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Abstract. We study the problem of query-efficiently minimizing peak-
less functions on graphs. Peakless functions are a notion of convex func-
tions on the nodes of a graph and are defined by having no local “peaks”
along any shortest paths. We demonstrate that peakless functions form
a rich class and are non-trivial to optimize on chordal graphs. Further,
we show that these functions can be minimized using at most 4Alogn
queries on graphs with n nodes and maximum degree A, where each
query reveals the function value of a selected node. We complement this
result by providing a nearly matching lower bound on the query com-
plexity of Q(ﬁ logn).
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1 Introduction

We study query-efficient optimization of functions defined on the nodes of a
graph under convexity assumptions. While the network structure is often read-
ily available, querying function values can be costly. Query-efficient algorithms
address this problem by querying only informative nodes. Existing approaches
leverage ideas from Bayesian optimization [2,10,13,15] to solve problems like
detecting patient zero in infection networks, identifying bottlenecks in infras-
tructure networks, and analyzing social networks. However, they lack theoretical
guarantees regarding their query complezity, i.e., the number of function evalu-
ations required to find the minimum of a function. To close this gap, we initiate
the theoretical study of query-efficient function optimization on graphs, where
queries select one node in the graph and get the function value of this node as
an answer.

One of the most fundamental classes of functions in continuous optimization
is convex functions. While there are multiple notions of convex functions on
graphs, they are usually defined for specific graph classes such as trees or grids,
and there is no established notion of convex functions on general graphs. In this
work, we study functions that have no peaks along shortest paths, i.e., no values
that exceed the values of both endpoints of the path. They were introduced for
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Fig. 1. Left: Example of a peakless function on a chordal graph, where the numbers
describe the function values f(v). The blue nodes form a shortest path. Hence, the
function values must be peakless along this path. Right: Example of a non-chordal
graph. The walk (v1,v2,v3, Vs, v4, v2,v1) is a locally-shortest walk but no shortest path.
The only totally convex sets are {v2,vs,vs,vs} and {v1,ve2,vs,v4,vs}, which implies
that v; can only be minimal for constant peakless functions on this graph.

graphs as peakless functions by Chepoi [6]. These functions generalize strictly
quasiconvex functions on graphs [1] and thus are more widely applicable. Fur-
thermore, they inherit important properties like convex sublevel sets. Our main
contributions are:

1. We show that peakless functions can be minimized with 4Alogn queries on
graphs with n nodes and maximum degree A.
2. We show that this query complexity is near-optimal by proving a lower bound

of 2 (ﬁ logn>.

2 Preliminaries

Our goal is to find a minimum of a function f : V. — R defined on the nodes of a
graph G = (V, E). Throughout this paper, we assume that graphs are connected
and undirected. We denote by n = |V| the number of nodes and by A the
maximum degree of G. For edges {u,v} € FE we write u ~ v. We denote by
d(u,v) the shortest-path distance of two nodes u,v € V. A walk is a sequence of
nodes (wg, w1, ..., W) With w; ~ w41 for all 0 <i < m — 1. A locally-shortest
walk is a walk with d(w;_1,w;+1) = 2 for all 1 < ¢ < m — 1. Note that locally-
shortest walks can have repeated nodes (as shown in the right graph in Figure 1).
A set of nodes X C V is totally convex if it contains every locally-shortest walk
in G whose endpoints are both in X.

We want to optimize f efficiently, that is, with as few function evaluations as
possible. We call the minimum number of queries required to minimize a fixed
but unknown function the query complexity. Since obtaining a non-trivial query
complexity is impossible for arbitrary functions, we assume some properties of
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the function f. We say that f : V — R is peakless [6] if for all u,v,w € V
with u ~ v ~ w and d(u,w) = 2 it holds that f(v) < max(f(u), f(w)), with
equality holding only if f(u) = f(w). Equivalently, f is peakless if f(v;) <
max(f(vo), f(vm)) holds for all shortest paths (vg,...,vy) and 1 < i < m — 1,
again with equality holding only if f(vg) = f(vs). The left graph in Figure 1
shows an example of a peakless function. As shown by Chepoi [6], totally convex
sets correspond to sublevel sets of peakless functions. More precisely, aset X C V'
is totally convex if and only if it is a sublevel set {v € V' | f(v) < a} of some
peakless function f with « € R. A graph is chordal if every cycle of length greater
than three has a chord, i.e., an edge connecting two non-consecutive nodes.

A related problem is graph search with edge queries. Given a graph, the goal
is to find a target node ¢t € V. The algorithm can ask edge queries {v1,v2} € E,
and an oracle returns the node u € {vy,v2} which is closer to ¢ (with ties broken
arbitrarily). We also say that w is the oracle answer in this case. This problem
was first studied for trees [3,8]. Later Dereniowski et al. [7] showed that 2Alogn
queries are sufficient for general graphs.! By establishing a connection between
peakless optimization and graph search, we can use their algorithm to minimize
peakless functions. The algorithm uses the following idea: First, initialize the
weight p(v) of all nodes v € V' with 1. Then, iteratively query an edge

{u,v} € argmin Z p(w) min(d(u, w), d(v, w))
{uv}eRE weV

with minimum summed distance to all nodes, weighted by u. After receiving the
node u closer to the target as the oracle answer, decrease the weight of all nodes
that are closer to the other endpoint v by a fixed fraction. When a node has
more than a ﬁ fraction of the total weight, query all incident edges to check
whether this node is the target.

3 Optimizing Peakless Functions

We start this section by showing that peakless functions form a diverse class
of functions on chordal graphs and are non-trivial to optimize. In the second
part, we show that peakless functions can be optimized efficiently on general
bounded-degree graphs.

3.1 Peakless Functions on Chordal Graphs

Since constant functions on any graph are peakless, every graph admits peakless
functions. However, some graphs only admit constant peakless functions. This
is because all sublevel sets must be totally convex. For example, on cycle graphs

! Dereniowski et al. [7] consider various noisy settings. In their Theorem 7, they show
that with linearly bounded error and precision parameter ¢ € (0, 1], the target can
be found with 2e 2Alogn queries. Setting ¢ = 1 for the noiseless case yields the
bound we use.
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with more than three nodes, the only non-empty totally convex set is V' (the
set of all nodes). Hence, these graphs only admit constant peakless functions.
Moreover, many other graphs (such as the right graph in Figure 1) only admit
peakless functions that can be minimized trivially without any queries. The
following lemma, which is similar to a fact observed by Chepoi [6], shows that
this is not the case for chordal graphs.

Lemma 1. Let G = (V,E) be chordal. Then, for each v € V there exists a
peakless function f:V — R with unique minimum v.

Proof. To prove the lemma, we show that every node v € V' in a chordal graph
forms a totally convex set {v}. Then, {v} is a sublevel set of some peakless
function, implying that v is the unique minimum of this function.

Assume for contradiction that there is a node v € V such that {v} is not
totally convex. Then there exists a locally-shortest v-v-walk W in G. Let ¢; be
the first repeated node on this walk. Since v is repeated, such a node must exist.
Let C = (v1,...,v,v1) be the sub-walk of W between the first and second visit
of v1. Since vy is the first repeated node, C' is a cycle. We have k > 4 because W
is a locally-shortest walk. We now show that one of the shortcut edges {v;, v; 12}
exists for some 1 < i < k — 2, contradicting the fact that W is locally-shortest.

Claim. For any cycle C' = (u1,us,...,us,u1) of length s > 4 in a chordal
graph G = (V, E) there is some 1 < ¢ < s — 2 such that {u;,u;12} € E.

Proof of Claim. If s = 4, we know that either {uy,us} € E or {ug,u4} € E
since G is chordal. Both cases imply the claim. Now, assume the claim holds for
all cycles of length r < s. Since s > 4, there exists a chord {u,,us} € F in C
for some 1 < a,b < s with b > a+ 2 and {ug, up} # {u1,us}. This yields a cycle
C" = (Ug, Ugi1, - -, Up, Ug) Of size at most s — 1. If C” is of length 3, we have
a + 2 = b, proving the claim. Otherwise, by induction, we know that one of the
edges {u;, u;y2} exists for some a < ¢ < b — 2. This proves the existence of a
shortcut edge in C’. O

The lemma implies that all chordal graphs (with more than one node) have
interesting peakless functions since they cannot be optimized without queries.
For a tighter characterization of peakless functions on chordal graphs, we can
observe that peakless functions are constant along any induced cycle with more
than three nodes. This is because an induced cycle with at least four nodes is a
locally-shortest walk, and thereby every totally convex set containing one of the
nodes must contain all nodes in the cycle. Since every sublevel set of a peakless
function is totally convex, this implies that there cannot be any peakless function
with a sublevel set that only contains some nodes of this cycle. This observation
together with Lemma 1 gives the following corollary:

Corollary 1. The following statements are equivalent for any graph G = (V, E):

1. G is chordal.
2. For each v € V there exists a peakless function f : V. — R with unique
minimum v.



Efficient Minimization of Peakless Functions on Bounded-degree Graphs 5

3.2 Query Complexity of Peakless Functions

In this section, we show an upper and lower bound on the query complexity of
peakless functions. We start by showing that we can use graph search algorithms
to minimize peakless functions in Theorem 1. Then, we show a near-tight lower
bound in Theorem 2.

Theorem 1. Peakless functions on graphs can be minimized with 4Alogn queries.

Proof. We show how we can reduce the optimization problem to a graph search
problem. The main difference is that the former uses edge queries with function
values as answers, whereas the latter uses edge queries with a direction toward a
target as an answer. We can simulate edge queries {u, v} by evaluating f at both
adjacent nodes v and v. Let f be peakless. Then, it holds for adjacent nodes u, v
and all minimizers ¢ € argmin, ¢y f(w) that f(u) > f(v) implies there cannot
exist any shortest v — ¢ path via u (because u) would be a peak), and hence
d(u,t) > d(v,t). For f(u) = f(v), the same argument yields d(u,t) = d(v,t).
This means that we can interpret f(u) > f(v) as an edge oracle answer v, and
we can interpret f(u) = f(v) arbitrarily as an answer v or w. If we run any graph
search algorithm with this simulation, the found node is a minimum of f. Since
every query requires two function evaluations, the query complexity is twice
the query complexity of the graph search algorithm. The algorithm proposed
by Dereniowski [7] needs 2Alogn queries. This implies that we can optimize
peakless functions with 4Alogn function evaluations. O

Next, we show that this strategy is near-optimal:

Theorem 2. For arbitrarily large n, A € N there exists a graph G with n nodes
and degree A such that every optimization algorithm needs at least @bgn

queries to find a minimum of a peakless function on G.

To prove the theorem, we construct a tree (similar to Ben-Asher and Archi [3] for
the graph search setting) where each strategy requires (2 ﬁ log n) queries.

We prove this by induction on the height of the tree. For simplicity, we show
that the bound even holds for the easier problem where the value of the root
node is known.

Lemma 2. Let G be a complete k-ary tree of height 1 (i.e., a star graph with
k 4+ 1 nodes). Assume that the value f(r) of the root node r is known. Then,
every strategy must query all k leaf nodes to find the minimum in the worst case.

Proof. Assume that the root node r and all leaf nodes except for one node u are
queried. In the worst case, we have f(r) < f(v) for all known leaf nodes v. Then
our only information about u is that f(r) < max(f(u), f(v)) for all other leaves
v. Since f(r) < f(v) holds for all leaves v # u, the value f(u) can be arbitrary,
and both w and r could be minimizers. a

After showing the base case of our induction, we now continue with the induction
step. For simplicity, we again assume the easier problem where the value of the
root node is known.
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Lemma 3. Let G be a complete k-ary tree of height h + 1 for some h > 1,
k > 2. Assume that the value f(r) of the root node r is known. Then, the query
complexity of every strategy is at least k — 1 plus the query complexity on a
complete k-ary tree of height h with known root value.

Proof. Assume that f has a unique minimum attained in one leaf node. Since all
subtrees adjacent to the root node without a queried node are indistinguishable
for an algorithm, we can assume, as a worst case, that the first k — 1 queries are
all in wrong subtrees, i.e., no query is in the subtree T containing the minimum.
Then, all that we know is that the target node is either the root node or within
the subtree T'. This situation is more difficult than a tree of reduced height since
we can transform it into this case by additionally querying ’. Hence, we conclude
that no algorithm can have a query complexity less than k — 1 plus the query
complexity of the tree with reduced height. ad

Proof of Theorem 2. Consider a complete k-ary tree with n nodes. Then the
height is bounded as follows:

h > Nlogy((k — )+ 1) = 1] = logy ((k — 1)n) — 1
> log,(k — 1) +logi(n) — 1 > log(n) — 1.

Using the previous lemmas, we get h(k — 1) + &k > (k —1)log,(n) — 1+ k as a
lower bound on the number of queries. Since the maximum degree is A =k + 1,

we get (A —2)logy_4(n) —1+A-1=1 (@ log n) as a lower bound. O

4 Related Work

The related work falls into two main categories: Theoretical concepts for convex
functions on graphs and empirical methods for optimizing graph functions. The
two fields are largely disconnected since the former does not address optimization
methods, while the latter lacks theoretical guarantees on the query complexity.

Discrete convex functions. Several authors [5,11,12,16] proposed different no-
tions of discrete convex functions on the integer grid Z¢. While these notions
can be transferred to (infinite) grid graphs, they do not directly generalize to
other graph classes. Hirai [9] defines discrete L-convex functions on certain re-
stricted graph classes, which they call tree-grids. The closest notion of convexity
to peakless functions is that of (strictly) quasiconvex functions [1,4,14,16]. They
were first defined on integer intervals as follows [4,16]: A function f : X — R
defined on an integer interval X C Z is quasi-convex if for all x,y € X, z # y
it holds f(z) < max(f(x), f(y)) for all z € Z with min(z,y) < z < max(z,y).
Bapat et al. [1] transferred the concept to trees. A function f : V — R de-
fined on the nodes V of a tree is quasiconvex if for all distinct u,v,w € V it
holds w ~ v ~ w implies f(v) < max(f(u), f(w)). Using strict inequality yields
strictly quasiconvex functions. Peakless functions are more general than strictly
quasiconvex functions but more restricted than quasiconvex functions. From an
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optimization perspective, this brings advantages over both classes. On the one
hand, non-chordal graphs such as cycle graphs do not admit any strictly quasi-
convex functions, which limits their applicability compared to peakless functions.
Quasiconvex functions, on the other hand, cannot be minimized efficiently even
on very restricted graph classes. For example, consider a path graph where all
nodes except for one have value 1 and only one node has value 0. Then, it is not
possible to find this node without querying all nodes in the worst case.

Bayesian optimization of graph functions. In the last few years, some authors
have started using Bayesian optimization techniques to optimize graph func-
tions. According to their paper, Baptista et al. [2] are the first to propose a
query-efficient algorithm for optimizing over discrete structured domains. Oh et
al. [13] propose a method for Bayesian optimization of discrete variables. They
define a combination graph of the variables and optimize the resulting function.
However, their method is restricted to a specific graph glass (product graphs of
multiple variables). Wan et al. [15] propose a more general method for Bayesian
optimization of graph functions, where the graph structure does not have to be
known in advance. Liang et al. [10] extend this to optimization over node sub-
sets, i.e., the goal is to find a subset of a given size with optimal value. While
these methods demonstrate strong empirical performance, none of them have
theoretical guarantees regarding their query complexity.

5 Future Work

One open question for this setting is how noise (or not perfectly peakless func-
tions) can be modeled. There exist different noise models and adversarial settings
in the graph search literature [7]. One common model is that each oracle answer
is wrong independently or adversarially with probability p < 0.5. Another model
is that an oracle has a fixed number of mistakes. Translated into the optimiza-
tion setting, both models mean that (1) the underlying function is still peakless,
but the observations are noisy, and that (2) queries can be repeated to obtain
correct answers. While this is interesting for some cases, an open question is
how the problem can be modeled for functions that are only close to a peakless
function, and where repeated queries for the same node always return the same
value.

Another open problem is the log A gap in the query complexity. While it
is known that graph search on trees is possible with @logn queries, it is
unknown whether this also holds for general graphs.

A third interesting open problem is to extend the analysis to graphs which
are not completely known in advance, as assumed by Wan et al. [15]. In this
case, the classical graph search algorithms (for example, [7,8]) do not work since
they rely on computing a central edge. Dereniowski et al. [7] took a first step in
this direction by investigating graph search in unbounded integer ranges.

Finally, experiments on real-world data and an empirical comparison with
Bayesian optimization techniques are interesting to investigate the applicability
of our results.
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6 Conclusion

In this paper, we theoretically studied the query-efficient minimization of peak-
less functions on graphs. We showed that all chordal graphs admit interesting
(i.e., non-trivial to optimize) peakless functions. This extends the previously in-
vestigated notion of strictly quasiconvex functions, which are only defined on
trees. As our second main result, we showed that peakless functions can be effi-
ciently minimized on bounded-degree graphs. We also showed a lower bound on
the query complexity. The bounds are near-tight, only a gap of log A remains.
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