
Do We Need Curved Spaces? A Critical Look at
Hyperbolic Graph Learning in Graph

Classification

Dionisia Naddeo1, Tiago Azevedo3, and Nicola Toschi1,2

1 Department of Biomedicine and Prevention, University of Rome, Tor Vergata Italy
2 A.A. Martinos Center for Biomedical Imaging, Harvard Medical School Boston USA

3 Department of Computer Science and Technology, University of Cambridge

Abstract. Hyperbolic geometry has gained attention for its ability to
naturally embed hierarchical and tree-like structures with low distor-
tion, outperforming Euclidean spaces in various graph representation
tasks. While previous work has demonstrated the advantage of graph
neural networks embedding in hyperbolic space for link prediction and
node classification, the benefits for graph classification, and especially
the role of node features, remain less understood. These studies typi-
cally attribute the benefits of hyperbolic models to the hierarchical or
tree-like nature of graph structures, often neglecting the important role
that node features play in leveraging these geometric advantages. With
this in mind, we design an experiment specifically aimed at evaluating
the interplay between geometry and node features in graph classification,
creating a dataset composed exclusively of tree-structured graphs. Each
graph is generated by sampling the number of children per node at each
level from a predefined range of branching factors, which varies across
levels. The dataset defines two distinct classes based on these branching
factor patterns. Node features are either random, structural embeddings
obtained via node2vec (using BFS-biased walks), or layout-based embed-
dings derived from kamada-kawai, which provide a strong hierarchical
prior. We evaluated and compared graph neural networks with node em-
beddings learned in different geometries — hyperbolic vs. Euclidean —
in low-dimensional latent spaces. Results show that Euclidean models
consistently outperform hyperbolic models across all feature types. This
suggests that the advantage of hyperbolic geometry does not stem solely
from alignment with global graph structure. These findings call for a
critical reassessment of hyperbolic models in supervised tasks where pre-
serving graph distances is not essential.

Keywords: Hyperbolic Graph Learning · Graph Neural Networks · Lorentz
Model · Synthetic Dataset

1 Introduction

In network science, hyperbolic spaces have emerged as powerful tools for em-
bedding hierarchical data. Such data often exhibit a tree-like structure, where

2 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

entities are organized in levels, originating from general to specific categories,
or from parent to child nodes. Trees naturally model these hierarchies, making
them a canonical example of hierarchical structures.

Early studies have shown that hyperbolic geometry can outperform its Eu-
clidean counterpart in capturing such structures within the Poincaré [14] and
Lorentz [15] models, and the Lorentz model often achieves superior empirical
performance. This advantage comes from a fundamental geometric property:
the metric structures of trees and hyperbolic spaces are aligned [9]. In tree-like
graphs [18], the number of nodes increases exponentially with distance from the
root, and hyperbolic space mirrors this property, as both the circumference of a
circle and the area of a disk grow exponentially with radius. Consequently, hy-
perbolic geometry offers a natural setting for embedding trees and hierarchical
graphs, particularly in low-dimensional spaces: while a tree can be embedded
with low distortion in a two-dimensional hyperbolic manifold, this is generally
not possible in Euclidean space of the same dimension because the volume of a
disk, i.e. the number of points reachable within a certain radius, grows polyno-
mially, as rd, where d is the dimension of the space. However, as the dimension
increases, trees can be embedded with less distortion.

Building upon these insights, subsequent research has extended Graph Neu-
ral Networks (GNNs)—particularly graph convolutional architectures—into hy-
perbolic space, with the aim of modeling graphs that exhibit tree-like struc-
tures more effectively. Much of this research has focused on link prediction and
node classification tasks [2, 12, 20], demonstrating that hyperbolic embeddings
can preserve graph topology with low distortion. While most existing works at-
tribute the advantage of hyperbolic space to the hierarchical nature of the graph
structure, they often overlook the role of node features. Specifically, graph convo-
lutions operate primarily on node features, effectively treating them as proxies
for the nodes themselves. However, in a geometric context, it is important to
recognize that the benefits of hyperbolic embeddings only hold when nodes are
embedded explicitly with respect to their original graph distances. Therefore,
the modeling of node features should also be investigated with precision [7].

This limitation is partially mitigated in link prediction, where the use of
the Fermi-Dirac decoder [9] encourages node embeddings to reflect the geodesic
structure of the graph. By assigning higher edge probabilities to node pairs that
are closer in hyperbolic space, the decoder promotes meaningful separation of
embeddings based on graph connectivity.

However, in graph classification tasks, node features are typically aggregated
to form a graph embedding - either directly in hyperbolic space or after being
mapped to Euclidean space, for example, by distances to learnable centroids [13,
16] - and then passed to fully connected layers for prediction. In addition, stan-
dard graph classification objectives, such as binary cross-entropy loss, optimize
label accuracy but do not explicitly encourage the preservation of the graph’s
topological or hierarchical structure in node embeddings. It is therefore not ev-
ident why hyperbolic representations should offer an advantage for graph-level
tasks where tree-like structure is not explicitly enforced during training unless

A Critical Look at Hyperbolic Graph Learning in Graph Classification 3

node features themselves encode such hierarchical relationships. In light of this,
our aim is to investigate how hyperbolic graph models behave when node features
explicitly encode, or do not encode, the hierarchical structure of the graph.

In this work, we design an experiment to evaluate hyperbolic GNNs for
graph classification by introducing a novel benchmark data set of synthetic tree-
structured graphs. Previous research [7] proposed a tree-like dataset primarily
intended for link prediction tasks. However, it is not directly applicable to graph
classification, as it does not define any class labels. Existing graph classification
benchmarks for hyperbolic networks [13] distinguish graphs generated by distinct
algorithms such as Erdős-Rényi [4], Barabási-Albert [1], and Watts-Strogatz [19].
In contrast, we design a dataset that defines explicit class labels by generating
tree-structured graphs from predefined branching factor patterns. This design
introduces controlled hierarchical variations between classes, enabling a focused
evaluation of graph classification methods in settings where hierarchical struc-
ture is both present and class-defining.

In order to examine the role of node features in hyperbolic graph neural
networks, we construct three types of node features: random features, which
do not encode any structural information, node2vec features, which capture the
structural context of nodes by reflecting their roles and neighborhood patterns
within the graph and kamada-kawai features. We then compare the performance
of hyperbolic GNNs to Euclidean GNNs.

Our contributions are as follows:
– We propose a novel synthetic benchmark dataset of tree-structured graphs

with explicit hierarchical disruptions to rigorously evaluate hyperbolic graph
neural networks in graph classification tasks.

– We identify a critical gap in existing hyperbolic GNN research on the role
of hierarchical information in node features in graph classification tasks and
design node feature types that either ignore or emphasize local hierarchical
structure.

– We systematically compare hyperbolic and Euclidean GNNs using low-dimensional
embeddings (3D Euclidean vs. 2D hyperbolic via the hyperboloid model in
R3), demonstrating that the hyperbolic model does not yield performance
gains.

2 Hyperbolic Graph Neural Network

For a brief summary of Riemannian manifolds and hyperbolic geometry, we refer
the reader to Appendix A and to the references therein.

To model node embeddings in hyperbolic space, we adopt HyboNet [3], a
state-of-the-art hyperbolic graph neural network that operates entirely in the
Lorentz model. Feature transformation and non-linear activation are combined
in a Lorentz Linear Layer:

y = HL(x) =

√∥φ(Wx,v)∥2 − 1
c

φ(Wx,v)
∥φ(Wx,v)∥

 , (1)

4 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

Fig. 1: Pipeline of the Hyperbolic Graph Neural Network (HGNN) for graph
classification. Colored lines indicate the geometric space in which each operation
takes place: orange for Euclidean space, green for hyperbolic space, and gradients
for transitions between them. The pipeline proceeds as follows: (1) The input
pair (X,A), consisting of node features and the adjacency matrix, is mapped to
hyperbolic space via the exponential map from the tangent space at the origin.
(2) A hyperbolic graph neural network processes the data, performing feature
transformation and aggregation entirely in hyperbolic space. Attention weights
are computed using Lorentzian distances between node embeddings. (3) Final
node embeddings are passed through a hyperbolic distance layer and mapped
back to Euclidean space. These embeddings are then pooled into a graph-level
representation and passed through a fully connected layer for classification.

where the input x ∈ Ln
c lies on the Lorentz manifold with curvature c < 0,

and v ∈ Rn+1 and W ∈ Rm×(n+1) are learnable parameters. The function
φ(·) represents a transformation that includes dropout, activation, bias, and
normalization. For details, we refer the reader to the original publication [3].

Neighborhood aggregation is performed using the center of mass in Lorentz
space, with attention computed via the Lorentzian distance dL(·, ·). Given node

A Critical Look at Hyperbolic Graph Learning in Graph Classification 5

embeddings qi (queries), kj (keys), and vj (values), the attention output is

µi =

∑
j νijvj√

−c ∥
∑

k νikvk∥
2
L
, (2)

where the attention weights are

νij =
exp

(
−dL(qi,kj)√

n

)
∑

k exp
(
−dL(qi,kk)√

n

) . (3)

The HyboNet encoder outputs node embeddings on the Lorentz manifold.
For graph-level classification, we follow [13] and use a set of learnable centroids
C = [c1, . . . , c|C|], where each centroid ci ∈ Ln

c lies in the Lorentz curvature
manifold c. The centroids {ci} are optimized jointly with the GNN parameters
via backpropagation. For each centroid ci, we compute the distances to all node
embeddings hj as ψij = d(ci,hj), and average over all nodes to obtain

ψi =
1

N

N∑
j=1

ψij .

The final global graph embedding is the vector

ψ = (ψ1, . . . , ψ|C|) ∈ R|C|,

that is used as a global representation of the graph and is fed into a fully con-
nected layer for classification. A detailed schematic of the pipeline is shown in
Fig.(1).

3 Dataset

We design a synthetic dataset for graph classification composed exclusively of
tree-like structures, where the distinguishing factor between classes is explicitly
rooted in hierarchical organization. Each graph belongs to one of two classes,
and all graphs contain the same number of nodes. The two classes differ in their
branching factor patterns across levels, a property we deliberately perturbed as
it plays a central role in shaping the hierarchical organization of the network.

We create two versions of the dataset: Easy and Hard. In both cases, the
number of nodes is fixed to 200, and the dataset is split into 600 training, 200
validation, and 200 test samples.

3.1 Graph Generation

Each tree is generated by specifying a list of branching factor ranges — one range
per level. At level i, each parent node samples a random number of children from
the interval [rmin

i , rmax
i]. The generation proceeds level by level until the desired

6 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

number of nodes is reached. This process yields a flexible hierarchical structure,
where the global shape of each tree depends on the branching ranges. After
generation, we ensured that no two graphs were isomorphic using the method
descibed in [17].

In the Easy setting, class A uses a fixed branching range of (4, 6) at each level,
while class B uses (1, 3). This results in two structurally and visually distinct tree
topologies: one with high branching and the other with low branching. As shown
in Fig. 2 (left), the two classes are clearly separable. We quantified this structural
difference using several graph-level metrics computed with the NetworkX library:
tree depth, diameter, radius, average shortest path length, and degree entropy.

In the Hard setting, the class distinction becomes more subtle. Both class A
and class B share a common base branching scheme defined by the following list
of ranges:

[(4, 7), (4, 6), (3, 5), (3, 4), (2, 3), (1, 2)],

with the range (1, 2) applied to all subsequent levels until the graph reaches the
target number of nodes. These ranges were carefully chosen to ensure the number
of nodes grows approximately exponentially from the root, while also maintain-
ing high variability between samples within each class. In class B, we introduce
local mutations at levels 2 and 3, where the branching factor for each parent
node is changed to (1, 2) with probability 0.5. This mutation mechanism injects
localized structural variability while preserving the global hierarchical shape,
making the classification task more challenging. Unlike the Easy setting, in the
Hard case the structural graph metrics across classes are more aligned, though
not entirely indistinguishable, as illustrated in Fig.2 (right). This increased sim-
ilarity in global metrics requires models to rely on more subtle and non-trivial
structural cues for successful classification. The dataset generation process offers
high tunability with respect to task difficulty, allowing precise control over struc-
tural variation. In Appendix B, we demonstrate this flexibility by introducing
an Extra Hard version of the task, where the graph metrics become virtually
indistinguishable across classes.

Task Node Feature Euclidean Hyperbolic
Easy random -0.0050 ± 0.0288 -0.0070 ± 0.0407
Easy node2vec 0.6922 ± 0.0630 0.7244 ± 0.0616
Easy kamada-kawai 0.9754 ± 0.0128 0.8627 ± 0.0264
Hard random -0.0014 ± 0.0352 -0.0012 ± 0.0492
Hard node2vec 0.7723 ± 0.0251 0.8188 ± 0.0208
Hard kamada-kawai 0.9656 ± 0.0108 0.8559 ± 0.0212

Table 1: Spearman correlation between graph-theoretic distances and pairwise
node embedding distances, computed in Euclidean and hyperbolic space. Results
are shown for two tasks (Easy and Hard) and two node feature types: random
(Gaussian noise) and node2vec embeddings with (p = 1, q = 4) to bias walks
toward local neighborhoods.

A Critical Look at Hyperbolic Graph Learning in Graph Classification 7

Fig. 2: Structural differences between the Easy and Hard synthetic datasets. The
histograms show the average value of the each metric for each class. Left: In the
Easy setting, class A and class B trees have clearly distinct branching patterns
resulting in separable topologies. Right: In the Hard setting, both classes share
a similar global structure.

Task Node Feature Euclidean Hyperbolic
Easy node2vec 0.5444 ± 0.1558 0.5442 ± 0.1559
Hard node2vec 0.7150 ± 0.0783 0.7142 ± 0.0780
Easy kamada-kawai 0.6788 ± 0.2927 0.6788 ± 0.2927
Hard kamada-kawai 0.8550 ± 0.1574 0.8550 ± 0.1574

Table 2: Spearman correlation between node hierarchy levels (depth from the
root) and node distances from the origin in the embedding space, for both Eu-
clidean and hyperbolic geometries, using node2vec and kamada-kawai features.
Results are shown for the Easy and Hard tasks. Higher values indicate stronger
alignment between node depth and embedding position, reflecting better encod-
ing of hierarchical structure.

3.2 Node Feature Construction

We construct two types of node features with varying levels of structural infor-
mation to evaluate how effectively hyperbolic space can capture these signals.
We assume that structural information implicitly captures the hierarchical rela-
tionships of nodes within the graph.

We considered the following types of node features, each of dimension 200:

– Random features: Each node is assigned a feature vector sampled from
a multivariate normal distribution with zero mean and variance (σ = 0.5),
resulting in a narrow distribution that contains no structural information.

– Node2Vec features: We extract node embeddings using the node2vec algo-
rithm [5], which can capture both local and global network topology through
biased random walks. The algorithm learns a mapping of nodes to a low-
dimensional space by maximizing the likelihood of preserving network neigh-
borhoods. We set the walk length to 30 and the number of walks per node

8 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

to 20. We set the return parameter p to 1.0 and the in-out parameter q to
4.0, biasing the random walks toward a BFS-like behavior. This local bias
encourages the embeddings to better capture nodes’ hierarchical roles within
their neighborhoods, which may be especially beneficial for the Hard task,
where subtle, localized structural mutations distinguish classes.

– Kamada-Kawai features: We compute node embeddings using the Kamada-
Kawai layout algorithm, which positions nodes in an n-dimensional space
by minimizing an energy function based on graph-theoretic distances (i.e.,
shortest paths). This method models the graph as a spring system, where
edges act like springs and ideal distances between nodes are proportional
to their shortest path lengths. The resulting coordinates reflect the global
structure of the graph, allowing embeddings to capture topological roles and
relative positions within the hierarchy. We use the NetworkX implementa-
tion with dim=200 and store the resulting 200-dimensional coordinates as
node features. The coordinates are then normalized across dimensions (i.e.,
feature-wise) within each graph.

To initialize the node features in hyperbolic space, we apply the exponential
map from the tangent space at the origin to the hyperboloid model (Eq.(5) in
Appendix A). This procedure allows us to embed Euclidean feature vectors into
hyperbolic space.

To assess the extent to which node features capture hierarchical informa-
tion, we compute the Spearman correlation between pairwise graph-theoretic
distances (measured as shortest-path lengths) and pairwise distances in the em-
bedding space. The intuition behind this metric is that, if node features preserve
relevant structural information, nodes that are close in the graph should also be
close in the embedding space, resulting in a positive correlation. However, we
note that this correlation primarily reflects how well embeddings preserve over-
all topological proximity, rather than directly capturing hierarchical structure,
which often involves more nuanced, multi-level dependencies not fully described
by shortest-path distances alone. Nevertheless, we expect that node2vec and
kamada-kawai embeddings can still capture certain aspects of hierarchy.

The Spearman correlation was computed individually for each graph in the
dataset and then averaged across all graphs. The results are reported in Table 3.
As expected, random node features yield correlations close to zero, confirming
the absence of meaningful structural information. In contrast, node2vec embed-
dings exhibit strong positive correlations, indicating that they effectively pre-
serve local and global graph proximity. Finally, Kamada-Kawai features, which
are explicitly designed to preserve graph-theoretic distances in Euclidean space,
achieve the highest correlations among all feature types.

To further assess the degree to which node2vec and kamada-kawai features
reflect hierarchical structure specifically, we compute the Spearman correlation
between each node’s depth in the tree (i.e., its level in the hierarchy) and its em-
bedding norm (i.e., distance from the origin in the embedding space). Again, this
analysis is performed on a per-graph basis and results are averaged. The results,
reported in Table 4, show a consistent positive correlation between node depth

A Critical Look at Hyperbolic Graph Learning in Graph Classification 9

and embedding norm, indicating that deeper nodes tend to be embedded far-
ther from the origin. This trend suggests that both node2vec and kamada-kawai
features capture aspects of the hierarchical structure, with a notably stronger
alignment observed for kamada-kawai.

Task Node Feature Euclidean Hyperbolic
Easy random -0.0050 ± 0.0288 -0.0070 ± 0.0407
Easy node2vec 0.6922 ± 0.0630 0.7244 ± 0.0616
Easy kamada-kawai 0.9754 ± 0.0128 0.8627 ± 0.0264
Hard random -0.0014 ± 0.0352 -0.0012 ± 0.0492
Hard node2vec 0.7723 ± 0.0251 0.8188 ± 0.0208
Hard kamada-kawai 0.9656 ± 0.0108 0.8559 ± 0.0212

Table 3: Spearman correlation between graph-theoretic distances and pairwise
node embedding distances, computed in Euclidean and hyperbolic space. Results
are shown for two tasks (Easy and Hard) and two node feature types: random
(Gaussian noise) and node2vec embeddings with (p = 1, q = 4) to bias walks
toward local neighborhoods.

Task Node Feature Euclidean Hyperbolic
Easy node2vec 0.5444 ± 0.1558 0.5442 ± 0.1559
Hard node2vec 0.7150 ± 0.0783 0.7142 ± 0.0780
Easy kamada-kawai 0.6788 ± 0.2927 0.6788 ± 0.2927
Hard kamada-kawai 0.8550 ± 0.1574 0.8550 ± 0.1574

Table 4: Spearman correlation between node hierarchy levels (depth from the
root) and node distances from the origin in the embedding space, for both Eu-
clidean and hyperbolic geometries, using node2vec and kamada-kawai features.
Results are shown for the Easy and Hard tasks. Higher values indicate stronger
alignment between node depth and embedding position, reflecting better encod-
ing of hierarchical structure.

4 Experiments

We compared the performance of hyperbolic and Euclidean models on our syn-
thetic dataset. As Euclidean baselines, we used two models: the standard Graph
Convolutional Network (GCN) [8], which we refer to as Euclidean*, and a vari-
ant that incorporates attention weights computed according to Eq.(3), but using
Euclidean rather than hyperbolic distances; we refer to this model as Euclidean.
The Euclidean node embeddings follow the same processing pipeline shown in
part 3 of Fig.1, with the key difference that the Distance Layer is implemented in
Euclidean space instead of hyperbolic space. In all models, the resulting graph

10 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

embeddings are passed through a fully connected layer that applies a linear
transformation to produce logits for the two output classes.

We tuned training and architecture hyperparameters separately for the Eu-
clidean and hyperbolic models using a combination of random and grid search
strategies. Full details of the hyperparameter settings and search space are pro-
vided in Appendix C.

We evaluated the models using embeddings with a comparable number of
learnable parameters. Specifically, we used a 2D hyperboloid manifold embedded
in R3 for the hyperbolic model and a 3D Euclidean space for the Euclidean model.
This choice ensures both models have similar representational capacity in terms
of parameter count: the Euclidean GCN with attention has 1329 parameters, the
Euclidean* GCN has 1407, and the fully hyperbolic model (HyboNet) has 1422.

Task Geometry Feature Accuracy(%) ROC-AUC(%) F1 Score(%) Precision(%) Recall(%)
Easy Hyperbolic random 96.1 ± 8.0 96.1 ± 8.0 96.0 ± 8.2 96.2 ± 7.5 96.1 ± 8.0
Easy Euclidean random 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Easy Euclidean* random 99.4 ± 0.9 99.4 ± 0.9 99.4 ± 0.9 99.4 ± 0.9 99.4 ± 0.9
Easy Hyperbolic node2vec 99.9 ± 0.5 99.9 ± 0.5 99.9 ± 0.5 99.9 ± 0.5 99.9 ± 0.5
Easy Euclidean node2vec 99.9 ± 0.1 99.9 ± 0.1 99.9 ± 0.1 99.9 ± 0.1 99.9 ± 0.1
Easy Euclidean* node2vec 98.6 ± 1.4 98.6 ± 1.4 98.6 ± 1.4 98.6 ± 1.4 98.6 ± 1.4
Easy Hyperbolic kamada-kawai 89.4 ± 12.2 89.4 ± 12.1 89.4 ± 12.2 89.5 ± 12.0 89.4 ± 12.2
Easy Euclidean kamada-kawai 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Easy Euclidean* kamada-kawai 91.8 ± 4.5 100.0 ± 0.0 91.8 ± 4.5 91.8 ± 4.5 91.8 ± 4.5
Hard Hyperbolic random 76.8 ± 6.2 76.8 ± 5.8 76.6 ± 6.3 77.5 ± 5.8 76.8 ± 6.2
Hard Euclidean random 87.9 ± 12.6 87.9 ± 12.6 87.8 ± 12.6 87.9 ± 12.6 87.9 ± 12.6
Hard Euclidean* random 64.4 ± 14.4 64.4 ± 14.4 64.2 ± 14.4 64.5 ± 14.4 64.4 ± 14.4
Hard Hyperbolic node2vec 86.9 ± 5.3 86.9 ± 5.3 86.9 ± 5.3 87.0 ± 5.4 86.9 ± 5.3
Hard Euclidean node2vec 99.0 ± 0.9 99.0 ± 0.9 99.0 ± 0.9 99.0 ± 0.9 99.0 ± 0.9
Hard Euclidean* node2vec 74.9 ± 1.0 74.9 ± 1.0 74.8 ± 1.0 74.9 ± 0.9 74.9 ± 1.0
Hard Hyperbolic kamada-kawai 77.7 ± 19.3 77.7 ± 19.3 77.7 ± 19.3 77.7 ± 19.3 77.7 ± 19.3
Hard Euclidean kamada-kawai 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.2 99.9 ± 0.2
Hard Euclidean* kamada-kawai 60.9 ± 4.3 60.9 ± 4.3 60.1 ± 4.6 61.9 ± 4.8 60.9 ± 4.3

Table 5: Classification performance of Hyperbolic and Euclidean Graph Convo-
lutional Networks on the synthetic dataset for the Easy and Hard classification
tasks. Node features tested include random vectors and node2vec embeddings
(p = q = 4). Euclidean models were evaluated both with and without attention
mechanisms. The model without attention (standard GCN [8]) is indicated by
an asterisk (*) as Euclidean*. Reported metrics are mean ± standard deviation
over 11 random seeds and include Accuracy, ROC-AUC, F1 Score, Precision,
and Recall. The overall best results are highlighted in bold.

5 Results

Table 5 reports the classification performance across synthetic tasks of two diffi-
culty levels (Easy and Hard), using three node feature types (random, node2vec,
and kamada-kawai). We compare a fully hyperbolic GNN (see Section 2) with
two Euclidean baselines described in Section 4: a standard GCN (denoted Eu-
clidean*) and a GCN augmented with an attention mechanism using Euclidean

A Critical Look at Hyperbolic Graph Learning in Graph Classification 11

distances (denoted Euclidean). All metrics (accuracy, ROC-AUC, F1 score, pre-
cision, and recall) are are reported as mean ± standard deviation over 10 random
seeds.

Overall, the Euclidean model consistently outperforms the hyperbolic model
across all configurations. In the Easy task, both geometries achieve high accu-
racy, even when node features are uninformative (i.e., random). In this case,
models rely primarily on structural information from the graph topology, and
the Euclidean model with attention achieves the best performance.When using
node2vec features, both hyperbolic and Euclidean models with attention perform
exceptionally well, although the hyperbolic model appears slightly less robust.
A surprising result emerges with the kamada-kawai features, which are the most
hierarchical (as shown in Table 4): these features are leveraged effectively by
the Euclidean models, but not by the hyperbolic model which downgrades its
performances. In fact, the hyperbolic model performs worse with kamada-kawai
features than with random features.

In the more challenging Hard task, the Euclidean model with attention again
outperforms all others. The Euclidean* GCN struggles, confirming the need for
attention to capture subtle structural variations. The hyperbolic model remains
competitive with node2vec features but performs poorly with kamada-kawai fea-
tures.

These results show that a hyperbolic architecture is not necessary for classify-
ing tree-like structures. When using highly hierarchical features, the performance
gap between Euclidean and hyperbolic models widens, favoring the former. This
counterintuitive outcome likely stems not only from hyperbolic message passing
limitations, but also from how features are embedded into hyperbolic space. In
particular, hyperbolic models project input features to the tangent space at the
origin, followed by an exponential map to embed them into the manifold. As
shown by our Spearman correlation analysis in Table 4, this mapping process
distorts the hierarchical structure initially encoded in the features. To isolate the
effect of this distortion from the influence of the model architecture, we trained
a Euclidean model using the hyperbolically mapped kamada-kawai features on
the Hard task. This model achieved an average accuracy of 76.4 ± 2.0 over 10
seeds, lower than when using the original Euclidean features, but still substan-
tially more robust than the corresponding hyperbolic model. Nevertheless, the
findings support the conclusion that a hyperbolic architecture is not essential
for solving this task, even in the presence of hierarchical graph structures.

6 Limitations

This work can be further strengthened by extending the experimental setup in
several directions.

First, our analysis has focused exclusively on 3D node embeddings. Extending
the evaluation to a broader range of embedding dimensions would help clarify
how the performance gap between hyperbolic and Euclidean models varies with

12 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

dimensionality, and whether higher-dimensional hyperbolic spaces can better
exploit hierarchical signals.

Second, it would be valuable to explore a fully hyperbolic pipeline, in which
all operations, including pooling and the final classification layers (see Fig. 1),
are performed directly in hyperbolic space, avoiding the need for a transition to
Euclidean space via a hyperbolic distance layer.

7 Conclusions

In this work, we conducted a systematic evaluation of a hyperbolic graph neural
network in a controlled graph classification setting. We introduced a synthetic
benchmark dataset composed of tree-like graphs, where class distinctions arise
from variations in branching structure at different hierarchical levels. This setup
enabled explicit control over the hierarchical content of the task.

Our results reveal that hyperbolic GNNs do not outperform their Euclidean
counterparts, even in an "ideal" setting with purely tree-like structures. Across
both Easy and Hard tasks, Euclidean models—particularly those with atten-
tion mechanisms—consistently achieved higher performance, regardless of node
feature type.

A particularly surprising finding is that hierarchical node features (e.g.,
kamada-kawai), expected to align well with hyperbolic geometry, were effec-
tively exploited by Euclidean models but degraded performance in hyperbolic
ones. We traced this effect to the distortion introduced by the feature mapping
pipeline used in HGNNs, which projects features to a tangent space and then
applies the exponential map. Our Spearman correlation analysis showed that
this process weakens the hierarchical signal encoded in the features.

To isolate the effect of feature distortion from the influence of model architec-
ture, we trained a Euclidean model on the hyperbolically mapped kamada-kawai
features. While this model performed significantly worse than the original Eu-
clidean baseline in terms of average accuracy, it still outperformed the hyperbolic
model in terms of stability, exhibiting much lower variance. These results sug-
gest that, in this case, the observed performance gap stems also from how node
features are embedded into hyperbolic space, rather than from fundamental lim-
itations of the hyperbolic architecture itself.

Overall, our findings challenge the assumption that hyperbolic architectures
are inherently better suited for graph classification with tree-like (i.e. hyper-
bolic) structures. We highlight the importance of evaluating not only the latent
space geometry, but also how node features interact with that geometry. Our
benchmark provides a controlled setting to test such interactions. The results
demonstrate that a well-tuned Euclidean GCN can outperform the hyperbolic
counterpart, even when the underlying data is highly hierarchical. We leave the
advantages of hyperbolic models to unsupervised settings where the goal is to
embed graphs with minimal distortion, or to supervised tasks in which labels
are explicitly tied to the preservation of distances in the embedding space.

A Critical Look at Hyperbolic Graph Learning in Graph Classification 13

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science
286(5439), 509–512 (1999)

2. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural
networks. Advances in neural information processing systems 32 (2019)

3. Chen, W., Han, X., Lin, Y., Zhao, H., Liu, Z., Li, P., Sun, M., Zhou, J.: Fully
hyperbolic neural networks. arXiv preprint arXiv:2105.14686 (2021)

4. Erdos, P., Rényi, A., et al.: On the evolution of random graphs. Publ. math. inst.
hung. acad. sci 5(1), 17–60 (1960)

5. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864 (2016)

6. John, M.L.: Introduction to smooth manifolds. Spinger (2012)
7. Katsman, I., Gilbert, A.: Shedding light on problems with hyperbolic graph learn-

ing. arXiv preprint arXiv:2411.06688 (2024)
8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907 (2016)
9. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic

geometry of complex networks. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics 82(3), 036106 (2010)

10. Law, M., Liao, R., Snell, J., Zemel, R.: Lorentzian distance learning for hyperbolic
representations. In: International Conference on Machine Learning. pp. 3672–3681.
PMLR (2019)

11. Lee, J.M.: Riemannian manifolds: an introduction to curvature, vol. 176. Springer
Science & Business Media (2006)

12. Lensink, K., Peters, B., Haber, E.: Fully hyperbolic convolutional neural networks.
Research in the Mathematical Sciences 9(4), 60 (2022)

13. Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. Advances in
neural information processing systems 32 (2019)

14. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representa-
tions. Advances in neural information processing systems 30 (2017)

15. Nickel, M., Kiela, D.: Learning continuous hierarchies in the lorentz model of hyper-
bolic geometry. In: International conference on machine learning. pp. 3779–3788.
PMLR (2018)

16. Qu, E., Zou, D.: Hyperbolic convolution via kernel point aggregation. arXiv
preprint arXiv:2306.08862 (2023)

17. Sansone, P.F.C., Vento, M., Cordella, L., Foggia, P., Sansone, C., Vento, M.: An
improved algorithm for matching large graphs. In: Proc. of the 3rd IAPR-TC-15
International Workshop on Graph-based Representations. vol. 57 (2001)

18. Sarkar, R.: Low distortion delaunay embedding of trees in hyperbolic plane. In:
International symposium on graph drawing. pp. 355–366. Springer (2011)

19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. nature
393(6684), 440–442 (1998)

20. Zhang, Y., Wang, X., Shi, C., Liu, N., Song, G.: Lorentzian graph convolutional
networks. In: Proceedings of the web conference 2021. pp. 1249–1261 (2021)

14 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

A Hyperbolic Geometry

In this section, we summarize key concepts from Riemannian geometry, with
a focus on definitions and operations in hyperbolic spaces that are relevant to
the hyperbolic graph neural network model considered in this work. For a more
comprehensive treatment, we refer the reader to [6, 11].

Riemannian Manifold A Riemannian manifold is a pair (M, g), where M is a
smooth n-dimensional manifold and g is a Riemannian metric on M. That is,
around each point x ∈ M, there exists a neighborhood that is homeomorphic
to an open subset of Rn, endowing M with a topological manifold structure.
Moreover, at each point x, the tangent space TxM is a real n-dimensional vector
space, and hence isomorphic to Rn as a vector space. The Riemannian metric
g is a smooth collection of inner products gx : TxM× TxM → R, one for each
x ∈ M, which varies smoothly with x. This structure allows for the definition of
geometric notions such as angles, lengths of curves, geodesic distances, volumes,
and curvature.

Geodesics and Induced Distance Function Let γ : [α, β] → M be a smooth curve
on a Riemannian manifold (M, g). The length of γ, defined with respect to the
Riemannian metric g, is given by

L(γ) =

∫ β

α

∥γ′(t)∥g dt,

where ∥γ′(t)∥g =
√
gγ(t)(γ′(t), γ′(t)). The geodesic distance between two points

u, v ∈ M is defined as
dM(u, v) = inf

γ
L(γ),

where the infimum is taken over all smooth curves γ such that γ(α) = u and
γ(β) = v.

Exponential and Logarithmic Maps, and Parallel Transport For a point x ∈ M
and a tangent vector v ∈ TxM, there exists a unique geodesic γ : [0, 1] → M
satisfying γ(0) = x and γ′(0) = v. The exponential map at x is defined as

expx : TxM → M, expx(v) = γ(1).

Its local inverse, where defined, is the logarithmic map

logx : M → TxM.

Given two points x, y ∈ M, the parallel transport operator

Px→y : TxM → TyM

transports vectors along a geodesic from x to y, preserving the inner product
induced by the metric g.

A Critical Look at Hyperbolic Graph Learning in Graph Classification 15

Hyperbolic Space Hyperbolic space is a Riemannian manifold of constant neg-
ative curvature. Several equivalent models exist to describe it, including the
Poincaré ball, Klein, and Lorentz (hyperboloid) models. In this work, we adopt
the Lorentz model due to its closed-form expressions and numerical stability in
optimization.

Lorentz Model For a fixed negative curvature c < 0, the Lorentz model (also
known as the hyperboloid model) is defined as the Riemannian manifold

(
Ln
c , g

L),
where

Ln
c =

{
x ∈ Rn+1

∣∣∣∣ ⟨x, x⟩L =
1

c
, x0 > 0

}
,

and the Lorentzian inner product ⟨·, ·⟩L is given by

⟨x, y⟩L = −x0y0 +
n∑

i=1

xiyi, (4)

for x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) ∈ Rn+1. The metric tensor gL at
each point x ∈ Ln

c is induced by restricting this Lorentzian inner product to the
tangent space TxLn

c .

Exponential Map For a point x ∈ Ln
c and a tangent vector v ∈ TxLn

c , the
exponential map is defined as

expx(v) = cosh
(√

−c ∥v∥L
)
x+ sinh

(√
−c ∥v∥L

) v√
−c ∥v∥L

, (5)

where ∥v∥L =
√

⟨v, v⟩L is the Lorentz norm.

Center of Mass in the Lorentz Model Given a set of points P = {x1, . . . , x|P|} ⊂
Ln
c in the Lorentz model, with associated weights {ν1, . . . , ν|P|}, the center

of mass is defined as the point µ ∈ Ln
c that minimizes the expected squared

Lorentzian distance:

µ = arg min
y∈Ln

c

|P|∑
i=1

νi d
2
L(xi, y),

where the squared Lorentzian distance is defined as

d2L(a, b) =
2

c
− 2⟨a, b⟩L.

This formulation was first introduced by Law et al. [10], who showed that the
centroid with respect to the squared Lorentzian distance has a closed-form so-
lution:

µ =

∑|P|
i=1 νixi

√
−c

∥∥∥∑|P|
i=1 νixi

∥∥∥2
L

. (6)

This notion of centroid is particularly useful in hyperbolic graph learning for
tasks such as attention-based message aggregation and class mean computation
in hyperbolic space.

16 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

B Synthetic Dataset

We propose a dataset generation framework for constructing tree-like structures
with high flexibility in task difficulty for graph classification. This flexibility
stems from the ability to control several key parameters: the branching factor
ranges at each level of the tree, the mutation mechanism applied to branching
factors, the mutation rate, and the total number of nodes (which also influences
the tree depth). While two task settings — Easy and Hard — were introduced
in Section 3, here we demonstrate that even more challenging configurations can
be constructed. Specifically, we propose an Extra Hard setting that can serve as
a benchmark for future experiments requiring minimal structural bias.

In the Extra Hard setting, both classes share the same base branching scheme,
defined by the following list of level-wise ranges:

[(4, 7), (4, 6), (4, 5), (3, 4), (3, 4), (1, 2)],

with the range (1, 2) applied to all subsequent levels until the graph reaches
the desired number of nodes. To assign class labels, we inject subtle, localized
mutations. For class A, we apply a mutation at level 2, replacing the original
branching range with (2, 3) for each parent node with probability 0.11. For class
B, mutations occur at levels 3 and 4, where the branching factor is altered to
(1, 2) with probability 0.07. These minimal and targeted perturbations result
in nearly indistinguishable structural statistics across classes, pushing the clas-
sification task toward a highly non-trivial regime. Fig.(3) shows histograms of
the average graph-level metrics computed for each class, illustrating how closely
aligned their structural properties have become. A Mann–Whitney U test re-
vealed no statistically significant difference in diameter and average shortest
path length, while other metrics (i.e., depth, radius, and degree entropy) exhib-
ited statistically significant but minor differences.

Fig. 3: Histogram of average graph-level metrics for each class in the Extra Hard
setting.

A Critical Look at Hyperbolic Graph Learning in Graph Classification 17

C Hyperparameter Tuning

This appendix section provides a detailed overview of the hyperparameter tun-
ing process. Hyperparameters were optimized separately for the Euclidean and
hyperbolic models, and for each classification task and node feature type individ-
ually. To identify the best configurations, we employed a combination of random
and grid search strategies over a predefined search space.

The specific hyperparameter ranges considered for training included learning
rates, weight decay, and batch sizes. For model-specific parameters, we evaluated
various activation functions, weight initialization methods, numbers of learnable
centroids, and network depths, as detailed below.

For the training configuration, we searched over learning rates [5× 10−3, 1×
10−3, 5×10−4, 1×10−4, 5×10−5, 1×10−5], weight decay values [10−2, 10−4, 10−6],
and batch sizes [10, 50, 100]. For model-specific settings, we explored activa-
tion functions {ReLU, LeakyReLU, Tanh, ELU}, weight initialization strategies
{Kaiming, Uniform, xavier}, number of learnable centroids [50, 100, 200] and
number of layers [1, 2, 3].

Table 6: Hyperparameters for Hybonet model with different node features and
task difficulties.

random node2vec kamada-kawai

Task Easy Hard Easy Hard Easy Hard

Learning Rate 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Weight Decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
Batch Size 100 100 100 100 100 100
Activation LeakyReLU LeakyReLU LeakyReLU LeakyReLU LeakyReLU LeakyReLU
Weight Initialization Uniform Uniform Uniform Uniform Uniform Uniform

Table 7: Hyperparameters for GCN model w/ att with different node features
and task difficulties.

random node2vec kamada-kawai

Task Easy Hard Easy Hard Easy Hard

Learning Rate 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3
Weight Decay 1e-4 1e-2 1e-4 1e-6 1e-4 1e-6
Batch Size 50 100 100 50 50 50
Activation LeakyReLU Tanh LeakyReLU LeakyReLU LeakyReLU Tanh
Weight Initialization Uniform Uniform Uniform Uniform Uniform Uniform

18 Dionisia Naddeo, Tiago Azevedo, and Nicola Toschi

Table 8: Hyperparameters for GCN model with different node features and task
difficulties.

random node2vec kamada-kawai

Task Easy Hard Easy Hard Easy Hard

Learning Rate 5e-3 5e-3 5e-3 5e-3 5e-3 5e-3
Weight Decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
Batch Size 10 50 10 50 10 10
Activation ReLU LeakyReLU Tanh ReLU ReLU ReLU
Weight Initialization Xavier Uniform Kaiming Uniform Xavier Uniform

