.6 39.042.8 40.042.8 38.8+£4.7 42.64+2.8 45.9+1.8 37.7+£0.9 37.74+1.7 35.7+1.7 36.4+1.4
Mask X Color  48.843.1 47.241.8 50.0+2.3 52.142.8 52.14+3.9 53.9+2.4 48.34+3.4 45.41+2.6 43.3+3.5 43.643.1 42.3+3.6 44.8+2.4 47.442.7 44.3+1.7 38.7£0.8 43.141.1 40.5+0.9 39.5+1.6
VN X Texture 46.2+4.7 49.041.3 48.5+1.8 51.942.2 53.443.9 52.043.8 40.4£1.7 40.441.2 34.6+0.9 37.942.1 40.2£4.8 37.94+1.5 36.8+2.2 40.743.0 40.0£3.5 37.24+2.3 37.9£1.8 38.2+1.0
Shape — — —  38.1%£1.537.1£1.2 374422  — — —  36.2£1.4 32.6+0.4 32.7£1.6 — — —  39.0£1.0 34.542.0 34.7£1.7

All 53.242.9 52.943.7 53.5+2.8 54.7+1.2 53.3+0.5 54.9£1.1 37.2+4.3 40.6+1.3 34.0+1.4 37.1£2.2 39.84+3.3 39.243.6 45.3+2.2 46.0+4.4 39.8+3.3 42.54+2.1 40.1£2.0 40.2+2.4

RGBavg 65.7£1.7 65.54+2.1 64.7+2.1 65.443.1 63.0+2.8 63.0+£2.5 33.742.1 38.0+4.1 34.8+2.3 39.6+4.3 42.945.3 39.4£3.4 32.941.2 32.040.6 34.6£1.3 41.541.7 41.9+3.1 37.4£3.1
Mask ¢ Color  63.242.8 62.443.2 61.5+2.3 66.242.7 66.51+2.2 66.4+1.4 34.941.8 33.41+3.3 36.2+2.0 48.4+4.1 43.6+3.9 42.0+£4.3 36.441.0 38.4+1.7 38.4+0.9 62.14+4.1 53.3+3.1 58.7+4.3
VN ¢ Texture 43.0+1.9 39.743.6 40.642.0 45.2+2.1 44.0£3.2 45.34:2.5 32.7+1.3 33.1£1.9 37.542.5 35.1+2.5 35.0£2.0 35.341.5 33.0+1.4 34.9£2.2 35.740.5 45.0+2.6 38.9£2.4 39.7+1.3
Shape — — —  37.14£2.2 36.9£0.6 37.3£1.9 — — — 351424 37.440.7 35.3£1.8 — — —  38.6+1.7 40.9£+1.7 40.8+1.6

All 61.0£2.5 59.743.3 60.6+1.9 64.242.6 62.0£3.5 64.64+2.9 38.6+2.9 41.043.7 39.4+1.7 40.3+1.2 38.0£2.0 39.0+1.4 33.3£1.7 41.042.6 42.8+3.4 54.6+3.9 50.8+4.0 51.84+2.4

Table 7: Unsupervised mean PR-AUC and SD values in % on normal class “nv” by GLAD method, averaged over all splits.

OCGTL (WEAKLY SUPERVISED)

OCGTL (FUuLLY SUPERVISED)

Features ParcH SLICO Features PaTCH SLICO
RAG KNN. KNN.. RAG KNN. KNN.. RAG KNN. KNN.. RAG KNN. KNN..
RGBavg 56.12.8 55.942.9 51.8%3.4 49.446.9 44.7-£2.8 45.8-£5.2 RGBayg 67.5+1.2 65.041.5 64.941.8 67.642.3 63.5-£2.6 62.5+2.1
Mgk x Color  66.91.0 59.542.4 595527 64.143.4 60.7+3.9 63.6::1.8 Viack x Color  T8.9H0.0 76.041.1 77.041.7 78.040.7 76.1:61.6 76.6:60.8
v Texture 62.1:£2.3 59.642.0 59.241.8 61.3+2.0 57.143.2 57.6+1.3 Vx| Texture 68.9+2.0 67.0+2.1 68.622.1 72.0+1.6 69.2::1.3 60.441.4
Shape — 43.3+1.9 38.040.8 38.9+1.8 Shape  BLOE0.7 47.8+1.0 49.7+1.1
Al 75.741.2 75.3+1.8 73.841.8 69.312.2 67.242.4 66.7+2.5 Al 83.441.0 81.6+1.0 81.7-0.8 80.70.7 79.0-0.8 79.6:£0.4
RGBavg 63.5+4.1 58.343.5 55.344.6 69.7-1.8 62.9-+-2.2 56.8-£6.3 RGBavg 72.4+2.1 72.341.4 71.842.6 79.241.0 71.7-1.4 T4.5+0.6
Mas o COlor 69315 685513 67.941.3 T5.341.2 72.3+1.9 T2.741.4 Moy COlor  TBOE14 T35E1.3 740412 82.440.5 79.6+0.6 80.9-60.7
Vs Texture 46.943.7 46.6:4.3 45.7:£2.9 58.8+3.1 52.TEL6 53.2£1.6 Ve Texture 57.942.1 58.12.6 58.4:£2.5 T0.8£1.2 62.9+2.0 63.0+2.2
Shape 134422422428 42.8+1.1 Shape  B2AL1.749.941.4 53.542.0
Al 71.04+1.2 69.742.7 69.241.5 77.21.0 75.0+1.2 73.7+1.7 Al 74.441.1 73.2441.4 74.340.9 81.9+0.4 80.1+0.8 80.810.8

Table 8: Weakly and fully supervised (5% and 33.1% labeled anomalies) mean
nv” by GLAD method, averaged over all splits.

PR-AUC and SD values in % on normal class
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