
Graph Product Representations

Maximilian Seeliger1 (�), Fabian Jogl1, and Thomas Gärtner1

Technische Universität Wien, Vienna 1040, Austria
{maximilian.seeliger,fabian.jogl,thomas.gaertner}@tuwien.ac.at

Abstract. We propose a novel algorithm for generating expressive graph
and node representations utilizing graph products. These representa-
tions, based on simple substructure counts in product graphs, aim to
encode structural information that is often missed by standard message
passing graph neural networks (MPNNs).
MPNNs allow to learn vector representations of graphs, that are used
in critical domains like drug discovery, social network analysis, protein
folding and transportation networks. Their expressiveness is limited by
the Weisfeiler-Leman (WL) graph isomorphism test, meaning they are
unable to distinguish certain non-isomorphic graphs and fail to recognize
important substructures, which restricts their overall capability. Our ap-
proach, called Product Substructure Count (PSC), addresses this by uti-
lizing graph products to transform graphs. The transformed graphs en-
code extensive structural information within simple substructures, such
as cycles. By counting these substructures at both the graph and node
levels, we can generate embeddings that represent the graph as a whole
as well as individual nodes.
We show that PSC representations outperform WL in isomorphism test-
ing and improve the representational capacity of MPNNs across multiple
benchmark datasets.

Keywords: Graph Product · Representation Learning · Subgraph Count-
ing.

Fig. 1. Graph products between a cycle with four vertices (C4) and a path of length 2
(P3). From left to right: Cartesian, direct, strong and modular

2 M. Seeliger et al.

1 Introduction

We propose a new method for creating graph and node representations based
on graph products. We experimentally analyze the ability of graph products to
improve the expressiveness of message passing graph neural networks (MPNNs).
MPNNs are a widely used [13,19,22,24] type of graph neural network (GNN)
that learn task-specific estimators for graph structured data. They do so, by
passing and aggregating messages to and from node neighborhoods iteratively,
starting from some initial features given by the input graph. Morris et al. [17]
and Xu et al. [24] have shown that MPNNs are limited in their expressive power
by the Weisfeiler-Leman (WL) [23] isomorphism test. This means that there
exist pairs of non-isomorphic graphs which any MPNN will map to the same
embedding regardless of the width or depth of the MPNN. To address these
limitations, prior work explores k-WL tests as a theoretical foundation for GNN
architectures that pass information over k-tuples of nodes instead of individual
nodes [17,12,4]. While these approaches are strictly more expressive, they scale
poorly: already 2-WL is computationally expensive and higher-k models quickly
become impractical [27]. The k-WL hierarchy is coarse and fails to capture subtle
structural differences. Our graph product-based method introduces a more fine-
grained perspective, that measures expressiveness between the levels of the k-WL
hierarchy.

Graph products combine two graphs to one product graph. There are many
different variants of graph products that each define unique construction rules for
the product graph. Graph products have previously been used to utilize graph
structure in machine learning problems. The random walk kernel [10] applies the
direct graph product for efficient similarity calculations based on the number of
common walks across graphs and the subgraph matching kernel [14] utilizes
the relation between subgraph isomorphism and cliques in the modular product
graph for computation. Shi et al. [20] and Einzade et al. [8] learn to decompose
product graphs into their factors, making use of their spectral properties. Einzade
et al. [7] also provide a domain specific GNN architecture for multidomain data,
which can be seen as Cartesian product graphs. Leskovec et al. [15] use the direct
graph product to generate synthetic graphs with properties similar to real-world
networks.

In this work, graph products are used to encode structural properties of
graphs within simple subgraphs. We first transform individual graphs by apply-
ing the graph product with the same fixed factor graph to the whole dataset.
Then we create feature vectors with the counts of subgraphs in the product
graph, either for the whole graphs or for individual vertices (only counting those
subgraphs that the vertex participates in). This approach, called Product Sub-
structure Count (PSC), allows to choose the type of considered subgraphs, the
graph product and factor graph in an application specific way, in order to focus
on relevant structural aspects for a given task. We find that PSC outperforms
the Weisfeiler-Leman test as a graph isomorphism heuristic in distinguishing
small non-isomorphic graphs. Additionally, PSC features improve training per-

Graph Product Representations 3

formance when used as initial node features in MPNNs, particularly in social
graph datasets.

Contributions.

– We propose a novel algorithm, called Product Substructure Count (PSC),
for extracting structural features from graphs based on graph products, that
enhance the expressivity of MPNNs (Section 3).

– We experimentally evaluate PSC by comparing its ability to distinguish
graphs to the Weisfeiler-Leman isomorphism test and utilizing the extracted
features together with MPNNs for representation learning (Section 4).

2 Background

A graph G is a tuple G = (VG, EG) comprising of a set of vertices VG and a
set of undirected edges EG ⊆ {{u, v} | ∀u, v ∈ VG, u ̸= v}. We call a graph
H = (VH , EH) a subgraph of G if VH ⊆ VG and EH ⊆ EG. We say H is a path
if VH can be arranged as a sequence (v1, v2, . . . , vn), with n = |VH |, such that
the edges are exactly EH = {{vi, vi+1} | 1 ≤ i < n}. A cycle is a path where the
first and last vertices in the sequence are the same, i.e. v1 = vn. Further, we say
two graphs G and H are isomorphic, denoted G ∼= H, if there exists a bijection
f : VG → VH such that ∀u, v ∈ VG : {u, v} ∈ EG ⇔ {f(u), f(v)} ∈ EH .

Let G = (VG, EG) and H = (VH , EH) be two undirected graphs. We define
four standard graph products—Cartesian, direct, strong and modular—each con-
structing a new graph over the vertex set VG × VH with distinct edge sets [11].
Figure 1 provides an example for each definition.

– The Cartesian Product (G□H) has an edge between vertices (u, u′), (v, v′) ∈
VG□H if and only if (u = v and {u′, v′} ∈ EH) or (u′ = v′ and {u, v} ∈
EG).

– The Direct Product (G × H), also called tensor product, has an edge
between (u, u′), (v, v′) ∈ VG×H if and only if {u, v} ∈ EG and {u′, v′} ∈ EH .

– The Strong Product (G⊠H) combines the Cartesian and direct products.
Vertices (u, u′), (v, v′) ∈ VG⊠H are adjacent if and only if (u = v and {u′, v′} ∈
EH) or (u′ = v′ and {u, v} ∈ EG) or ({u, v} ∈ EG and {u′, v′} ∈
EH).

– The (weak) Modular Product (G∇H) has an edge between (u, u′), (v, v′) ∈
VG∇H if and only if

(
{u, v} ∈ EG ⇔ {u′, v′} ∈ EH

)
and u ̸= v, u′ ̸= v′. Note

that this definition of the edge set is equal to the union EG×H∪EG×H where
G and H are the complement graphs of G and H.

In this work, we consider the setting where one operand of the graph product
is fixed. We are given a tuple (◦, F), where ◦ ∈ {□,×,⊠,∇} is a graph product
and F is a graph. We use graph products as a parameterized graph transforma-
tion where ◦F (G) := G ◦ F . In this case, we call F the factor graph. Different

4 M. Seeliger et al.

choices of (◦, F) can transform structures from the original graphs in non-trivial
ways. For example, Lemma 1 and Lemma 2 in Appendix B show cases where
paths are encoded in the cycle space of the product graph.

Algorithm 1 Graph-Level Product Substructure Count (G-PSC)
1: function GraphPSC(G)
2: P ← ◦F (G)
3: S ← FindSubgraphs(P) ▷ Return a list of subgraphs
4: countVector← zero vector of length maxS∈S |S|
5: for all S ∈ S do
6: countVector[|S|]← countVector[|S|] + 1
7: return countVector

3 Algorithm

We propose an algorithm called Product Substructure Count (PSC), that extract
structural information from product graphs for use as features in learning tasks.
It does so by counting specific subgraphs (e.g. cycles, cliques, paths) within the
product graph. PSC has three primary degrees of freedom: (1) the choice of which
type of subgraph to count, (2) the type of graph product ◦ to apply and (3) the
factor graph F to use. The algorithms can extract features at both the graph
level (count subgraphs globally) and the node level (count subgraphs containing
the node).

Graph-Level Product Substructure Count (G-PSC). The G-PSC algorithm (see
Algorithm 1) creates a vector representation of a graph by counting the number
of substructures of different sizes found in its product graph. The runtime of
G-PSC is dominated by three main steps:

1. Product Graph Construction. Building the product graph P = ◦F (G)
has complexity O(|VP |2), since all node pairs need to be checked for adja-
cency. The product has size |VP | = |VG| · |VF |, but in practice, |VF | is small
and fixed, so |VP | = O(|VG|).

2. Subgraph Detection. Finding all subgraphs of interest is the most expen-
sive step. We denote the time complexity as a function g(P) that depends
on the type of subgraph.

3. Counting Step. Counting substructures by size and populating the repre-
sentation vector takes O(|S|) time. However, since we find the set S in step
2, it cannot be bigger than O(g(P)).

The total time complexity of G-PSC is O
(
|VP |2 + g(P)

)
.

Graph Product Representations 5

Node-Level Product Substructure Count (N-PSC). The N-PSC algorithm (see
Algorithm 2) generates a feature vector for each node in the original graph by
counting how many substructures (of each size) its corresponding nodes in the
product graph participate in. The runtime analysis of N-PSC uses the same first
two steps as G-PSC and continues as follows:

3. Vector Initialization. Initializing a vector of length k (the maximum sub-
graph size) for each node in G takes O(k · |VG|)

4. Counting Participation. Each subgraph contributes to the count vectors
of all nodes it corresponds to in G. Counting these participations takes O(k ·
|S|)

The total time complexity of N-PSC is O
(
|VP |2 + g(P) + k · |VG|+ k · |S|

)
.

Algorithm 2 Node-Level Product Substructure Count (N-PSC)
1: function NodePSC(G)
2: P ← ◦F (G)
3: S ← FindSubgraphs(P) ▷ Return a list of subgraphs
4: nodeVectors← empty dictionary
5: for all u ∈ V (G) do
6: nodeVectors[u]← zero vector of length maxS∈S |S|
7: for all S ∈ S do
8: for all (u, f) ∈ S do ▷ note, VP = VG × VF and S is subgraph of P
9: nodeVectors[u][|S|]← nodeVectors[u][|S|] + 1

10: return nodeVectors

4 Experiments

To evaluate the effectiveness of the Product Substructure Count (PSC) frame-
work, we conduct two sets of experiments: one focusing on the ability of PSC
to distinguish non-isomorphic graphs through invariant structural embeddings
and another assessing its utility as a feature extractor for downstream graph
learning tasks. The first set highlights PSC’s potential in the context of graph
comparison and isomorphism testing, while the second investigates its capacity
to enhance message passing neural networks (MPNNs) by providing structurally
rich node-level features. Together, these experiments aim to validate the practi-
cal applicability of the PSC approach.

4.1 Distinguishing Graphs

The graph isomorphism problem—determining whether two graphs are struc-
turally identical—remains a computationally challenging task. Although a quasi-
polynomial time algorithm exists [1], the exact complexity status of the prob-
lem is unresolved. It defines the complexity class GI, which is believed to lie

6 M. Seeliger et al.

strictly between P and NP-complete. Algorithms in this complexity class com-
monly require too much time for practical applications. In practice, the graph
isomorphism problem is solved using heuristics based on graph invariants, such
as degree sequences or cycle counts, to achieve fast and approximately correct
results.

To be useful in this context, the PSC algorithm must produce graph embed-
dings invariant under automorphisms (otherwise the same graph could result
in two different embeddings). We investigate G-PSC by calculating the features
for each of the 995 non-isomorphic, unlabeled, connected graphs with up to
seven nodes and compare the resulting vectors for collisions—cases where non-
isomorphic graphs are mapped to identical representations.

Baselines. We consider two baselines: (B1) counting the chosen subgraphs on
the original graphs without transformation and (B2) the WL algorithm, a strong
method for graph comparison.

PSC Setup. We choose chordless cycles (i.e. only consecutive vertices in the cycle
are adjacent) as the subgraphs to count, resulting in a complexity of g(P) =
O((|VP |+ |EP |) · c), where c is the number of chordless cycles [6,21]. We run the
algorithm for all four considered graph products—Cartesian, direct, strong and
modular—and apply factor graphs of different graph families and sizes: complete
graphs (Kn; n vertices and they are pairwise adjacent), path graphs (Pn; a path
of length n− 1) and star graphs (Sn; a center node with n arms).

Table 1. Number of pairs of non-isomorphic
graphs with the same embedding per method.
For comparison, baseline B1 results in 6989 col-
lisions and B2 in 20 collisions.

Graph Products
F □ × ⊠ ∇
K3 1245 0 3952 0 C

om
pl.

K5 1244 0 3952 0
K7 1244 0 3952 0

P3 1 332 11 0 P
athP5 0 12 0 0

P7 0 5 0 0

S3 0 350 5 0 StarS5 0 362 5 0
S7 0 327 5 0

Results. As shown in Table 1,
PSC consistently outperforms B1,
with some configurations even
surpassing B2. The modular prod-
uct achieves perfect distinction,
while Cartesian and strong prod-
ucts with complete graphs un-
derperform due to their excessive
number of chords. With a com-
plete factor graph, the Cartesian
and strong products edge con-
struction rule connects all occur-
rences of the same vertex from
the original graph (i.e. the ver-
tices (v, f1), (v, f2) ∈ VP are al-
ways connected). This introduces
chords into cycles that would oth-
erwise be part of the representation of the graph. We hypothesize, that a high
performing combination of graph product and factor graph finds a trade-off re-
garding the sparsity of the product graph.

To qualitatively evaluate the effect of graph products on the embeddings, we
reduce their dimensionality and visualize them in 2D space. We use principal

Graph Product Representations 7

component analysis (PCA), a linear transformation onto a new orthonormal ba-
sis, which captures the maximum variance. We observe that the graph product
transformation alters the hierarchical structure of the embeddings compared to
the original graphs, potentially increasing the degrees of freedom in the repre-
sentation. Notably, the transformation preserves correlations between structural
properties, such as the edge count, and the position of graphs in the embedding
space. (Figure 2 and more detailed in Appendix A).

0 10 20 30

0

5

10

15

0 2 4
1e4

2

0

2

4
M

od
ul

ar
1e4 K7

0.5 0.0 0.5 1.0 1.5
1e5

4

2

0

2

4

6
1e4 P7

0.5 0.0 0.5 1.0 1.5
1e5

5

0

5

1e4 S7

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Edges

Fig. 2. PCA dimensionality reduction of the G-PSC embeddings for chordless cycles
on the set of all connected graphs with up to seven vertices: from left to right: without
transformation (B1), modular product with K7, with P7 and with S7.

4.2 Learning on PSC Features

All embeddings produced by MPNNs build on the initial node representation
given by node features. Thus, graph learning tasks are significantly more difficult
when none or only few features are available. We utilize the N-PSC framework
to compute initial features and apply them in conjunction with MPNNs in a
classification setup. We focus on fundamental cycle bases as the subgraphs of
interest with PSC. These bases span the entire cycle space, allowing any cycle
present in the graph to be reconstructed by computing the symmetric differ-
ence of a subset of the basis cycles. Further, they can be efficiently computed
even on large graphs, leading to a complexity of g(P) = O(|EP | · log |VP |) (cf.
Appendix B).

Baseline. In addition to the node features provided by the dataset, we use one-
hot encodings of the node degree and concatenate them for the baseline deg.
We use a 3-layer GIN [24] with ReLU activations, batch norm and jumping
knowledge [25]. Models are trained for 200 epochs with an initial learning rate
of η = 0.001 which is halved every 50 epochs. Hidden channels (∈ {64, 128})
and batch size (∈ {32, 256}) are tuned and results are averaged over 10-fold
cross-validation.

PSC Features. To assess the capability of PSC we evaluate two configurations,
that concatenate additional N-PSC features to the initial features from the base-

8 M. Seeliger et al.

line. The first configuration (□K3) uses the Cartesian product and K3 as a fixed
factor and the second (∇P3) uses the modular product and P3 as a fixed factor.

Setup. We evaluate our approaches on social (IMDB [26], Reddit [26]), synthetic
(SYNTHETIC [9], SYNTHIE [16]) and biological (MUTAG [5], ENZYMES [3])
datasets (see Appendix C for more details). Following Xu et al. [24], we report
training accuracies as a proxy measure for the expressiveness of the models.
A more expressive model should be able to distinguish between graphs from
the training dataset better and therefore be able to fit closer to the training
distribution. The implementation is publicly available on GitHub1.

Results. Table 2 report the models’ training accuracies on the respective datasets.
We see that our approach consistently outperforms or equalizes the baseline on
every dataset in its ability to fit the data. In particular, social graph datasets
benefit the most from the additional features. We hypothesize, that due to the
clustered nature of social graphs, they benefit from additional information about
global structural properties, that are inherently hard to capture with message
passing.

dataset deg □K3 ∇P3

IMDB-BINARY 0.891± 0.005 0.901± 0.003 0.926± 0.005
IMDB-MULTI 0.614± 0.009 0.628± 0.005 0.640± 0.005
REDDIT-BINARY 0.986± 0.002 0.996± 0.001 0.995± 0.002
SYNTHETIC 1.000± 0.000 1.000± 0.000 1.000± 0.000
SYNTHETIC (no attr) 0.580± 0.013 0.584± 0.014 0.593± 0.022
SYNTHIE 1.000± 0.000 1.000± 0.000 1.000± 0.000
MUTAG 0.990± 0.006 1.000± 0.000 0.995± 0.003
ENZYMES 0.984± 0.004 0.984± 0.005 0.996± 0.001

Table 2. Following Xu et al. [24], we report mean and standard deviation of the train-
ing accuracy as a proxy measure for expressivity for all datasets over the baseline and
the two N-PSC configurations. Green rows indicate datasets, on which our proposed
approach outperforms the baseline and yellow rows mark datasets with equal perfor-
mance across all approaches.

5 Discussion and Conclusion

Summary. We demonstrated the utility of our approach through both theo-
retical analysis and extensive experiments. PSC, particularly in its form using
basis cycles, effectively increased the expressiveness of graph representations by
capturing substructures that are inherently difficult for traditional GNNs based
1 Link to GitHub repository: https://github.com/max-seeli/graph-gumbo

https://github.com/max-seeli/graph-gumbo

Graph Product Representations 9

on message passing to learn. Our proposed graph products not only expand
the feature space but also provided meaningful separations between graph in-
stances, as evidenced by our experiments on distinguishing graphs with up to
seven nodes. Notably, counting chordless cycles in the modular product allows
our method to distinguish all non-isomorphic graphs in the dataset, surpassing
even the commonly used WL test. The experimental evaluation of PSC-based
features, combined with the Graph Isomorphism Network, consistently improved
the training accuracy of classification tasks across multiple benchmark datasets.
Particularly in social graph datasets, the addition of node-level product sub-
structure counts led to higher accuracies, highlighting the effectiveness of our
method to model data from this domain.

Future Work. PSC introduces several design choices such as the graph product,
factor graph, and substructure type. As these parameters strongly depend on the
task at hand we leave their choice and the effect on the trade-off between repre-
sentational power and computational cost open for future work. It is known that
certain substructures can be computationally intensive to count in large prod-
uct graphs. In future work, we plan to investigate approximation and sampling
techniques to reduce this computational bottleneck.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing. pp. 684–697 (2016)

2. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theoret-
ical Computer Science 321(1), 5–12 (2004)

3. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(suppl_1), i47–i56 (2005)

4. Chen, Z., Chen, L., Villar, S., Bruna, J.: Can graph neural networks count sub-
structures? Advances in neural information processing systems 33, 10383–10395
(2020)

5. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Han-
sch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity.
Journal of medicinal chemistry 34(2), 786–797 (1991)

6. Dias, E.S., Castonguay, D., Longo, H., Jradi, W.A.R.: Efficient enumeration of
chordless cycles. arXiv preprint arXiv:1309.1051 (2013)

7. Einizade, A., Malliaros, F., Giraldo, J.H.: Continuous product graph neural net-
works. Advances in Neural Information Processing Systems 37, 90226–90252 (2024)

8. Einizade, A., Sardouie, S.H.: Learning product graphs from spectral templates.
IEEE Transactions on Signal and Information Processing over Networks 9, 357–
372 (2023)

10 M. Seeliger et al.

9. Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scal-
able kernels for graphs with continuous attributes. Advances in neural information
processing systems 26 (2013)

10. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient
alternatives. In: Learning Theory and Kernel Machines: 16th Annual Conference
on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington,
DC, USA, August 24-27, 2003. Proceedings. pp. 129–143. Springer (2003)

11. Hammack, R.H., Imrich, W., Klavžar, S.: Handbook of product graphs, vol. 2.
CRC press Boca Raton (2011)

12. He, J., Cheng, M.: Orthogonal bases for equivariant graph learning with provable
k-wl expressive power. Journal of Machine Learning Research 26(29), 1–35 (2025)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings (2017)

14. Kriege, N., Mutzel, P.: Subgraph matching kernels for attributed graphs. In: Pro-
ceedings of the 29th International Coference on International Conference on Ma-
chine Learning. p. 291–298. ICML’12, Omnipress, Madison, WI, USA (2012)

15. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. Journal of Machine Learning
Research 11(2) (2010)

16. Morris, C., Kriege, N.M., Kersting, K., Mutzel, P.: Faster kernels for graphs with
continuous attributes via hashing. In: 2016 IEEE 16th International Conference on
Data Mining (ICDM). pp. 1095–1100. IEEE (2016)

17. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G., Grohe,
M.: Weisfeiler and leman go neural: Higher-order graph neural networks. Proceed-
ings of the AAAI Conference on Artificial Intelligence 33(01), 4602–4609 (Jul
2019). https://doi.org/10.1609/aaai.v33i01.33014602, https://ojs.aaai.org/index.
php/AAAI/article/view/4384

18. Paton, K.: An algorithm for finding a fundamental set of cycles of a graph. Com-
munications of the ACM 12(9), 514–518 (1969)

19. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE transactions on neural networks 20(1), 61–80 (2008)

20. Shi, C., Mishne, G.: Learning cartesian product graphs with laplacian constraints.
In: International Conference on Artificial Intelligence and Statistics. pp. 2521–2529.
PMLR (2024)

21. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and
chordless paths. In: International Conference on Discovery Science. pp. 313–324.
Springer (2014)

22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

23. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the
algebra which appears therein. nti, Series 2(9), 12–16 (1968)

24. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural net-
works? In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=ryGs6iA5Km

25. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Repre-
sentation learning on graphs with jumping knowledge networks. In: International
conference on machine learning. pp. 5453–5462. PMLR (2018)

26. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data mining.
pp. 1365–1374 (2015)

https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1609/aaai.v33i01.33014602
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://ojs.aaai.org/index.php/AAAI/article/view/4384
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Graph Product Representations 11

27. Zhao, L., Shah, N., Akoglu, L.: A practical, progressively-expressive gnn. Advances
in Neural Information Processing Systems 35, 34106–34120 (2022)

12 M. Seeliger et al.

A Additional Figures

Figure 3 shows the PCA dimensionality reduction of embeddings created from
counting chordless cycles on the set of all connected graphs with up to seven
vertices without transforming the graphs. In Figure 4 we can see the a dimen-
sionality reduction of the embeddings when using G-PSC with various different
configurations.

0 10 20 30

0

5

10

15

5

10

15

20

Nu
m

be
r o

f E
dg

es

Fig. 3. PCA dimensionality reduction of the G-PSC embeddings for chordless cycles
on the set of all connected graphs with up to seven vertices, without transformation.

0.0 0.5 1.0
1e6

300000

200000

100000

0

100000

Ca
rte

sia
n

K7

0 50000
20000

0

20000

P7

0 50000

0

20000

40000

S7

0 20000 40000
20000

0

20000

40000

Di
re

ct

0 25000 50000
40000

20000

0

20000

40000

2000 1500 1000
0

20000

40000

60000

80000

1200 1000 800
2500

2000

1500

1000

St
ro

ng

0 50000

20000

0

20000

1000 0 1000 2000

1000

0

1000

2000

0 20000 40000
20000

0

20000

40000

M
od

ul
ar

0 100000

25000

0

25000

50000

0 100000

50000

0

50000

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Edges

Fig. 4. PCA dimensionality reduction of the G-PSC embeddings for chordless cycles
with the respective graph product and factor graph combination on the set of all
connected graphs with up to seven vertices.

Graph Product Representations 13

B Fundamental Cycle Basis

The motivation for studying cycle basis stems from their ability to provide a
polynomial characterization of the potentially exponential number of all cycles
in a graph. This offers insights into the graph’s cyclic structure while maintaining
a manageable upper bound on the number of subgraphs to consider, making their
practical use feasible. Moreover, in product graphs, the cyclic structure captures
additional information (e.g. about paths) depending on the specific type of graph
product being considered.

Lemma 1. Given a graph G and a factor graph F with |EF | ≥ 1. For every
path P in graph G there is a cycle of length 2|P | + 2 in the Cartesian product
graph G□F

Proof. Given |EF | ≥ 1, we take any edge {f1, f2} ∈ EF and induce the subgraph
S of G□F with the nodes {(v, f1) | v ∈ VG}∪{(v, f2) | v ∈ VG}. By construction
of the Cartesian product, S consists of two isomorphic copies of G, where each
corresponding vertex is connected. Therefore, any path P = (v1, v2, . . . , vn) in
G has a corresponding cycle

C = ((v1, f1), (v2, f1), . . . , (vn, f1), (vn, f2), (vn−1, f2), . . . , (v1, f2), (v1, f1)).

This cycle walks along the path P in both isomorphic copies for a total length of
2|P | and takes two additional edges to move across them at the endpoints.

Lemma 2. Given a graph G and a factor graph F . Every edge {v1, v2} ∈ EG

entails a copy of all even sized cycles of F in the direct product graph G× F .

Proof. By construction of the direct product, ∀f1, f2 ∈ VF : {f1, f2} ∈ EF →
{(v1, f1), (v2, f2)} ∈ EG×F . Therefore, any given cycle C = (c1, c2, . . . , cn, c1) in
F with an even cardinality n transforms to the cycle

C ′ = ((v1, c1), (v2, c2), (v1, c3), . . . , (v2, cn), (v1, c1))

in the product graph, where v1 and v2 are alternating.

There are many similar lemmas underscoring the structure-capturing effect,
the cycle space has in product graphs. Both Lemma 1 and 2 also apply to the
strong product and the latter even applies to the modular product, since the
edge sets of those products are supersets.

Multiple efficient algorithms have been found for the various types of cycle
basis. In the following, we present one for fundamental cycle basis developed by
[18].

The computational complexity of the Algorithm 3 is O(m log n), where m is
the number of edges and n is the number of vertices in the graph G. The critical
operation influencing this complexity is the identification of fundamental cycles,
which requires finding the shortest path between two vertices in the spanning
tree T . By utilizing efficient tree algorithms—specifically, the Lowest Common

14 M. Seeliger et al.

Algorithm 3 Fundamental Cycle Basis [18]
1: function FundamentalCycleBasis(G)
2: T ← ({v}, ∅) ▷ Take any vertex v as root of spanning tree
3: X ← VG

4: while VT ∩X ̸= ∅ do
5: Select any vertex z from VT ∩X
6: for all {z, w} ∈ EG do
7: if w ∈ V (T) then
8: Fundamental cycle with edge {z, w} and the shortest path from z to

w in T
9: else

10: Add edge {z, w} to spanning tree T
11: Remove {z, w} from EG

12: X ← X \ {z}

Ancestor (LCA) method with binary lifting [2]—we can continuously maintain a
datastructure of T during its generation in a total of O(n log n) cumulative time.
This datastructure allows each shortest path query to be answered in O(log n)
time. As each edge is considered exactly once before being removed, the total
time spent on processing edges and identifying cycles sums up to O(m log n),
resulting in the overall time complexity.

C Datasets Table 3. Characteristics of the datasets.

Dataset Graphs Classes Avg. Nodes Avg. Edges

IMDB-BINARY 1000 2 19.77 96.53
IMDB-MULTI 1500 3 13.00 65.94
REDDIT-BINARY 2000 2 429.63 497.75
SYNTHETIC 300 2 100.00 196.00
SYNTHIE 400 4 95.00 172.93
MUTAG 188 2 17.93 19.79
ENZYMES 600 6 32.63 62.14

In the experimen-
tal evaluation, we
utilize a diverse
set of datasets to
assess our approach.
The datasets span
multiple domains,
including synthetic,
biological, chemi-
cal and social graph benchmarks. Below, we provide a detailed description of
each category, Table 3 gives an overview over their central properties and in
Figure 5 example graphs from each dataset class are shown.

IMDB-BINARY SYNTHETIC MUTAG

Fig. 5. Example graphs (left to right): IMDB-BINARY, SYNTHETIC and MUTAG

Graph Product Representations 15

Social Graphs. We consider datasets representing social networks, specifically
IMDB and REDDIT [26]. These datasets are chosen to evaluate the model’s
proficiency in learning from real-world social community structures.

– IMDB-BINARY : Contains 1,000 graphs, each representing a set of actors
appearing together in films, used for binary classification of movie genres.

– IMDB-MULTI : Consists of 1,500 graphs, similar to IMDB-BINARY, but
used for multi-class classification involving multiple movie genres.

– REDDIT-BINARY : Contains 2,000 graphs representing Reddit discussion
threads, used for binary classification of different discussion types.

Synthetic Datasets. We incorporate two synthetic datasets, SYNTHETIC
and SYNTHIE, which are relevant in evaluating the model’s ability to identify
and represent abstract graph structures under controlled generation rules.

– SYNTHETIC [9] is a dataset of 300 synthetic graphs derived from a random
base graph with 100 nodes and 196 edges, featuring normally distributed
node attributes. Each graph in class A is formed by reconnecting 5 edges
and permuting 10 node attributes and class B is generated with the same
process but switched numbers.

– SYNTHETIC (no attr) is a variant of SYNTHETIC, where the node at-
tributes are ignored and only the rewiring of 5 and 10 edges define the
respective classes A and B.

– The SYNTHIE dataset [16] consists of 400 graphs, categorized into four
classes, each featuring 15 real-valued node attributes. These were derived
from two initial Erdős-Rényi graphs by altering 25% of the edges to generate
seed sets, from which connected graphs were formed by randomly adding
edges between sampled seeds. Node attributes from two distinct classes were
then assigned based on the origin of the seed, resulting in the formation of
the final graph classes.

Biology and Chemistry. We employ datasets from biology and chemistry,
specifically MUTAG and ENZYMES.

– MUTAG [5]: Contains 188 graphs representing chemical compounds, repre-
sented as graphs, where nodes correspond to atoms and edges denote bonds.
The task is to predict the mutagenic effects of aromatic and heteroaromatic
compounds.

– ENZYMES [3]: Consists of 600 protein tertiary structures obtained from
the BRENDA enzyme database. The task is to connect the protein with the
appropriate enzyme.

	Graph Product Representations

