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Abstract. Contrastive learning has emerged as a dominant paradigm for representation
learning, while node homophily—the tendency for similar nodes to be connected-represents
a fundamental principle in graph-based learning. This paper establishes a formal connection
between these two concepts, revealing that contrastive learning directly optimizes homophilic
graph structures through representation learning. Although intuitively related, these frame-
works operate in fundamentally different domains: contrastive learning optimizes continuous
vector representations, while node homophily is defined on discrete graph structures. To bridge
this gap, we introduce a probabilistic framework based on influence matrices that translates
between discrete graph adjacencies and continuous similarity relationships. This framework
enables us to prove analytically that minimizing contrastive loss is mathematically equivalent
to maximizing graph homophily, specifically: Lﬁi}mamve = —log L;. Our theoretical analy-
sis provides several key insights: (a) standard generalization practices naturally ensure that
learned homophily reflects meaningful rather than spurious similarities, (b) an imperfectness
parameter € characterizes how real-world contrastive learning captures both explicit relation-
ships and latent homophily potential, and (c) node selection strategies provide flexibility in
applying the framework while maintaining theoretical guarantees. We address current limita-
tions and outline promising directions for future empirical validation across diverse domains.
This work establishes rigorous theoretical foundations connecting contrastive learning and
graph homophily optimization, opening new directions for adaptive graph construction in
graph neural networks.

Keywords: Graph Structure Learning, Homophily, Contrastive Learning, Graph Neural
Networks, Representation Learning

1 Introduction

Graph structure learning aims to discover optimal connectivity patterns that capture semantic
relationships in data, with homophily—the tendency for similar nodes to be connected—being a
fundamental organizing principle. Contrastive learning has demonstrated remarkable effectiveness
in representation learning across domains from computer vision to natural language processing,
establishing itself as a dominant paradigm for learning meaningful representations through similarity
optimization.

This paper establishes the formal connection between these two fundamental concepts, revealing
that contrastive learning directly optimizes homophilic graph structures through representation
learning. While both frameworks intuitively relate to the principle that similar entities should be
grouped together, they operate in fundamentally different domains: contrastive learning optimizes
continuous vector representations, while node homophily is defined on discrete graph structures
with binary adjacency relationships.
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To bridge this gap, we introduce a probabilistic framework based on influence matrices that
translates between discrete graph adjacencies and continuous similarity relationships. This frame-
work enables direct comparison between node homophily and contrastive objectives, revealing a
fundamental mathematical equivalence that was previously hidden.

Our main theoretical contribution establishes that minimizing per-node contrastive loss
is mathematically equivalent to maximizing per-node homophily likelihood when similarities are
computed using softmax-normalized dot products. Specifically, we prove that ﬁﬁf}mrastive = —log L,
demonstrating that contrastive learning has been implicitly optimizing graph homophily all along.

Key theoretical results. We present two fundamental theorems: First, our probabilistic ho-
mophily likelihood formulation generalizes traditional node homophily, reducing to the classical def-
inition when influence weights correspond to uniform adjacency relationships. Second, contrastive
loss equals the negative log-likelihood of this homophily measure, establishing the direct mathe-
matical connection between representation learning and graph structure optimization.

Framework insights and practical considerations. Our analysis provides several impor-
tant insights: the equivalence explains why contrastive learning is effective for similarity-based tasks
from a graph-theoretic perspective; standard generalization practices naturally ensure that learned
homophily reflects meaningful rather than spurious similarities; and the e-imperfectness parame-
ter reveals how representation learning captures both explicit relationships and latent homophily
potential. The influence matrix construction naturally connects to weighted k-nearest neighbor
classification, demonstrating practical applications of the learned homophilic structures.

Scope and future directions. While our theoretical analysis establishes the fundamental
mathematical connection, our current scope focuses on the core theoretical framework with softmax-
normalized similarities. Several practical aspects warrant future empirical investigation, including
the impact of temperature parameters, batch sampling effects, and regularization mechanisms on
learned homophilic structures. Additionally, domain-specific applications to graph neural networks
and adaptive graph construction methods represent promising directions for translating these theo-
retical insights into practical improvements. We address these limitations and outline specific future
research directions in our comprehensive analysis of practical considerations.

This work provides rigorous theoretical foundations connecting contrastive learning and graph
homophily optimization, opening new directions for understanding representation learning through
graph-theoretic principles while suggesting applications to adaptive graph construction in graph
neural networks and similarity-based learning methods.

2 Related Work

2.1 Graph Structure Learning and Homophily

Graph structure learning aims to discover or optimize connectivity patterns in data, with homophily-
the principle that similar nodes tend to be connected-serving as a fundamental organizing concept
[9]. Classical approaches include methods for learning graph topology from data [4] and structure
learning for graphical models [7]. Recent work has focused on adaptive graph construction for graph
neural networks, where the graph structure itself becomes learnable [5].

Homophily has been extensively studied in social networks [9] and has become central to under-
standing graph neural network performance [I8]. Methods for measuring and leveraging homophily
include homophily-aware graph neural networks [I8] and adaptive approaches that handle both
homophilic and heterophilic relationships [8]. Our work contributes to this area by showing how
contrastive learning implicitly optimizes homophilic graph structures.
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2.2 Contrastive Learning and Graph Representation

Contrastive learning has emerged as a dominant paradigm in representation learning [2], with recent
extensions to graph data showing remarkable success. Graph contrastive learning methods like
GraphCL [I6] and GRACE [20] apply contrastive objectives to learn node and graph representations
by contrasting different augmented views of graph structures.

These methods demonstrate that contrastive objectives can effectively capture structural rela-
tionships in graphs, though the theoretical connection between contrastive learning and explicit
graph structure optimization remains underexplored. Our work provides theoretical foundations for
understanding how contrastive learning optimizes homophilic relationships, complementing empir-
ical successes in graph contrastive learning.

2.3 Similarity-Based Classification and Graph Methods

The connection between similarity-based classification and graph methods has been explored in
various contexts. Graph-based semi-supervised learning [19] propagates labels through similarity
graphs, while spectral clustering methods [12] use graph Laplacians derived from similarity matrices.
K-nearest neighbor classification can be viewed as operating on similarity graphs where edges
connect each query to its nearest neighbors [3].

Recent work has explored learnable similarity metrics for KNN [I4] and probabilistic formula-
tions [6]. However, the connection between these similarity-based approaches and homophilic graph
structure learning has not been theoretically established. Our framework bridges this gap by show-
ing how contrastive learning optimizes homophilic structures that support effective similarity-based
inference.

2.4 Theoretical Connections in Graph Learning

Several works have explored theoretical foundations of graph-based learning methods. Belkin and
Niyogi [I] established connections between graph Laplacians and manifold learning, while Zhou et al.
[17] provided theoretical analysis of graph-based semi-supervised learning. More recently, theoretical
understanding of graph neural networks has focused on expressivity [I5] and generalization [I1].

The theoretical connection between contrastive learning and graph structure optimization has
received limited attention. Tian et al. [10] analyzed contrastive representations for linear classifi-
cation, while Wang and Isola [I3] studied alignment and uniformity properties. Our work extends
these theoretical insights to the graph domain, showing how contrastive objectives implicitly opti-
mize homophilic graph structures.

Our contribution differs from existing work by establishing a theoretical connection between con-
trastive learning and homophilic graph structure learning, providing a graph-theoretic perspective
on why contrastive methods are effective while suggesting applications to adaptive graph construc-
tion in graph neural networks

3 Problem Statement and Notation

3.1 Notation

We consider a graph-based view where data is represented as a graph G = (V, &) with nodes V
corresponding to examples and edges £ capturing relationships between them. The adjacency matrix
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A € RVIXIVI encodes pairwise relationships, where A;; = 1 indicates an edge between nodes ¢ and
J, and A;; = 0 otherwise. The neighborhood of node i is defined as N'(i) = {j € V : A;; = 1}.

From a labeling perspective, each node 7 is associated with a label y; € )V, where ) represents
the set of possible labels. The complete node set is denoted as V = {1,2,...,n}. Additionally,
nodes can be characterized by their feature representations, where each node i is described by
features x; € R%. Through a learnable mapping f : R? — R*  node features are transformed into
k-dimensional representations z; = f(x;) in the learned embedding space.

3.2 Core Definitions

Two fundamental concepts form the basis of our analysis. First, we define node homophily as the
fraction of neighbors sharing the same label as the focal node:

1
HZ:W Z 5(91‘:%‘) (1)
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where 0(+) is the indicator function. This measure quantifies the local homophily around each node,
with higher values indicating stronger label consistency within the neighborhood.

Second, we consider the contrastive loss for a node ¢, which optimizes representations by encour-
aging similarity between same-class examples while promoting dissimilarity between different-class

examples:
£ ~ g <Zj 3(yi = yj) exp(Z?%/T)) -

contrastive — Zj exp(zisz/T)

where 7 is the temperature parameter controlling the concentration of the similarity distribution.
The summations are computed over a training batch containing both positive pairs (same-class
examples) and negative pairs (different-class examples) [2].

3.3 Problem Statement

The central challenge we address lies in understanding the relationship between these two seemingly
distinct formulations. Node homophily operates on discrete graph structures with binary adjacency
relationships, measuring label consistency within fixed neighborhoods. In contrast, contrastive loss
operates on continuous representation spaces, optimizing learned embeddings through similarity-
based objectives without explicit reference to graph topology. This fundamental disconnect creates
a theoretical gap: while both concepts intuitively relate to the principle that similar entities should
be grouped together, their mathematical formulations operate in different domains—discrete graphs
versus continuous representations (see Figure . The key obstacle is that homophily requires a
materialized graph structure with defined edges, while contrastive learning produces similarity re-
lationships in embedding space without explicit graph construction.

Our research question addresses this gap directly: Can we establish a formal mathematical rela-
tionship between contrastive loss optimization and homophilic graph structure learning? Specifically,
we seek to understand whether contrastive learning implicitly optimizes for homophilic relationships,
and if so, under what conditions this equivalence holds.

Resolving this question has significant theoretical and practical implications. Theoretically, it
would provide a graph-theoretic foundation for understanding why contrastive learning is effective
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for similarity-based tasks. Practically, it could inform the design of graph neural networks and
adaptive graph construction methods by revealing how representation learning naturally encodes
structural relationships.

To bridge this gap, we propose a probabilistic framework that translates between discrete graph
structures and continuous similarity relationships, enabling direct comparison between node ho-
mophily and contrastive objectives. This framework reveals that contrastive learning can be viewed
as optimizing homophilic graph structures through representation learning, with practical applica-
tions to weighted similarity-based classification methods.
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Fig. 1. Illustration of the equivalence between contrastive learning and homophilic graph optimization. The
top row shows the natural progression of contrastive learning in representation space R¥, where nodes (red
and blue circles representing different classes) evolve from random distribution to well-separated clusters.
The middle and bottom rows demonstrate the consequences of this representation learning progression. As
contrastive learning separates node representations, the influence matrices (middle row) exhibit increasingly
homophilic patterns, with stronger within-class similarities (darker red/blue cells) and weaker cross-class
similarities (lighter gray cells). The bottom row shows corresponding graph realizations under different
thresholds 6, demonstrating how better-separated representations lead to improved node homophily in the
materialized graphs. The left labels identify the three operational spaces: representation space, influence
matrices, and graph realizations. The right labels indicate the corresponding measures: contrastive loss
Ei?ntrastive, homophily likelihood L;, and node homophily H;. Our theoretical results (Theorems 1 and 2)
establish the mathematical equivalences between these measures, showing that minimizing contrastive loss
is equivalent to maximizing homophily likelihood, which generalizes traditional node homophily.
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4 Bridging Representations and Graph Structures

To address the fundamental challenge identified in the previous section, we develop a probabilis-
tic framework that enables direct comparison between discrete graph homophily and continuous
representation-based contrastive learning. This framework centers on the concept of an influence
matrix that captures pairwise relationships in a continuous manner, providing the necessary bridge
between these two domains.

4.1 Motivation for Probabilistic Formulation

The core difficulty in connecting node homophily and contrastive loss lies in their operational
domains. While homophily is defined on discrete graphs with binary adjacency relationships, con-
trastive loss operates on continuous representation spaces through similarity-based objectives. To
bridge this gap, we require a unified framework that can express both discrete structural relation-
ships and continuous similarity patterns.

Our proposed solution introduces a probabilistic formulation based on an influence matrix—
essentially a weighted adjacency matrix that can capture both discrete and continuous relationships.
This influence matrix serves three critical functions, as illustrated in Figure[T} it links discrete graph
structures to continuous representations through distances or similarities, provides an intuitive
foundation for a continuous version of homophily, and aligns with traditional node homophily
under specific conditions that we will demonstrate theoretically.

The influence matrix approach allows us to generalize beyond binary edge relationships to
weighted connections that reflect the strength of similarity or influence between nodes. This general-
ization is essential for understanding how contrastive learning, which naturally produces continuous
similarity measures, relates to graph-theoretic concepts like homophily.

4.2 Influence Matrix Construction

The influence matrix W € R"*™ captures pairwise relationships between nodes, where each entry
Wi; represents the influence of node j on node 7. This formulation is flexible enough to accommodate
various similarity measures derived from learned representations z; and z;.

The influence weights can be constructed using different similarity functions. For Euclidean
distance-based measures, we define W;; = g(||z; — z;||) where g(-) is a decreasing function that
converts distances to influence weights. Alternatively, for dot product-based similarities, we use
W;; = g(zl'z;) where g(-) is an increasing function. The specific choice of g(-) depends on the
application, but common choices include exponential functions that naturally produce probability-
like distributions.

For analysis purposes, we focus on a single row of the influence matrix, representing the weight
vector w; = (w1, ws, ..., wn) where w; = W;; represents the influence of node j on node 4. For
convinience, we assume W;; = 0 for all i, meaning a node does not influence itself, which is a
common assumption in many graph-based learning scenarios.

4.3 Per-Node Homophily Likelihood

Building on the influence matrix framework, we introduce the concept of per-node homophily like-
lihood, which generalizes traditional node homophily to continuous influence weights. For a node i
with label y;, the homophily likelihood is defined as:
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Ly =cly, W) :ij-é(yj =¢), (3)

where d(y; = c) is the indicator function that equals 1 if y; = ¢ and 0 otherwise. This formulation
captures the total influence weight that nodes with label ¢ exert on node 1.

The proper normalization of the influence matrix is crucial for the probabilistic interpretation
of homophily likelihood. When the influence matrix is row-normalized such that > jwip =1 for
all 4, the homophily likelihood naturally expresses the probability that node ¢ has label ¢ based
on weighted voting from all other nodes. Under this normalization, the likelihood represents how
much influence weight mass concentrates on same-class neighbors. If we consider the weights to
same-class nodes as wy, wa, ..., wy and weights to different-class nodes as wyi1, wet2, ..., Wy, then
the homophily likelihood becomes

w1+...+we

:w1+...+we

(since the denominator equals 1 under normalization). This mass concentration interpretation pro-
vides an intuitive understanding: higher concentration of weight mass on same-class neighbors
corresponds to higher homophily and higher likelihood values.

The homophily likelihood offers several advantages over traditional binary homophily mea-
sures. As shown in Figure [I}it naturally handles continuous influence weights, enabling analysis
of representation-based similarities. It aligns with node-level analysis, making it compatible with
per-node homophily definitions. Most importantly, it provides the weight concentration interpre-
tation described above, where the likelihood directly quantifies the proportion of influence mass
concentrated on same-class neighbors.

This probabilistic formulation has a natural connection to similarity-based classification meth-
ods. The resulting classification rule §; = argmax.) G Wj d(y; = c¢) corresponds directly to
weighted k-nearest neighbor classification. This connection demonstrates how learned homophilic
structures naturally support similarity-based inference, with the influence matrix W parameterizing
the weighting scheme derived from the optimized graph structure.

4.4 Theoretical Results

With the probabilistic framework established, we can now present our main theoretical contributions
that formally connect homophily likelihood to both traditional node homophily and contrastive
learning objectives.

Theorem 1 (Homophily-Likelihood Equivalence). For an influence matric W derived from
graph adjacency with row-normalized weights W;; = 1/|N (4)] for j € N (i) and W;; = 0 otherwise,
the homophily likelihood defined in equation (@) equals the node homophily defined in equation .

Proof: Given the influence matrix W with W;; = 1/|N(i)] for j € N (i) and W;; = 0 otherwise,
substituting into Equation yields Equation . (I

This theorem establishes that our probabilistic formulation is a proper generalization of tra-
ditional node homophily. When the influence matrix corresponds to uniform weights over graph
neighbors, the likelihood measure reduces exactly to the standard homophily definition.
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Theorem 2 (Contrastive-Homophily Equivalence). For softmaz-normalized similarities

e espleln, /)
Y Y exp(alzi /)
the per-node contrastive loss equals the negative log-likelihood of homophily: £(£mmsme = —logL;.
Proof: Given the softmax-normalized weights W;; = LZT]/T) the homophily likelihood

>y exp(z] 7k /7))’
becomes L; = 3 .. e class Wij- By the definition of contrastive loss in equation , we have
£ = —log(L;), establishing the direct equivalence. O

contrastive
These theorems lead directly to our main result:

Corollary 1 (Contrastive Learning Optimizes Homophily). Minimizing the per-node con-
trastive loss is equivalent to mazximizing the per-node homophily likelihood. Therefore, contrastive
learning directly optimizes homophilic graph structures through representation learning.

This corollary provides the theoretical foundation for understanding why contrastive learning
is effective for tasks that benefit from homophilic relationships, and establishes a formal connec-
tion between representation learning and graph structure optimization. Figure (1| visualizes this
progression, showing how contrastive learning naturally leads to more homophilic graph structures.

5 Practical Considerations for Homophily Likelihood

Having established the theoretical equivalence between contrastive learning and homophily opti-
mization, we now address practical aspects that arise when applying this framework to real-world
scenarios. The following key questions emerge in the context of contrastive learning: when learned
homophily is meaningful rather than just grouping of examples with the same label, how do contin-
uous influence weights from learned representations relate to discrete graph structures, and which
nodes should be included when computing homophily likelihood in practice?

5.1 Generalization and Meaningful Homophily

While our theoretical equivalence demonstrates that contrastive learning optimizes homophily like-
lihood, a fundamental question remains: does this optimization produce meaningful homophilic
structures? The homophily likelihood L; depends only on labels and influence weights, without
direct reference to input representations. This raises the concern that a model could achieve high
homophily likelihood by connecting any same-labeled examples, regardless of their underlying sim-
ilarity in the input space.

However, no additional mechanisms beyond standard generalization practices are needed to
ensure meaningful homophily. When contrastive learning generalizes well to unseen data, the learned
representations must capture genuine similarity patterns rather than spurious label correlations. A
model that memorizes arbitrary same-label connections without learning meaningful features would
fail to maintain high homophily likelihood on new examples, as the influence matrix computed from
learned representations would not reflect true similarities for unseen data. Thus, good generalization
performance serves as a natural indicator that the learned homophilic structures capture meaningful
rather than spurious relationships.
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This connection between generalization and homophily quality reinforces that standard regu-
larization and validation practices naturally ensure that the learned homophilic structures reflect
meaningful similarities. The theoretical equivalence thus provides both the optimization target (ho-
mophily likelihood) and the quality assurance mechanism (generalization) for learning meaningful
graph structures through contrastive learning.

5.2 From Discrete Graphs to Continuous Representations

The transition from discrete graph adjacencies to continuous representation-based similarities re-
quires careful analysis. While traditional graph homophily operates with binary edge weights
W;; € {0,1}, contrastive learning naturally produces continuous similarity measures W;; € R™.
To understand this transition, we introduce an imperfectness parameter ¢ that models how learned
representations might deviate from perfect discrete adjacencies.

Consider a scenario where influence weights are defined as W;; = 1 — ¢ for connected neighbors
j € N(i) and W;; = ¢ for non-neighbors j ¢ N (). This parameter € € [0, 1] is not part of the actual
method but serves as an analytical tool for understanding the relationship between discrete and
continuous formulations. When ¢ — 0, we recover the exact correspondence between homophily
likelihood and traditional node homophily, while finite & values represent the realistic continuous
similarities produced by representation learning.

To analyze the impact of this parameter, we decompose the likelihood calculation into four cases
based on node relationships. For a given node i, we define:

— ¢T: same-class neighbors (connected nodes with matching labels)

— ¢ : same-class non-neighbors (disconnected nodes with matching labels)

— d7T: different-class neighbors (connected nodes with different labels)

— d7: different-class non-neighbors (disconnected nodes with different labels)

Under the e-parameterized influence weights, the homophily likelihood becomes:

cr-(1—¢g)+c ¢

L=
ct-(1—eg)+c e+dt-(1—¢e)+d -«

(4)

Comparing this to traditional node homophily H; = %, we can verify that L; = H; when
€ — 0, confirming our theoretical framework. However, for finite € values, the likelihood captures
both the "understood part" (traditional edge-based homophily) and an "extended part" that reflects
latent homophily potential from non-neighbor relationships.

This extended interpretation provides valuable insights into representation learning. When
adding a same-class node without an edge to the graph, traditional homophily remains unchanged,
but the likelihood slightly increases as it captures the potential for higher homophily through the
¢~ term. Conversely, adding a different-class non-neighbor slightly decreases the likelihood through
the d~ term, reflecting a dilution of homophily potential. The parameter £ controls the balance
between these understood and extended components, with edge changes having large impacts on
both measures while node additions primarily affecting the likelihood through the extended terms.

This analysis demonstrates how real-world similarities from learned representations naturally
relate to our theoretical framework through both understood and extended homophily components.
The parameter £ serves as an analytical lens for understanding this relationship—in practice, it
emerges from the imperfectness of learned representations rather than being explicitly controlled.
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The connection between representation quality and effective & values shows how the theoretical
equivalence captures both explicit relationships and latent homophily potential in learned repre-
sentations.

5.3 Node Selection for Likelihood Computation

A practical question arises regarding which nodes to include when computing homophily likelihood
according to Equation . The summation does not explicitly specify the node set, and this choice
has important implications for both computational efficiency and theoretical interpretation.

From a practical perspective, the primary use case involves learning representations to construct
homophilic graph structures, rather than analyzing existing graphs. When deriving influence ma-
trices from learned representations, the key decision concerns how to construct the final graph for
homophily evaluation. This typically involves selecting a threshold on influence weights to identify
the most influential nodes, which defines the effective neighborhood for each node in the constructed
graph.

The threshold selection creates a trade-off between graph density and connection strength.
Higher thresholds produce sparser graphs by retaining only the strongest similarity connections,
while lower thresholds yield denser graphs that include weaker similarity relationships. From this
perspective, the node selection for likelihood computation should align with the expected neighbor-
hood size in the final constructed graph.

This practical consideration suggests a natural approach: when computing homophily likelihood
for evaluation purposes, select the top-k most influential nodes for each focal node, where k corre-
sponds to the desired average degree in the target graph structure. This approach ensures that the
likelihood computation reflects the same structural constraints that will be applied in the final graph
construction, providing a more meaningful assessment of the learned homophilic relationships.

5.4 Framework Limitations, Scope and Future Directions

Our theoretical framework establishes a fundamental connection between contrastive learning and
homophily optimization, but its current scope is defined by several key assumptions and limitations
that naturally point toward future research directions.

Methodological Assumptions. Our main theoretical results assume softmax-normalized sim-
ilarities, which, while widely used in contrastive learning methods like SimCLR and InfoNCE, rep-
resents a specific normalization scheme. Similarly, our analysis focuses on standard contrastive loss
formulations without explicit treatment of regularization effects, which may influence the learned
homophilic structures in practice. These assumptions define the current theoretical scope while high-
lighting natural extensions: analyzing other similarity measures and normalization approaches, and
investigating how different regularization mechanisms affect the contrastive-homophily equivalence.

Node Selection and Homophily Interpretation. While our framework establishes equiv-
alence for any selection of nodes used in likelihood computation, providing considerable flexibility
in practical applications, the meaningfulness of the learned homophily depends critically on node
selection strategies. The choice of which nodes to include when computing homophily likelihood—
whether through batch sampling, k-nearest neighbor selection, or threshold-based filtering—affects
the relevance of the computed likelihood to true homophilic relationships in the data. Although the
mathematical equivalence Eg?ntrastive = —log L; holds regardless of node selection strategy, the in-
terpretability of the resulting homophily measures varies significantly. This limitation suggests that
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node selection strategies should prioritize the most similar examples according to learned represen-
tations, though the impact of different selection approaches on homophily quality requires deeper
empirical investigation.

Domain-Specific Applications and Empirical Validation. Our current work establishes
the theoretical foundation without addressing domain-specific implementations, representing a key
limitation in scope. The framework’s behavior across different data modalities—images, text, tabular
data, and existing graph structures-remains an open question with significant practical implications.
In the graph domain specifically, our theoretical insights suggest applications to task-aware graph
rewiring, where existing graph structures could be adaptively modified based on learned homophilic
relationships. However, understanding how the theoretical equivalence translates to improved per-
formance in specific domains requires comprehensive empirical investigation.

These limitations naturally define future research agenda: extending the theoretical analysis
to broader classes of similarity measures and contrastive learning variants, developing principled
node selection strategies with theoretical guarantees, and conducting systematic empirical valida-
tion across diverse domains and applications. The domain-specific investigations are particularly
promising, as they could demonstrate how the theoretical framework enables practical improve-
ments in graph neural networks, similarity-based classification, and adaptive graph construction
methods.

6 Conclusion

We have established a rigorous theoretical connection between contrastive learning and homophilic
graph structure optimization through a probabilistic framework based on influence matrices. Our
main contribution proves that contrastive loss optimization is mathematically equivalent to maxi-
mizing homophily likelihood, revealing that contrastive learning directly optimizes homophilic graph
structures through representation learning.

Our theoretical framework makes several key contributions. We introduce a probabilistic formu-
lation of homophily that generalizes traditional node homophily to continuous influence weights,
enabling analysis of representation-based similarities. Through two fundamental theorems, we prove
that our homophily likelihood reduces to classical node homophily under uniform adjacency weights,
and that contrastive loss equals the negative log-likelihood of homophily for softmax-normalized
similarities. These results establish the mathematical identity E((:Qntrastivc = —log L;, demonstrating
that minimizing contrastive loss is equivalent to maximizing homophily likelihood. The influence
matrix framework provides a general foundation extensible to other similarity measures beyond
softmax normalization.

The theoretical insights provide important implications for understanding representation learn-
ing. The equivalence explains why contrastive learning is effective for similarity-based tasks from
a graph-theoretic perspective. The influence matrix construction naturally connects to weighted
k-nearest neighbor classification, demonstrating practical applications of learned homophilic struc-
tures. Our analysis reveals how representation learning captures both explicit relationships and
latent homophily potential, with standard generalization practices naturally ensuring meaningful
rather than spurious similarities.

While our theoretical analysis establishes the fundamental mathematical connection, compre-
hensive empirical validation across diverse domains remains essential for translating these insights
into practical improvements. This work provides a rigorous mathematical foundation connecting
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contrastive learning and graph homophily optimization, opening new theoretical directions for un-
derstanding representation learning through graph-theoretic principles and suggesting promising
applications to adaptive graph construction in graph neural networks and similarity-based learning
methods.
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