Private and Expressive Graph Representations

Patrick Indri*, Tamara Drucks*, and Thomas Gértner

Machine Learning Research Unit, TU Wien, Vienna, Austria,
{firstname.lastname}@tuwien.ac.at

Abstract. We propose using homomorphism density vectors to obtain
graph embeddings that are both private and expressive. Homomorphism
densities are provably highly discriminative and offer a powerful tool
for distinguishing non-isomorphic graphs. By adding noise calibrated to
each density’s sensitivity, we ensure that the resulting embeddings sat-
isfy formal differential privacy guarantees. Our construction preserves
expressivity in expectation, as each private embedding remains unbiased
with respect to the true homomorphism densities. We study the trade-off
between privacy, utility, and expressivity, both theoretically and empiri-
cally, and show that our private embeddings match the accuracy of their
non-private counterparts with increased resilience to privacy attacks.
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1 Introduction

We investigate the trade-off between expressivity and privacy in the context of
graph representation learning. In graph learning, expressivity analysis studies the
ability to distinguish pairs of non-isomorphic graphs, while private algorithms
ensure that similar graphs yield similar outputs. Therefore, requiring algorithms
to be both expressive and private can be challenging, as there may be a tension
between these desiderata. So far, there has been little investigation towards a
better theoretical understanding of the trade-offs which exist between privacy,
expressivity, and utility, i.e., predictive performance. We fill this research gap
and propose to guarantee expressivity in expectation while using differential pri-
vacy (DP) to provide privacy guarantees. We focus on graph-level learning tasks
while providing edge-level privacy guarantees. We build upon existing work that
relies on homomorphism counts, either as standalone graph representations or to
increase the expressive power of graph neural networks (GNNs) [23,33,12]. We
use homomorphism densities, the normalized homomorphism counts, as graph
embeddings. We obtain homomorphism density vectors that are DP and expres-
sive in expectation. Empirically, our private embeddings achieve performance
comparable to that of their non-private counterpart while being more resilient
to privacy attacks. An advantage of our approach is that the private homomor-
phism embedding we obtain can be then used for any downstream task without
further privacy cost, thanks to the post-processing property of DP [7].
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To summarize, we answer the following research questions: Can we construct
graph embeddings based on noisy homomorphism density vectors that satisfy
formal DP guarantees while remaining, in expectation, as expressive as their non-
private counterparts? How does the choice of privacy budget quantitatively im-
pact the utility of these embeddings on downstream tasks? What is the trade-off
between the privacy guarantees and the expressivity of these embeddings?

2 Related work

Recent literature in graph representation learning has analyzed the expressive
power of learning algorithms, i.e., their ability to learn different representations
for non-isomorphic graphs. One line of work analyzes the expressive power of
GNNs through the lens of k-Weisfeiler-Leman (k-WL) tests, a hierarchy of in-
creasingly expressive color refinement algorithms [36,19]. Different approaches
[23,33] rely on graph representations built using homomorphism counts [1,17]
to obtain arbitrarily expressive representations, at least in expectation. While
some recent work has investigated the interactions between expressivity and ro-
bustness in GNNs [3,14], there is a lack of research on the relationship between
privacy and expressivity, from both a theoretical and an empirical standpoint.
The structural information in graphs is, in fact, often of sensitive nature. Privacy
attacks can target the edges [27] or the nodes [13] of a graph, which should there-
fore be protected [20,15,38]. Graph reconstruction attacks can effectively recover
the sensitive information from trained models [39,35] and a number of DP graph
learning approaches have therefore been proposed [30,29,31,26]. More specif-
ically, recent work has considered the problem of private subgraph counting,
with a focus on triangle counting [4,11,22]. Nevertheless, as recently highlighted
in Sajadmanesh et al. [31], there is a lack of research efforts that investigate the
expressive power of DP graph learning algorithms.

3 Preliminaries

In this section, we introduce the relevant preliminaries on graph homomorphisms,
expressivity, and differential privacy, with more details in Appendix A.

3.1 Graph theory

Let G = (V,E) € G be a graph where G is the set of graphs with bounded
number of nodes. G has node set V(G) with |V(G)| = n and edge set E(G)
with cardinality e(G) = |E(G)|. For two sets S,T C V(G), let eq(S,T) denote
the number of edges with one endpoint in S and one endpoint in T. For a
graph G with n nodes and adjacency matrix Ag, let [|Ag|l, = 327'; |Ai;| denote
the ¢; norm of Ag. We refer to a graph F' € F C G as a pattern when we
compute the homomorphisms from F' to some graph G. Given two graphs F, G, a
homomorphism from F to G is an adjacency-preserving map ¢ : V(F) — V(G).
We call ¥ an isomorphism in case it is bijective. For two graphs G, G’ € G, let
G ~ G’ denote that the two graphs are isomorphic.
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Definition 1 (Homomorphism density). Let hom(F, G) denote the number
of homomorphisms from F to G. Then, we define the homomorphism density as

hom(F:
1(F,G) = 2omE6)
|V(G>|\V(F)\
For a given vector of patterns F' = (Fy,..., Fy) we can consider the homomor-

phism density vector t(F,G) := (¢(F1,G),...,t(Fq4,G)).

Definition 2 (Edge edit distance [17,9]). For two graphs G,G’ with the
same number of nodes, the edge distance d. is defined as

1
de (G,G') = 5 | Ag — Aarlly - (1)
Definition 3 (Cut distance [17]). For two graphs G, G’ with the same num-

ber of nodes, the cut distance dg is defined as

ea(S,T) —eq (S, T

It holds that do(G,G’) < 2d. (G, G’) /n? [17]. The counting lemma provides an
upper bound on the absolute difference in the homomorphism densities of two
graphs with respect to the same pattern.

Lemma 1 (Counting Lemma [17]). For any three simple graphs F', G, and
G', with G,G" having the same number of nodes,

[t(F,G) — t(F,G")| < e(F)dn(G, G). (3)

As presented by Lovasz [17, Lemma 10.22|, the counting lemma relies on a
slightly different notion of cut distance which allows to consider graphs with node
sets of different cardinalities. We provide further details in Appendix A.

3.2 Completeness and expressivity in graph learning

The expressive power of graph learning algorithms is commonly measured as
their ability to distinguish between pairs of non-isomorphic graphs. Let ¢ : G —
R? be a graph embedding. We assume ¢ to be permutation invariant, i.e., that
for all G,G" € G, G ~ G implies p(G) = ¢(G’). This is trivially true for
homomorphism counts and homomorphism densities. A seminal result by Lovasz
asserts that homomorphism counts enjoy strong distinguishing properties.

Theorem 1 (Lovasz, [16]). Two graphs G,G’ are isomorphic if and only if
hom(F,G) = hom(F,G") for all simple graphs F.
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We are interested in the ability of an embedding to distinguish non-isomorphic
graphs and thus introduce the concept of completeness as follows.

Definition 4 (Completeness). An embedding ¢ : G — R? is complete if for
adl G,G" € G, G~ G if and only if o(G) = p(G").

We next introduce an expressivity notion where we restrict our patterns to some
specific graph class F C G.

Definition 5 (F-expressivity). An embedding ¢ : G — R? is F-expressive if,
for all G,G' € G and for all F € F, hom(F,G) = hom(F,G’) if and only if
0(G) = o(G).

Consider now a random embedding, parametrized by a random variable X ~ D
for some distribution D and denote it by px : G — R?. We introduce notions of
completeness and expressivity in expectation as follows.

Definition 6 (Expectation-completeness). An embedding ¢x : G — RY is
expectation-complete if the embedding Ex[px] is complete.

Definition 7 (F-expectation-expressivity). An embedding px : G — R? is
F-expectation-expressive if the embedding Ex|[px] is F-expressive.

An expectation-complete embedding is also F-expectation-expressive for any
graph class F.

3.3 Differential privacy

Differential privacy (DP) is a formal notion of privacy that protects individual
training points. DP is defined in terms of neighboring databases. A database is
a collection of points, where a point in a database may be, e.g., a row in a table
or an edge in a graph. Two databases x,z’ are neighboring if they differ in a
single point, that is, if one single point is present in one database but not in
the other. We denote this as # ~ z/. DP guarantees that an attacker cannot
confidently determine from which of two neighboring databases the output of a
DP mechanism has been obtained from. We introduce two notions of DP and
briefly describe how to achieve DP according to these notions.

Definition 8 ((¢,6)-DP, [6]). Let e >0 and ¢ € [0,1). A randomized mecha-
nism M : X — Y satisfies §-approximate e-indistinguishability differential pri-
vacy, denoted as (e,8)-DP, if, for all neighboring x,x’ € X,

Pr[M(x) € Y] < e PriM(z’) € Y] + 6, 4)

where probabilities are taken over the randomness of M.



Private and Expressive Graph Representations 5

In DP, we refer to € as the privacy budget of a mechanism, with larger values of
€ providing less privacy, and a value of € = 0 providing perfect privacy. To make
a given function f private, one can add noise proportional to its global sensitiv-
ity GS§ = maxg~y || f(z) — f(«)|. Appendix A.2 provides a quick overview of
how to use noise proportional to GSy to achieve DP for f. The standard DP
mechanism described in Appendix A.2 that relies on noise proportional to the
global sensitivity can however result in very poor performance. GSy considers in
fact the worst case behavior of f around an arbitrary point x, even though the
sensitivity of f around most of the points of interest may be smaller. A distribu-
tional flavor of DP can be formalized in terms of the divergence of a randomized
mechanism when applied to two neighboring databases.

Definition 9 ((p,w)-tCDP, [2]). Let p >0 and w > 1. Let Dy(- | -) denote
the Rényi divergence of order a [28,32]. A randomized mechanism M : X — Y
satisfies w-truncated p-concentrated differential privacy, denoted as (p,w)-tCDP,
if, for all neighboring x,x’ € X, for all a € (1,w) it holds that

Do(M(z) || M(2')) < par. (5)

Definition 8 and Definition 9 can be formally related as tCDP implies (¢, d)-DP
(see Lemma 3 in Appendix A.2). It is convenient to consider tCDP as, in contrast
to the standard mechanisms described in Appendix A.2, it allows to achieve DP
while considering a local notion of sensitivity for a function f at a point z.

Theorem 2. (tCDP with Gaussian noise, [2]) Let f,g : X — R satisfy, for
every pair of neighboring databases x,x’ € X and for Ay, Ay >0,

|f(@) = f(@)] < A - 92, g(a) — g(a')] < Ay (6)

Let M : X — R be the randomized mechanism defined as M(x) = f(z) +

N(0,e9). Then, M satisfies (A3 + AZ, ﬁ)—tCDP,

In Theorem 2, Ay - e9(®)/2 is a smooth upper bound on the local sensitivity of

f at z. This is consistent with the smooth sensitivity framework introduced by
Nissim et al. [24], which we describe in Appendix A.2.

4 Private and expressive homomorphism densities

In this section, we propose a general method to obtain private and, in expec-
tation, expressive graph representations. We present an informal version of our
main result as follows. We defer all missing proofs to Appendix B.

Theorem 3 (Informal). Let D be a distribution on F C G with full support.
Let G € G be a graph and F' = (Fi,...,Fy) ~ D% be a vector of patterns. Let
t(F,G) be the noisy homomorphism density vector obtained by adding Gaussian
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noise to t(F, Q). Then, t(F,G) is differentially private and, for large enough
d, F-expressive with high probability. If we have F = G, then t(F,G) is also
complete with high probability.

Our graph embedding can be used for any downstream graph learning task
without incurring further privacy cost, thanks to the post-processing property
of DP [7]. Moreover, we can control the expressive power of our embedding
by considering different graph classes F and precisely characterize the trade-off
between privacy and expressivity. In the next sections, we discuss how we obtain
our privacy and expressivity guarantees.

4.1 Privacy guarantees

In this section, we provide DP guarantees for the homomorphism density embed-
dings. First, we discuss how to bound the sensitivity of ¢(F, G), which is essential
to determine how much noise must be added to the vector for provable privacy.
Then, we show how to obtain a tCDP homomorphism density embedding.

We are interested in obtaining a DP embedding of a graph G by means of its
homomorphism density ¢(F, G) for a given pattern F. In most of the following dis-
cussion, we may consider F' to be fixed, but we remark that to achieve complete-
ness in expectation (see Section 4.2) the patterns are sampled from a distribution
as F' ~ D. We focus on edge privacy, and strive to protect the presence/absence
of individual edges in a graph. We then interpret neighboring graphs, according
to the following definition, as two neighboring databases.

Definition 10 (Neighboring graphs). Tuwo graphs G, G' with the same
number of nodes are neighboring graphs, written G ~ G', if d. (G,G’) = 1.

A first bound to the global sensitivity of the homomorphism densities can be
directly obtained from the counting lemma.

Corollary 1. For any two neighboring graphs G ~ G’ with n nodes and for any
pattern F it holds that

2e(F
n2

~—

|t(F7 G) - t(F7 G/)| < e(F)dD<Ga G/) = (7>
In most practical settings the amount of noise one needs to add to obtain DP
guarantees using the bound in Corollary 1 is too large. In many cases, domain
knowledge allows to assume that the degree of the graphs is bounded and thus to
obtain a smaller bound on the sensitivity of the homomorphism densities.

Theorem 4 (Sensitivity of homomorphism density for bounded degree
graphs). Let G ~ G’ be two neighboring graphs with n nodes and mazimum
degree Anax. For any pattern F with m > 1 nodes, it holds that

H(F.G) — t(F,c") < 20 (Amax>m2. 8)

n? n
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For large graphs and large patterns (%)m_2 < 1. Therefore, the bound
provided by Equation (8) is often tighter in practice than the one we could obtain
from the counting lemma as in Corollary 1. We recover the upper bound provided
by the counting lemma by setting Ay.x = n. As a corollary, we can obtain
an upper bound for the difference of the homomorphism density vector of two
bounded degree graphs G, G’ with a given distance d. (G,G") =k > 1.

Corollary 2. Let G,G’ be two graphs with n nodes, d. (G,G') = k, and maxi-
mum degree Apax. For any pattern F with m > 1 nodes, it holds that

o 2ke(F) [ Amax "
[t(F,G) —t(F,G")| < 2 < - ) . 9)
For a given vector of patterns F', we can use Theorem 4 to compute an up-
per bound on the global sensitivity of ¢(F',G) by taking, e.g., the maximum
over the patterns in F'. With this upper bound on the global sensitivity, we ob-
tain DP guarantees with the standard Gaussian mechanism as in Appendix A.2.
In practice, however, the global sensitivity computed in this way is much too
large to obtain useful embeddings as it often has a magnitude comparable to
that of the homomorphism densities themselves. To provide practically useful
bounds, we set to obtain bounds that rely on a local notion of sensitivity. We
present the notions of local and smooth sensitivities (see also Appendix A) for
the homomorphism densities for a given graph G. For each pattern F', the lo-
cal sensitivity of the homomorphism density ¢(F,G) is defined as LS; p(G) =
maxe cg.d, (a,c)<1 [L(F, G) — t(F,G")|. For some 8 > 0, the 3-smooth sensitivity
[24] of ¢(F,G) at G is then

St,r(G) = max (e_ﬁde(G’G/) 'LSt,F(G/)) : (10)

G'eg

For G € G, we have LS, p(G) < GSir = maxg~g |[t(F,G) —t(F,G")|. We
thus expect a method that relies on smooth sensitivities to provide better utility
compared to one that relies on global sensitivities. The pattern-wise smooth sen-
sitivities Sy g, (G) for F; € F can be used to upper-bound the smooth sensitivity
of t(F,G).

Proposition 1. Let S, .(G) = ||St, 7 (G),...,St.r,(G)|l, and B > 0. Let

= —Ade(G.H) F,H)—t(F,H 11
51(G) = o ¢ oo FLH) ~4F) (1)

be the 5-smooth sensitivity of t(F,G) at G. Then, it holds that S; .(G) > S;(G).

Assuming that our graphs have bounded degree, for each given pattern F' we can
use Theorem 4 and Corollary 2 to upper bound the smooth sensitivity of t(F, G),
and use Theorem 2 to obtain a private homomorphism density value. As we are
interested in a private version of ¢(F,G) € R?, we need to derive a d-dimensional
version of Theorem 2 to take advantage of the bound in Proposition 1 for the
entire density vector.
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Theorem 5 (tCDP with Gaussian noise in R?). Let f : X — R? and
g : X — R satisfy, for every pair of neighboring databases x,z’ € X and for
Afa Ag 2 O;

1 (@) = fa)lly < Ape?™72, g() = g(a")] < A, (12)

Let M : X — R? be the randomized mechanism defined as M(x) = f(x) +

N (0,e9) 1,). Then, M satisfies (A?c +d- A, ﬁ) -tCDP.

With Theorem 5, we obtain a private mechanism scaled to the smooth sensitivity
of the homomorphism density vector of each graph using Gaussian noise.

Theorem 6. Let t(F,G) be the homomorphism density vector for graph G and
pattern set F with |F| = d, p" > 0, and S;.(G) be a B-smooth upper bound to
the local sensitivity as per Proposition 1. Then, the mechanism

{(F,G)=t(F,G)+ N (0, W&) (13)

18 (2p’ +d-4p2, ﬁ) -tCDP for neighboring graphs as per Definition 10.
As discussed, the smooth sensitivities are by definition upper-bounded by the
global sensitivity. Therefore, we expect the amount of noise added by the pro-
cedure in Theorem 5 to be significantly smaller than the one we would need to
apply for the standard Gaussian mechanism described in Appendix A.2, leading
to a better privacy-utility trade-off.

4.2 Expressivity

In this section, we show that the private homomorphism densities we obtain with
Theorem 6 can be, in expectation, complete and therefore expressive. Further-
more, we discuss how to achieve a determined level of expressivity and precisely
characterize the trade-off between privacy and expressivity. As a first observa-
tion, recall that the notion of completeness introduced in Definition 4 assumes
permutation invariance. It is easy to see that f(F,G) is not permutation in-
variant, a necessary consequence of the fact that DP requires a randomized
mechanism. This observation, however, does not affect the possibility to obtain
expressive or even complete graph embeddings in expectation.!

Theorem 7. For any G € G, t(F,G) is F-expectation-expressive for F ~ D if
D has full support on F C G. If F = G, then t(F,G) is expectation-complete.

! For these results, we need to further premise the fact that homomorphism densities,
in contrast to homomorphism counts, do not distinguish G and a blowup of G. This
subtlety stems from our notational conventions and can be easily addressed while
maintaining DP. We address this technicality in Appendix B.
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In our setting, we sample a vector of patterns and thus show the following.

Theorem 8. Let D be a distribution on F C G with full support. Let G €
G, F ~ D and 0 € [0,1]. For large enough d, t(F,G) is F-expressive with
probability at least 1 — 0. If F = G, then, for large enough d, f(F, G) is complete
with probability at least 1 — 6.

Theorem 7 and Theorem 8 demonstrate that, despite the noise required for
DP, our homomorphism density embeddings retain full discriminative power in
expectation and, with enough patterns, with high probability. We can charac-
terize the expressive power of our embedding more precisely by recalling that
expectation-completeness implies F-expectation-expressivity for all F (see Sec-
tion 3.2). For a specific graph class F, the expectation-complete embedding
t(F,G) therefore also distinguishes, in expectation, exactly those graphs which
are distinguished by F' € F. We thus propose to sample from a graph class
that precisely determines a certain level of expressivity in expectation [23]. For
instance, it is well known that 1-WL serves as upper bound for the expres-
sive power of a large class of message-passing graph neural networks (MPNNs)
[36,19]. The expressive power of 1-WL, in turn, is equivalent to counting tree
homomorphisms. In other words, two graphs have the same 1-WL color multi-
set [36] if and only if they have the same homomorphism counts for all trees.
This equivalence can be generalized for many popular GNN architectures by
determining their homomorphism-distinguishing closed graph class [37,21]. For
instance, the k-WL hierarchy corresponds to the homomorphism-distinguishing
closed graph classes of treewidth k [19,18].

Table 1. Common GNNs with their homomorphism-distinguishing closed graph classes
F and their maximum edge counts for a given number of nodes. For more details, see
Zhang et al. [39] and Appendix B.3.

GNN Graph class F max e(F)
FEF m=|V(F)|

MPNNs (1-WL) Trees m—1

r-¢MPNNs (r-fWL) [25] Fan-cactus graphs 2m —3

{F:3U C V(F) s.t.
|U| <k and F\U is a forest}

k(k
k-FGNNs (k-WL) {F : tw(F) < k} km — 2D

Subgraph k-GNNs mk+1)—1— kZ;rSk

Table 1 provides the homomorphism-distinguishing closed graph class F and
its maximum number of edges for some well-known GNN architectures with
expressive power precisely characterized by F, i.e., that can distinguish all
non-isomorphic graphs in F. With this information, we can determine the F-
expectation-expressivity of our embedding and illustrate the trade-off between
expressivity and noise required for a given privacy guarantee.
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Proposition 2. Fiz a tCDP privacy parameter p' > 0 and a graph G with n
nodes. Let F be a class of patterns. The Gaussian noise necessary to obtain the
tCDP guarantee in Theorem 5 has variance 0* = O ((maxper e(F))?/n?).

With reference to Table 1, more expressive GNN architectures often have greater
bounds on e(F') for F' € F. From Proposition 2 we can therefore conclude that
with patterns sampled from more expressive graph classes, more noise is required
to achieve a given privacy guarantee. Thus, we have identified an explicit trade-
off between privacy and expressivity.

5 Experiments

We evaluate the private homomorphism density vectors obtained with our ap-
proach by using them to perform a graph classification task on three commonly
used 0GBG benchmark datasets: MOLHIV, MOLBACE, and MOLT0X21 [10]. Our goal
is to make the trade-off between the desiderata of privacy, utility, and expres-
sivity explicit, as well as to show that our private homomorphism densities can
provide a good balance between these desiderata. As we focus on how the graph
structure can be privately leveraged to have expressive representations, our ex-
periments rely on the graph structure only as encoded by the homomorphism
density vectors and do not consider any node or edge features. For our results,
we experiment with values p’ € [1078,1] and pick 3 = p’/5. We upper bound
smooth sensitivities by evaluating Equation (10) up to d. (G, G’) = 6. For visu-
alization purposes, we convert our tCDP guarantees into (e, d)-DP guarantees
using Lemma 3 in Appendix A.2; (¢,6)-DP guarantees are easier to interpret
as privacy budgets roughly in the range € € (0, 10] are generally understood to
provide meaningful privacy protection in graph machine learning [34,29]. We use
§ = 1079 for all our guarantees, and take An.x = 6. For each dataset we sample
three pattern vectors F' with d = 50 patterns of treewidth 1, with the sampling
strategy described in Welke et al. [33]. For each value of p’, we perform three runs
for each of the sampled pattern vectors with different seeds, leading to a total of
9 runs. We use nearest neighbor classifiers trained on the private homomorphism
densities to predict the class of unseen graphs. We consider the 500, 10, and 100
nearest neighbors for MOLHIV, MOLBACE, and MOLTOX21 respectively. We compare
our results with classifiers trained on the noise-free, non-private homomorphism
densities. We evaluate the performance of our classifiers and report the classifi-
cation AUC for different privacy budgets. In a binary classification setting, we
formalize the trade-off between privacy and the AUC as follows.

Proposition 3. In a binary classification setting with separable classes, the
AUC curve follows the error function erf for embeddings perturbed with addi-
tive Gaussian noise.

As our private mechanism relies on Gaussian noise, Proposition 3 applies. In a
practical setting, even though we may not have perfectly separated classes, we
still expect the AUC to roughly follow the erf function.
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Privacy attacks. To empirically test our privacy guarantees, we consider the
following attack scenario. We assume a strong attacker that has access to the
vector of patterns F' and to the original set of graphs {G4,...,Gxn}. For each
G; € {G1,...,Gn}, the attacker can compute the true homomorphism density
vector t(F, G;). The attacker has access to the private homomorphism densities
and their goal is to recover an unknown graph G from the private £(F,G) by
matching it with one of the computed ¢(F,G;). Concretely, we train a nearest
neighbor classifier on the (noise-free) homomorphism densities and use this clas-
sifier to perform the attack. We compute the Top-1 attack accuracy by record-
ing whether the nearest neighbor of £(F, G) is the true graph’s density ¢(F,G),
which allows the attacker to identify G. We compute the Top-10 attack accu-
racy by recording whether the true graph appears in the 10 nearest neighbors.
Note that this experiment provides an empirical lower bound to the attacker’s
abilities, but the possibility of a stronger attacker is not excluded.

MOLHIV - AUC and attack accuracy vs € MOLBACE - AUC and attack accuracy vs €
—— AUC fit with erf Li1o0 0.75 4|—— AUC fit with erf
||-#= Auc - AUC 100

#  Top-10 Atk Acc
1 Top-1 Atk Acc

0.704| @ Top-10 Atk Acc
I Top-1 Atk Acc

0.65 1

Top-10 and Top-1 Attacks Accuracy

Top-10 and Top-1 Attacks Accuracy

S -3 S
< 0.60 L] E10 2 0.60+
-2
F107* 0.55 10
0.55 N T
F10°° 0.50
0.50 107
' F10°° 0.45
1073 1072 107!  10° 10! 102 1073 1072 107!  10° 10! 102
£ £

Fig. 1. Classification AUC and attack accuracy against privacy budget e. We report
average results with error bars of 2 standard deviations across 9 runs.

Our experiments, which we display in Figure 1, show that our approach suc-
cessfully obtains a private embedding which retains discrimination abilities that
are comparable to that of a non-private embedding (¢ = c0). In the high pri-
vacy regime, with ¢ < 1, we obtain an AUC comparable to the one obtained
using the non-private homomorphism densities. At the same time, the attacker
performance drastically decreases and the Top-1 attack accuracy is consistently
below 10~ for MOLHIV and 10~3 for MOLBACE for € < 1, while being close to
1 for € = oco. Moreover, the classification AUC closely follows the error func-
tion, empirically confirming the formal connection between privacy and AUC
discussed in Proposition 3. Additional results for MOLT0X21 (Appendix C.3) in-
voke similar considerations. This result is of great practical utility, as it allows
to predictably determine the maximum privacy budget for a given desired AUC,
and vice-versa the predicted AUC for a given privacy budget. We remark that
our private embeddings can be used with any machine learning algorithm, and
are not specifically tailored for the nearest neighbor classifier we used.
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Privacy-expressivity trade-off. We
perform a small set of experiments

MOLHIV - AUC and attack accuracy vs maximum treewidth
le-5

07449 ° % AUC

to empirically assess to which de- P I I Top-1 AtkAce ls >
gree the result in Proposition 2 0721 : 5
practically affects the performance g o071 76§
of a classifier. With a setup as 070/ —4§
above, we use a nearest neighbor 0.69 1 1,3
classifier on MOLHIV, sampling pat- 0.681 ; i
terns with a maximum treewidth 1 3 7 °

of {1,2,3}. Note that our sampling Maximum treewidth

strategy does not guarantee that

the sampled graphs match the max- Fig. 2. Classification AUC and attack ac-
imum treewidth [33]. We compare curacy against maximum treewidth. We re-

the performance of the classifiers port average results with error bars of 2
for a fixed p’ = 0.01 standard deviations across 9 runs.

The results in Figure 2 show a slight downward trend of the AUC as the max-
imum treewidth of the patterns increases. Moreover, we observe how, despite
the same formal guarantee, the accuracy of the privacy attack slightly increases
for larger maximum treewidth. This result suggests that using more expressive
patterns may lead to worse utility for a fixed privacy guarantee, suggesting that
there is indeed a practical trade-off between expressivity and privacy.

6 Conclusion

We propose a method to obtain private and expressive graph embeddings us-
ing noisy homomorphism density vectors. By calibrating noise to the sensitivity
of each density, our approach provides formal DP guarantees while preserv-
ing expressivity in expectation. Experimental results show that these private
embeddings retain high classification performance, suggesting that privacy and
expressivity can be effectively balanced in graph representation learning. A key
limitation of our approach is that it inherits the strengths and weaknesses of ho-
momorphism densities themselves—if these embeddings are not well-suited for a
task, the private embeddings might also perform poorly. A promising direction
for future work is to refine the noise calibration by more precisely analyzing the
sensitivity of specific graph classes, and to privately encode node features to
further improve the privacy—utility trade-off.
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A Additional Preliminaries

In this section we provide additional details on the preliminaries.

A.1 Cut Norm

In our preliminaries we have implicitly assumed that G and G’ are defined on
the same node set, i.e., the nodes of G and G’ have some fixed labeling € [n]
which minimizes the cut distance. If, instead, two graphs G and G’ have the
same cardinality n but on different node sets, their distance is defined as

60(G,G") = min do(G, &), (14)
[eXRel

with G and &/ ranging over all possible labelings of G and G’ by 1,...,n.

For two graphs G and G’ with different cardinalities, we define the cut distance
using fractional overlays. A fractional overlay of two graphs G of order n and G’
of order n’ is a nonnegative nxn' matrix X = [X;,]nxn such that Zz;l Xy = %
and >0 Xiy = 5. Ifn =1/, let o : V(G) = V(G’) be a bijection. Then,
X = 21(0(i) = u) is a fractional overlay. For a fixed fractional overlay X, we
define the labeled cut distance as

do(G, G X) = max

Q,RCV(G)xV(G")

3 X Xju(1(ij € E(G)) - L(uv € E(G))) ‘
iueQ

JUER

The cut distance between G and G’ is defined over all overlays X (G, G'):

5D(G7 G/) = Xe?r?(iCI}G’) dD(Gv G/7 X) (15)

Note that, in general, for two graphs with the same cardinality dg may not
coincide with ég and it holds that dg(G,G’) < og(G,G’) [17]. We can now
re-state the counting lemma with more precise notation.



16 Patrick Indri*, Tamara Drucks®, and Thomas Gértner

Lemma 2 (Counting Lemma [17, Lemma 10.22]). For any three simple
graphs F, G, and G', it holds that:

t(F,G) — t(F.G")| < e(F)on(G, G"). (16)

As in our setting we consider pairs of graphs G, G’ with the same number of nodes
which share the same node set, we have that do(G, G') = dg(G, G’) and we thus
do not need to consider the cut distance defined over fractional overlays.

A.2 Differential Privacy

We provide here additional preliminaries on DP, with a focus on how to achieve
DP with additive noise scaled to the global sensitivity of a function.

Definition 11 (e-DP, [5]). Let € > 0. A randomized mechanism M : X — Y
satisfies e-indistinguishability differential privacy, denoted as e-DP, if, for all
neighboring x,x’ € X,

PriM(z) € Y] < e PriM () € V], (17)

where probabilities are taken over the randomness of M.

Definition 12 ((¢,0)-DP, [6]). Let € > 0 and 6 € [0,1). A randomized mecha-
nism M : X — Y satisfies §-approximate e-indistinguishability differential pri-
vacy, denoted as (e,8)-DP, if, for all neighboring x,x’ € X,

PrM(z) € Y] < e Pr[M(z) € V] + 4, (18)

where probabilities are taken over the randomness of M.

In the literature, e-DP is also referred to as pure DP while (e, §)-DP is also
referred to as approzimate DP. Given a deterministic function f, one can build
a private mechanism from f by means of additive noise calibrated to its global
sensitivity GSyp = maxg~a [|f(2) — f(2)|,, where ||-[|, is a £,-norm. When p
is omitted, we consider £5 norms.

Theorem 9 (Laplace mechanism for pure DP, [5,7]). Let f : X — R have

0y sensitivity GSy ¢, . The randomized mechanism M(zx) = f(x) + Lap (m>

€

satisfies e-DP, where Lap(b) denotes Laplacian noise with mean 0 and scale b.

Theorem 10 (Gaussian mechanism for approximate DP, [6,5]). Let f :
X — R have ly sensitwity GSy,. The randomized mechanism M(x) = f(z) +

N(0,02) satisfies (e,8)-DP for o > G2y 2€1n(1'25/6).
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Lemma 3 (tCDP implies (e,d)-DP, [2]). Suppose mechanism M satisfies
(p,w)-tCDP with a Rényi divergence of order o. Then, for all 6 € [0,1), 1 <
a < w, M satisfies (e,0)-DP with

_ {p +2/pIn(1/3) if In(1/8) < (w—1)%p
po + (1))@ —1)  if (1/8) > (w—1)p

Definition 13 (Smooth Sensitivity, [24]). For a function f : X — R, let
d(x,x") measure the distance between x and x', where d(z,x') = 1 indicates that
x ~ 2'. Define the local sensitivity of f at x as

LSsa)= _mox _|f(x) = fa')]. (19)

For g > 0, the B-smooth sensitivity of f at x is then defined as

S¢(z) = maxe P4=Y) LS, (y). (20)

YyeX

It is immediate to see that for all € X, it holds that LSy¢(z) < GSy. Therefore,
we expect a method that relies on smooth sensitivities to provide better utility,
compared to one that relies on global sensitivities.

B Missing Proofs

Corollary 1. For any two neighboring graphs G ~ G’ with n nodes and for any
pattern F it holds that

2¢e(F)

t(F,G) = t(F,G")| < e(F)dp(G,G') = —5—. (7)

n

Proof. The proof follows from Lemma 1 and Definition 3 by direct computation,
with the reminder that eq (S, S) = 2¢e(S) for any S C V(G). O

Theorem 3 (Formal). Let D be a distribution on F C G with full support. Let
G € G be a graph and F = (Fy,...,Fy) ~ D% be a vector of patterns. Then, the

graph representation t(F,G) = t(F,G) + N (0, %Id) is JF-expectation-
expressive and (2p" +d - 432, ﬁ)—tCDP, where p' > 0 and S; «(G) is a B-smooth
upper bound on the local sensitivity of t(F, Q).

If F =G, then t(F,G) is also expectation-complete.

Proof. From Theorem 6, t(F,G) is (20 + d - 4532, ﬁ)—tCDP. From Theorem 7,
t(F,G) is F-expectation-expressive and expectation-complete if F = G. O
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B.1 Privacy

Theorem 4 (Sensitivity of homomorphism density for bounded degree
graphs). Let G ~ G’ be two neighboring graphs with n nodes and mazimum
degree Apax. For any pattern F with m > 1 nodes, it holds that

H(F.G) — t(F,¢") < 2 (A“”()mz. 8)

n? n

Proof. Without loss of generality, let {u,v} € E(G) and {u,v} ¢ E(G’). We
can explicitly compute an upper bound on [¢t(F,G) — t(F,G')| by counting how
many homomorphisms involve {u,v}. Note that we do not need to consider
homomorphisms that do not involve {u,v} as their count is equal for both G
and G'. First, we can pick any edge of F' and map it onto {u,v}. For this first
step, we have a total of 2e(F) choices, as we take into account either order of
the endpoints of each edge of F'. We now map the remaining m — 2 nodes of F'.
A third node of F' can now be mapped in a total of at most A . ways, as at
most A, nodes are adjacent to either v or v. We can proceed similarly with
the remaining nodes. After the first two nodes of F' have been mapped, there
are then a total of (Apax)™ 2 ways to map the remaining m — 2 nodes of F.
In total, there are therefore at most 2e(F)(Amax)™ 2 counts which differ for
G and G'. Taking the normalization into account, we get |t(F,G) — t(F,G")| <
2e(F)(Amax)™ "% _ 2e(F) (Amax)mizl O

nm n? n

Corollary 2. Let G,G’ be two graphs with n nodes, d. (G,G') = k, and maxi-
mum degree Apax. For any pattern F with m > 1 nodes, it holds that

m—2
H(F,G) — t(F,¢")| < %e(f ) (Am") : 9)

n n
Proof. The statement follows by applying, iteratively, the triangle inequality as

t(F,G) —t(F,G")| < ‘t(F, G) — t(F, G(l))’ ot ‘t(F, GV —((F,G"|.

k entries
(21)
The superscript is a notation to index the graphs, and where for each of the
entries in the sum |t(F,G®) — t(F,GU*V)|, G ~ GV and therefore there
are k contributions as per Theorem 4. a

Proposition 1. Let S, .(G) = ||S:, 7 (G),...,St.r,(G)|l, and B > 0. Let

_ —Bde(G,H) t(F,H)—t(F,H 11
51(G) = o ¢ e P H) < tF ) (1)

be the S-smooth sensitivity of t(F,G) at G. Then, it holds that S; .(G) > S;(G).
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Proof. Let a(H) be the vector with entries a;(H) defined by

a(t) = (a(H),.aa()),  ai(H) = | e JH(Fs H) = #(F;, HY)
B (22)

For any H' with d. (H,H') <1,
[6(F, H) — t(F, H')||, < |la(H)]|, . (23)
Thus, it holds that

= —Ade(G.H) F.H)—t(F,H 24
Si(G) = maxe H,:dcr(n;)é/)gllﬁ( JH) —t(F, H')|, (24)

< max e PGID a(H)| |, (25)
< Hrélgé{e_ﬁde(G’H)a(H) ) (26)
= 1567, (G), - St ru (G, = Si4(G), (27)
which concludes the proof. a

Lemma 4. Consider two multivariate Gaussian distributions N (uo, Xo) and
N(p1, X1), where Xo = 021y and Xy = e*c*1y. Then, if aZ'gl +(1- a)Zfl
18 positive definite,

Do (N (o, Xo) [| N(p1, X)) (28)

_ allpo—mly 4 [as — In(ae® + 1 — )] (29)
C 2aes+(1-a)lo?  2a—1)

Proof. Let, for shortness, (¥,)* = aX; + (1 — a)Xy. From Gil et al. [8, Table
2], it holds that

Da(N(po, o) [| N (p1, X1)) (30)
1 det(Z,)*

2a—1) " (det Zg)—(det Xy)o

=) ()

= (1o = )T [(Za) )™ (o — 1) =

(31)
Note that (X,)* = [ae® + (1 — )] 021, and therefore

=3 [aoésio(; = 1o|z|)2} ;2 and (32)

B 1 [ae® + (1 — )] 02 1 [ae® + (1 — )]

(k) = _2(a —1) In (o2d)1-agsda(g2d)a — _Q(Q —1) In esda

(33)
__ 4 1 f+1 34
_2(a_1)[as—n(ae+ —a)l, (34)

which concludes the derivation. O
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Theorem 5 (tCDP with Gaussian noise in R?). Let f : X — R? and
g : X — R satisfy, for every pair of neighboring databases x,z’ € X and for
Afa Ag 2 O;

1 (2) = F(@)]ly < Ape?™72, g(2) — g(a”)] < A, (12)
Let M : X — R? be the randomized mechanism defined as M(x) = f(x) +
N (O, e9(®) Id). Then, M satisfies (A? +d- Ag, i) -tCDP.

Proof. We bound the Rényi divergence of two neighboring databases following
Lemma 4, under the conditions in Theorem 5. Similarly to Bun et al. [2], we
consider a, 5,7 € R with a(e® — 1) + 1 > . Note first that s = g(z') — g(x), as
¥ =e9@) ], = 9@ 9@ 9@ [, — 53 Due to the Ag-lipschitzness of g, s >
—Ay. We can ensure a(e® —1)+1 > v by noting that e®* —1 > A —A,.
Following Bun et al. [2], we choose 7 = 1 and can therefore set o < ﬁ to get
ale* —1)+1>1—ad, > 5 =1.

The first term in Equation (29) is bounded as

2 2
allpo —pally — _ allpo — mlls
2[aes + (1 —a)]o? — 27y0?

< A (35)

The second term in Equation (29) can be bounded via a Taylor expansion of the
function h(s) = In[ae® + (1 — «)]. First, compute
s 1— s
W) =a W= 2N
ae* +(1—a) [aes + (1 — )]
(36)

h(0) =0, h'(s)=

As in Bun et al. [2], for & > 1 and a(e® — 1) + 1 > v it holds that 0 < h’(s) <
%. Considering a Taylor expansion in s = 0, h(s) = as+ $h”(()s* for some
¢ €0, ], and so

1 —1)s?
as = his) = — (O < DT (37)
Thus, for v = 1/2 the second term in Equation (29) reduces to
ads?
—_— —h < < adA2. 38
sy 09— o) < o < (38)
Equation (35) and Equation (38) together complete the proof. O

Theorem 6. Let t(F,G) be the homomorphism density vector for graph G and
pattern set F with |F| = d, p’ > 0, and S;.(G) be a B-smooth upper bound to
the local sensitivity as per Proposition 1. Then, the mechanism

i(F,G)=t(F,G)+ N <0, [St’;E),G”QId) (13)
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18 (2p’ +d-4p2, ﬁ) -tCDP for neighboring graphs as per Definition 10.

2
g(G) = In (%) = 2In(S;«(G)) — In(2p’). Therefore, for two adjacent
graphs G ~ G', Ay = [9(G) —g(G")] = 2|InS;+(G) —In S, .(G')| < 28 as
St is f-smooth (Definition 13). Setting ||t(F,G) —t(F,G")|l, < Si.+(G) =

Proof. Following the notation in Theorem 5, let e9(&) = W and thus

S (G))2\ M2 S:.(G) .
Afeg(G)/2 = Ay (#) = Ay \'/2(7), it follows that Ay = /2p’.
From Theorem 5, t(F,G) is thus (2,0’ +d - 42, &) -tCDP. O

B.2 Expressivity

Remark 1 (On graph blowups). For the following proofs, it is necessary to ad-
dress the fact that two graphs G, G’, where G’ is a blowup of G, have the same
homomorphism density for any pattern F' [17, Theorem 5.32]. A p-blowup of G
can be obtained by replacing each node of G by p > 1 twin copies [17]. There-
fore, homomorphism densities cannot be used to distinguish all non-isomorphic
graphs. We can address this in two ways. We can either rely on homomorphism
counts, which do not present the same problem and can be used to obtain a com-
plete embedding [16,33]. As our DP statements consider pairs of graphs with the
same number of nodes, this only requires to rescale the definitions of sensitivity
and leads to equivalent statements about the privacy of the embeddings. This
does not affect the utility of our embeddings which are, simply, rescaled. Alter-
natively, we can append the node count |V (G)| to the homomorphism density
embedding of G to distinguish it from all its blowups. This operation is trivially
DP with respect to the neighboring graph notion in Definition 10 and costs no
further privacy budget. As we rely on the counting lemma to derive our sensitiv-
ity bounds, we choose to present our results in terms of homomorphism densities.
Therefore, we will assume that, if necessary, the node count is appended to the
embedding so that the following statements hold. We stress that this is simply
a choice of presentation, as all our privacy and expressivity statements could be
easily rephrased in terms of homomorphism counts.

Theorem 7. For any G € G, t(F,G) is F-expectation-expressive for F' ~ D if
D has full support on F C G. If F =G, then t(F,G) is expectation-complete.

Proof. Consider

T=Ep[t(F.G) = > Pr(F = F)t(F',G)e, (39)
F'eF

where e € RI¥1 is a standard basis unit vector of RI1. We can write £(F, G) =
t(F,G) +Y where Y ~ N(uy = 0,0?) for some variance 2. Note that Y and
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F' are independent random variables. It then holds that

E[i(F,G)] = E[t(F,G) + Yer] = Ep[t(F,G)] + Ey[Yer] (40)
= Ep[t(F,G)] + Ey[Y]Eyler] = Ep[t(F,G)] + py Eyler]  (41)
= Eplt(F,G)] = . (42)

It remains to show that 7 is F-expressive. Let G, G’ be two graphs for which
there exists F’ € F such that hom(F’,G) # hom(F’,G’), and let 7, 7/ be the
corresponding vector representations. If |[V(G)| # |[V(G')| and G’ is a blowup
of G or vice-versa, simply append the node counts to 7,7’ to get (7,|V(G)|) #
(T, \V(G))). If [V(G)| = |V(G")|, then hom(F’,G) # hom(F’,G’) implies that
t(F',G) # t(F',G"). As D has full support on F, it holds that Pr(F = F') > 0
and therefore Pr(F = F')t(F',G) # Pr(F = F')t(F’,G"), which implies 7 # 7’.
This shows that 7 is F-expressive. If F = G, then 7 # 7/ for any two G # G,
with analogous argument. Therefore, 7 is in this case complete. a

Theorem 8. Let D be a distribution on F C G with full support. Let G €
G, F ~ D and 0 € [0,1]. For large enough d, t(F,G) is F-expressive with
probability at least 1 —0. If F = G, then, for large enough d, t(F,G) is complete
with probability at least 1 — 6.

Proof. Let G,G' be any two graphs for which there exists F’ € F such that
hom(F’, G) # hom(F’, G"). First, we consider the noise-free homomorphism den-
sity vectors and want to show that

t(FaG) = (t(FlaG)v' e at(deG)) 7é (t(FlaGl)a s 7t(Fd’G/)) = t(‘F?G/) (43)

with probability at least 1 — 60, where F1, ..., Fy ~ D iid. To show this, we adapt
the proof of Lemma 3 by Welke et al. [33]. Since ¢(F,G) is F-expressive for
F ~ D, then Er[t(F, Q)] # Ep[t(F,G")]. In particular, there exists a set §g g’ of
outcomes of F with Pr(F € §g,¢) = p > 0 such that for all F* € g ¢ it holds
that t(F*,G) # ¢(F*,G"). We want that Pr[3i € {1,...,d} : F; € §g,¢'] > 16,
and thus it must hold that 1 — (1 — p)¢ > 1 — . Solving for d, we obtain that if
d> ]—liln((f))], then ¢(F, G) is F-expressive with probability at least 1 — 6.
1—-p

Considering now £(F, G), note that if t(F*, G) # t(F*,G"), then, for any variance
02, it also holds that t(F*,G) = t(F*,G) + N(0,0?) # t(F*,G') + N(0,0?) =
t(F*,G') with probability 1. That is, the patterns for which the noise-free ho-
momorphism densities will distinguish G and G’, also work with additive noise.
Therefore, t(F,G) is F-expressive with probability at least 1 — 6.

If 7 = G, then t(F,G) # t(F,G") for any two G % G', with analogous argument.
Therefore, t(F', ) is in this case complete with probability at least 1 — 6. ad

Proposition 2. Fiz a tCDP privacy parameter p' > 0 and a graph G with n
nodes. Let F be a class of patterns. The Gaussian noise necessary to obtain the
tCDP guarantee in Theorem 5 has variance o* = O ((maxper e(F))?/n*).



Private and Expressive Graph Representations 23

Proof. From Theorem 4, the local sensitivity of each pattern is O(e(F)/n?). The
vector-wise smooth sensitivity in Proposition 1 is not smaller than the largest
local sensitivity and therefore S;.(G) = O (maxpere(F)/n?). For a fixed p/,
the variance of the noise in Theorem 6 is 0% = O ((maxper e(F))?/n*). O

B.3 Homomorphism-distinguishing closed graph classes

In Table 1, we report homomorphism-distinguishing closed graph classes for
known GNN architectures [37]. For 7-¢MPNNs, we upper bound the number of
edges by the maximum number of edges in outerplanar graphs since fan-cactus
graphs are outerplanar [25]. For k-FGNNs, we can upper bound the number of
edges for graphs of bounded treewidth & by considering the number of edges in
a k-tree, as formalized in the following proposition.

Proposition 4. Let F = {F : tw(F) < k}. Then, any F € F with |V(F)| =m
has at most km — Lk(k + 1) edges.

Proof. A k-tree is a maximal graph of treewidth k& and can be constructed by
expanding a (k4 1)-clique with new nodes such that each new node is connected
to exactly k existing nodes. The initial (k+1)-clique has $k(k+1) edges. We add
m — (k4 1) new nodes, where each new node is connected to exactly k existing
nodes, thus introducing k(m — (k4 1)) new edges. Thus, any F' € F has at most
km — 1k(k + 1) edges. O

Remark 2. Maximal outerplanar graphs are 2-trees. Indeed, if we set k = 2, we
recover our upper bound on the number of edges for outerplanar graphs.

Proposition 5. Let F = {F : 3U C V(F) such that |[U| < k and F\U is a
forest}. Then, any F € F with |V(F)| = m has at most m(k+1)—1— 3 (k*+3k)
edges.

Proof. F\ U is a forest and has thus at most m — k — 1 edges. Let F[U] denote
the subgraph induced by vertex set U. F[U] has at most 3 (k(k—1)) edges. Every
node in F[U] is connected to at most every node in F'\ U. Thus, any F' € F has
at most m —k — 1+ 2(k(k—1)) + k(m — k) =m(k+1) — 1 — 1(3k + k?) many
edges. O

B.4 Experiments

Proposition 3. In a binary classification setting with separable classes, the
AUC curve follows the error function erf for embeddings perturbed with addi-
tive Gaussian noise.

Proof. In a binary classification setting, let Cy and C; be the two classes with
means po and p;. Assume a one-dimensional setting and that the classes are
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separated by p; — pug = ¢ > 0. If the points in each class are perturbed by
additive noise N(0,02), the distance B between points from the two classes is
B ~ N (0, 20?). With these assumptions, the AUC is the probability that points

are not misranked and thus AUC = Pr[B > 0] = Pr[N (0, 20?) > 0] = @(%) =

% [1 + erf (%)} , where @ is the Gaussian cumulative density function. a

C Additional Details on Experiments and Results

The code used for our experiments is available on GitHub?.

C.1 Datasets

We perform experiments on three commonly used 0GBG graph classification
benchmark datasets: MOLHIV, MOLBACE, and MOLT0X21 [10]. For all datasets, we
perform a binary classification task and evaluate the performance of the classifier
using the classification AUC. We summarize the datasets in Table 2.

Table 2. Details on the datasets used. For MOLT0X21 we only consider the first task.

Dataset Graphs Average nodes per graph Average edges per graph

MOLHIV 41127 25.5 27.5
MOLBACE 1513 34.1 73.7
MOLTOX21 7265 18.6 38.6

C.2 Computation of the Homomorphism Densities

To compute the homomorphism density embeddings, we rely on an adaptation
of the homomorphism count procedure and code® in Welke et al. [33]. We refer
the reader to Welke et al. [33] for more details. Our models are implemented in
PyTorch and trained on a single NVIDIA GeForce RTX 3080 GPU.

2 https://github.com/tamaramagdr/private-homcounts
3 https://github.com/pwelke /homcount
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C.3 Additional Results

In this section, we report additional results from the experimental evaluation.

MOLTOX21 - AUC and attack accuracy vs €

0.70 AUC fit with erf

= =
o o
| >

AUC

L10-3

L10-4

A
o
8

Top-10 and Top-1 Attacks Accuracy

Fig. 3. Classification AUC and attack accuracy against privacy budget . We report
average results with error bars of 2 standard deviations across 9 runs. For this experi-
ment, we consider only the first task of the MOLTOX21 benchmark.
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