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Abstract. We analyze the expressive power of Graph Neural Networks
for SAT solving through the lens of the Weisfeiler-Leman (WL) test.
We prove that certain pairs of 3-SAT instances with O(n) variables
are indistinguishable under the n-WL test, despite one being satisfiable
and the other unsatisfiable. In contrast, planar SAT—a well-known NP-
complete SAT variant—is fully distinguishable by 4-WL. We argue that
random SAT instances are largely distinguishable, which we prove for
a particular generation method. We validate this hypothesis through
experiments on random instances from the G4SAT benchmark.
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1 Introduction

Machine learning has made incredible progress in “thinking fast” tasks – such as
image recognition, speech synthesis and generative modeling. The next frontier
lies in “thinking slow,” where problems demand reasoning, logical deduction and
combinatorial search. While there has already been remarkable progress in areas
like abstract reasoning [27] and theorem proving [33], some of the hardest areas
remain open. One of the ultimate tests for AI reasoning is Boolean Satisfiability
(SAT). As an NP-complete problem, general SAT solving is among the hardest
(yet solvable) computational challenges. The question is whether machine learning
methods can learn to solve SAT problems, and if there are clearly definable areas
where learning is impossible.

Graph Neural Networks (GNNs) have emerged as the main approach to
learning-based SAT solving. Current approaches include end-to-end SAT solvers,
such as NeuroSAT [31] and QuerySAT [28], as well as hybrid approaches aug-
menting components of classic solvers [36,14]. GNNs are particularly well-suited
for SAT solving, because formulas can be naturally represented as graphs, such
as in the Literal Clause Graph (LCG), connecting literals to clauses in a bipartite
graph (see Figure 2 for an example).

However, SAT is inherently a structural problem. The ability to distinguish
different graph structures plays a crucial role in being able to solve it. This raises
a fundamental question: Are GNNs expressive enough to distinguish satisfiable
instances from unsatisfiable instances?

We study this question through the lens of the Weisfeiler-Leman (WL) test
[37,40], and the extended k-WL hierarchy [18]. Our main result proves that even
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the full WL hierarchy cannot distinguish satisfiable from unsatisfiable instances in
general (Theorem 4). The seminal work of Cai, Fürer and Immerman [7] showed
that n-WL cannot distinguish certain pairs of non-isomorphic graphs. Our result
can be viewed as an intuitive interpretation of this construction in the context of
boolean formulas.

We show that indistinguishability of instances arises also in a more practical
setting. Specifically, we construct a natural family of regular SAT formulas and
show that it is NP-complete (Theorem 2). Due to the regular structure, all
instances of the same size are indistinguishable, making GNNs essentially useless
for this family.

By contrast, there are cases where GNNs can provably distinguish all instances.
We show that PlanarSAT, a highly studied NP-complete SAT variant, is fully
identified by the 4-WL test (Theorem 6). Similarly, we argue that random SAT
instances are largely distinguishable by the 1-WL test, making them easier
from the expressivity perspective. This mirrors behavior observed in graph
isomorphism, where random graphs are typically distinguished by WL in just
a few iterations [4]. We prove this formally for formulas generated using the
method in [39] (Lemma 7).

So far, learning-based SAT solvers are often trained on random instances,
primarily because they are easy to generate [22]. However, our results raise the
question of whether random SAT instances are representative of the general SAT
problem from the perspective of GNNs. It is well known that the structure of
random instances is different from those of industrial and crafted instances (see
[2] for a survey). Industrial instances arise from real-world problems and are
often large and complex, while crafted instances are intentionally designed to be
hard for SAT solvers. In contrast, random SAT instances exhibit phase-transition
behavior, where hard instances only appear at a critical clause-to-variable ratio
[9].

In our experiments, we assess how expressivity needs differ between random
and industrial instances. We evaluate how well the WL test can distinguish literals
in a formula, providing an upper bound on the expressive power of WL-powerful
GNNs such as GIN [40]. Given a satisfiable formula, we test whether WL can
separate literals that must be assigned different values. To do this, we construct
a new formula where WL-equivalent literals are constrained to the same value. If
the constrained formula is unsatisfiable, more expressivity is necessary to predict
a satisfying assignment.

We conduct this experiment on random instances from the G4SAT bench-
mark [22] as well as industrial and crafted instances from the 2024 SAT competi-
tion [16]. In general, literals in random instances are quickly distinguished from
each other. In contrast, competition instances often require significantly more
iterations—and in some cases WL-powerful GNNs are not expressive enough to
predict satisfying assignments. This indicates that industrial and crafted instances
pose a greater challenge for GNN-based SAT solvers. More broadly, our results
suggest that random formulas may not adequately capture the challenges in SAT
solving for GNNs.
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c1 c2 c3 c4 c5 c6

x1 x1 x2 x2 x3 x3

f = (x1∨¬x3)∧(¬x1∨x3)∧(x1∨x2)∧(¬x1∨¬x2)∧(x2∨x3)∧(¬x2∨¬x3)

Fig. 1: Literal-clause graph with negation connections (LCN) of a formula f .
Removing the literal-literal edges represented by dashed lines gives the literal-
clause graph (LCG).

2 Preliminaries

Boolean satisfiability. Let x1, . . . , xn denote variables in a propositional logic. A
literal ℓ is a variable x or its negation ¬x. A clause c = {ℓ1, . . . , ℓs} is a set of
literals, representing the disjunction ℓ1 ∨ · · · ∨ ℓs. A formula f in Conjunctive
Normal Form (CNF) is a set of m clauses {c1, . . . , cm}, representing the con-
junction c1 ∧ · · · ∧ cm. We write f as a logical formula

∧
c∈f

∨
ℓ∈c ℓ or as sets,

depending on the context. Let L(f) = ∪c∈f ∪ℓ∈c ℓ be the set of all literals in a
formula. The Boolean Satisfiability Problem (SAT) is defined as follows: given a
formula f , check whether f is satisfiable. 3-SAT is the SAT problem where each
formula is in CNF and each clause consists of at most 3 literals.

Graph Notation. A graph G is a tuple (V,E). If the graph is not clear from
context, we write V (G) and E(G). All graphs are undirected unless otherwise
specified. N(v) denotes the set of neighbors of a node v and d(v) = |N(v)| is
the degree of v. On a directed graph dout denotes the outdegree of a node. A
node coloring is a function λV : V → C where C is a set of colors. Similarly,
an edge coloring is a function λE : E → C. On edge-colored graphs we write
Nc(v) = {w ∈ V (G) : ∃{v, w} ∈ E(G) s.t. λE({v, w}) = c} for the neighbors of
v through edges of color c.

Isomorphism. Two graphs G and H are isomorphic if there exists a bijection
σ : V (G) → V (H) such that {v, w} ∈ E(G) iff {σ(v), σ(w)} ∈ E(H). On
graphs with a node-coloring (cG, cH for G,H, respectively) we also require that
cG(v) = cH(σ(v)) for all v ∈ V (G). The definition is extended for edge-colored
graphs in the natural way. Note the distinction between colors/features and
labels: unlike colors or features, labels are unique identifiers, for example 1, . . . , n,
which do not need to be preserved under isomorphism unless otherwise specified.

Two CNF formulas f, g are isomorphic if there are bijections σL : L(f) → L(g)
and σC : f → g such that (1.) σL(¬ℓ) = ¬σL(ℓ) for all ℓ ∈ L(f), i.e. σL preserves
the relationship between a literal and its negation, and (2.) σC(c) = {σL(ℓ) : ℓ ∈ c}
for all c ∈ f .
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Graph Neural Networks. We focus on Message Passing Neural Networks (MPNNs)
which encapsulate the majority of GNN architectures. Nodes have some initial
features s0v ∈ Rd. An MPNN operates in synchronous rounds, which are typically
structured as follows. In each round 1 ≤ ℓ ≤ L, every node aggregates the states
of its neighbors, aℓv = agg({{sℓ−1

w : w ∈ N(v)}}), where {{.}} denotes a multiset.
The nodes update their state using their previous state and the aggregated
messages: sℓv = upd(sℓ−1

v , aℓv). The functions agg and upd are differentiable
functions typically parameterized by neural networks. The final representations
sLv can be used for node-level prediction tasks, or they can be aggregated into a
graph-level representation.

Weisfeiler-Leman Test. The expressive power of MPNNs is bounded by the
Weisfeiler-Leman (WL) algorithm, also known as color refinement:

Definition 1 (Weisfeiler-Leman algorithm). Let λV : V (G) → C be a vertex
coloring. The WL algorithm computes new colorings of the graph iteratively. The
initial coloring is given by χ0 := λV . For ℓ ∈ N, a new coloring χℓ is defined as
χℓ(v) := (χℓ−1(v), {{χℓ−1(v) : w ∈ N(v)}}). The color refinement is continued
until the partition of nodes given by χℓ equals the partition given by χℓ+1. The
output of the WL algorithm is the stable coloring χℓ.

The WL algorithm can be generalized to also use an edge-coloring λE :
E(G) → CE. The update considers each color class of edges separately: χℓ(v) :=
(χℓ−1(v), {{χNc

: c ∈ CE}}), where χNc
= {{χℓ−1(v) : w ∈ Nc(v)}} are the colors

of neighbors through edges of color c.

In the Weisfeiler-Leman test, the WL algorithm is applied to the disjoint
union of G and G′. The WL test distinguishes G and G′ if there is a color c such
that the sets {v : v ∈ V (G), χ(v) = c}, {v : v ∈ V (G′), χ(v) = c} have different
cardinalities. We say that a graph G is identified by WL if it is distinguished from
every other non-isomorphic graph H. A class of graphs K is identified if every
graph in K is distinguished from every other non-isomorphic graph H (possibly
H ̸∈ K).

k-Weisfeiler Leman Test. Let k ≥ 2 be an integer. The atomic type of a tuple
v ∈ V (G)k encodes all facts about edge connections and colors within the tuple.
Two tuples v ∈ V (G)k, u ∈ V (G′)k have the same atomic type if and only
if the mapping vi 7→ ui is an isomorphism of the induced colored subgraph
G[{v1, . . . , vk}] to G[{u1, . . . , uk}].

Definition 2 (k-dimensional WL algorithm). The k-Weisfeiler-Leman (k-
WL) algorithm initializes χ0(v) as the atomic type of v for each v ∈ V (G)k. For
ℓ ∈ N, a new coloring χℓ is defined as χℓ(v) := (χℓ−1(v), χℓ−1

1 (v), χℓ−1
2 (v), .., χℓ−1

k (v)),
where χℓ−1

i (v) = {{χℓ−1(v1, . . . , vi−1, u, vi+1, . . . , vk) : u ∈ V (G)}}. The color re-
finement is continued until the partition of tuples given by χℓ equals the partition
given by χℓ+1. The output of the WL algorithm is the stable coloring χℓ.
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The k-dimensional WL test is defined analogously to the WL test. We say
that G and G′ are distinguished if there exists a color c such that the sets
{v : v ∈ V (G)k, χ(v) = c} and {v : v ∈ V (G′), χ(v) = c} have different
cardinalities.

Remark 1. There are two algorithms and naming conventions in the literature.
This version of the k-WL algorithm is most common in machine learning literature.
Through connections to counting logic, it can be shown [12] to be equivalent to
(k − 1)-WL, as defined in for example [7,21]. See [17] for an overview.

3 Graph Representations of SAT formulas

One of the most common way to represent SAT formulas as graphs is the literal-
clause graph (LCG). The LCG is a bipartite graph with literals on one side and
clauses on the other. Edges connect literals to clauses where they appear. See
Figure 1 for an example.

In GNNs, node labels of a graph are omitted (i.e. not given as input features)
to preserve permutation invariance. To prevent information loss due to the
removed labels, it is crucial to include edges between literals and their negations,
as formalized in the next definition:1

Definition 3 (LCG with Negation Connections). An LCG with additional
edges {x,¬x} connecting each variable to its negation is called a Literal-Clause
graph with Negation connections (LCN). The edges are categorized into two
types: those connecting variables to their negation (literal-literal edge) and those
connecting literals to clauses (literal-clause edge), with each category assigned a
distinct color.

The LCN of a CNF formula f is denoted LCN(f). Adding literal-literal edges is
necessary to preserve information once labels are removed:

Lemma 1. There are 3-SAT formulas f, f ′ such that the literal-clause graphs
Gf and Gf ′ are isomorphic but f is satisfiable and f ′ is not.

The proof follows from a relatively simple example, which we present in Ap-
pendix A. The LCN representation is necessary, and sufficient to preserve all
information:

Observation 1 An LCN without node labels uniquely determines the correspond-
ing SAT formula up to isomorphism.

Given an LCN, we construct the corresponding formula by first identifying
variables as pairs of nodes connected by a literal-literal edge. These pairs are
labeled x1, . . . , xn in an arbitrary order, with one node arbitrarily designated as
1 Literal-literal edges are already used in practice in most GNN SAT solvers [31,22],

but their importance is not always stated explicitly.
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the positive literal and the other as the negative. The clauses are formed based
on the literal-clause edges.

Another popular representation is the variable-clause graph (VCG), with n
variable nodes on one side and the clauses on the other. Clauses are connected
to their respective variables, with edges colored depending on the sign of the
variable. The VCG clearly preserves all information about the formula, making
it at least as expressive as the LCN representation. However, the VCG does not
respect our notion of isomorphism between formulas, as there are non-isomorphic
VCG representations for isomorphic formulas. For example, flipping the sign of
all occurrences of a variable x in f = (x ∨ y) ∧ (¬x) produces an isomorphic
formula f ′ = (¬x ∨ ¬y) ∧ (x), but the VCGs are non-isomorphic. On the other
hand, the LCNs of f and f ′ are the same.

Other known graph representations include the literal-incidence graph (LIG)
and the clause-incidence graph (CIG), where literals (clauses) are connected
to other literals (clauses) if they co-occur in a clause (share a variable). These
representations are less commonly used, as they are inherently lossy.

4 Related Work

Machine Learning for SAT. One of the earliest works in this area is NeuroSAT
[31] – an end-to-end SAT solver framework with GNNs. Their algorithm is
based on predicting satisfiability, and hence works with single-bit supervision.
QuerySAT [28] uses an unsupervised loss function computed from continuous
variable values, and a query mechanism to update the variable values. Some of
the recent architectures and losses can be tried with the G4SAT benchmark [22].

The end-to-end SAT solvers are mostly of methodological interest, and cur-
rently not practical for large instances. Another line of research augments classic
SAT solvers with machine learning components, such as learned heuristics or
branching strategies. The work of [30] adapts the NeuroSAT architecture to pre-
dict unsatisfiability cores, which is used to select branching variables. Other SAT
solving components with potential for ML solutions include variable initialization
[38], clause deletion [35] and restart policy [23]. See [14] for a comprehensive
survey on machine learning methods in SAT solving.

Dataset generation is another promising application area. To mimic industrial
SAT instances, [39] use a learning-based graph representation and design a
method to generate SAT instances from their implicit model. Another line of
work frames SAT generation as a bipartite graph generation problem [41].

Expressivity and the Weisfeiler-Leman test. It is well known that the Weisfeiler-
Leman test bounds the expressive power of MPNNs [40]. This limitation has
motivated a large number of more expressive GNN architectures, with expressivity
corresponding to k-WL for some k > 2 [26,25,20]. A comparison of the expressivity
of different GNN extensions is given by [29].

The k-WL is a powerful tool, but it is not able to solve graph isomorphism in
general. The seminal work of [7] shows that there are pairs of non-isomorphic
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O(n)-node graphs that are indistinguishable by the n-WL test. There are positive
results for special graph classes. Namely, [21] show that planar graphs are
identified by 4-WL. Random graphs are mostly identifiable by the WL test in
two iterations [4].

Beyond structural expressivity, [13] analyzes the power of GNNs in terms of
circuit complexity, showing that GNNs can decide problems in TC0 (constant-
depth circuits with polynomial size).2

Complexity Theory. Boolean satisfiability was the first problem proven to be
NP-complete, by Stephen Cook [8]. Later, several variants of SAT have been
proven to be equally hard, such as PlanarSAT [24]. SAT solving remains an active
area of research, with SAT competitions being held annually [16].

The computational complexity of different equivalence relations between
boolean functions was studied by [6]. In their work, two formulas f, f ′ on the
same set of variables are said to be isomorphic if there is a bijection σ of the
variables such that f, f ′ agree on all assignments up to the mapping σ. Under
this definition, for instance, a tautology is isomorphic to the empty formula. Our
notion of isomorphism is stricter, as it requires clauses to be preserved under
the mapping. We find that this notion is better suited for the setting with graph
representations.

Proof Complexity. The complexity of proving the unsatisfiability of propositional
formulas is a central topic in proof complexity. One of the most studied systems
is resolution, where the proof consists of clauses derived from the original formula
using a simple inference rule. Hard examples for resolution include the Pigeonhole
principle [15] and the Tseitin formulas [34]. Resolution proof length can be related
to the width of the proof, where the width of a resolution proof is the maximum
number of literals in any clause of the proof [5]. The complexity of resolution
has also been characterized in terms of pebbling games [3,10]. In this setting,
pebbling games are played on a single graph—unlike the two-graph pebbling
games that correspond to k-WL indistinguishability [7].

5 Indistinguishable Families of SAT Instances

In this section, we construct explicit families of SAT formulas that are provably
indistinguishable by the WL-test and the WL hierarchy. As our main technical
contribution, we show that there are 3-SAT formulas that are indistinguishable
by the n-WL test, despite one being satisfiable and the other not (Section 5.2).
In general, distinguishing SAT instances (regardless of satisfiability) is as hard
as graph isomorphism (Section 5.3). We also identify a practically relevant
2 This implies (under common complexity theoretic assumptions) that SAT cannot

be decided by GNNs. However, note that this does not imply that there must exist
n-WL indistinguishable satisfiable and unsatisfiable formulas (which is what we
show in Theorem 4). Indeed, as shown in Theorem 6, all PlanarSAT instances are
distinguishable by 4-WL, even though PlanarSAT is NP-complete.
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family of regular SAT formulas that are indistinguishable by 1-WL, yet remain
NP-complete.

5.1 3-regular SAT

To motivate our first contribution, we start the section with a simple example
of a pair of WL-indistinguishable formulas. Consider a CNF formula f on three
variables x1, x2, x3:

f = (x1 ∨ ¬x3) ∧ (¬x1 ∨ x3) . . . x1 = x3

∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) . . . x1 ⊗ x2

∧ (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) x2 ⊗ x3

where ⊗ denotes the xor. See Figure 1 for the graph representation. The formula
is satisfied by x = (1, 0, 1) or x = (0, 1, 0). We can make a similar but unsatisfiable
formula f ′ by replacing the clauses encoding x2 ⊗ x3 (the third line) with clauses
encoding x2 = x3. Note that this change keeps all literal degrees the same. Since
each literal appears in exactly two clauses in both f and f ′, the LCGs of f and
f ′ are WL-indistinguishable. However, f ′ is clearly unsatisfiable. We generalize
this example by constructing a class of regular formulas.

Definition 4. A SAT instance is k-regular if each literal appears in exactly k
clauses and each clause contains exactly k literals

Despite this strong regularity, the class remains computationally hard:

Theorem 2. 3-regular SAT is NP-complete.

Although related NP-complete variants have appeared in the literature (3-SAT
[19], 3-SAT with each variable appearing at most 4 times [32]), we are not aware
of a formal proof of this specific result, so we provide one in Appendix D for
completeness.

If formulas are given in the 3-regular SAT format, a WL-powerful GNN is
essentially useless in solving them:

Observation 3 The WL test does not distinguish between any two 3-regular
SAT formulas with the same number of variables.

5.2 k-WL Indistinguishable SAT Instances

Given that 1-WL cannot distinguish some formulas, one might wonder whether
higher-order WL tests suffice. In this section, we answer the question in the
negative, showing that there are 3-SAT formulas that are indistinguishable by
the WL hierarchy, despite one being satisfiable and the other not.

Theorem 4. There are 3-SAT formulas f, f̃ with O(n) variables and O(n)
clauses such that f is satisfiable and f̃ is not, but the LCNs of f and f̃ are
indistinguishable by the n-WL test.
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Our result uses the seminal work of Cai, Fürer and Immerman [7], giving a
pair of non-isomorphic graphs H and H̃ which are indistinguishable by n-WL. We
construct a pair of formulas f, f̃ with LCNs isomorphic to H and H̃, respectively.
On a high level, our formula fG encodes the existence of an even orientation for
a graph G. This is an orientation of the edges such that each node has an even
number of outedges. We show that such an orientation exists if and only if the
number of edges is even. Then, we construct a twisted formula f̃G, encoding the
existence of an even orientation when one of the edges is bidirectional. Exactly
one of fG and f̃G are satisfiable, depending on the parity of m. The proof of
Theorem 4 is given in Appendix B.

Interestingly, the construction in Theorem 4 is similar to Tseitin formulas,
which are known as hard instances for resolution refutation [34]. Tseitin formulas
encode a set of linear inequalities over nodes of a graph. See Definition 6 for a
formal definition. Resolution proofs—and likewise the WL test—rely on exploiting
local patterns in the formula (or graph), and in both settings, the hardest
instances include a global inconsistency that cannot be detected through purely
local reasoning. To the best of our knowledge, this connection between Tseitin
formulas and the construction of [7] has not been previously observed.

5.3 Graph Isomorphism Completeness of Distinguishing
Literal-Clause Graphs

The graph isomorphism problem (GI) asks whether there is an edge-preserving
bijection of the nodes. To complement the indistinguishability results, we show
that, in general, distinguishing LCNs of CNF formulas is as hard as graph
isomorphism. Theorem 5 is proved in Appendix C.

Theorem 5. The graph isomorphism problem on LCNs of 3-SAT formulas is
equally hard as graph isomorphism on general graphs.

6 Positive Results for Distinguishability

The previous section showed various expressivity limitations of GNNs for SAT
solving. Here, we shift focus to positive results, showing that there are classes of
SAT instances that can be reliably distinguished. First, we show that PlanarSAT
instances are distinguished by 4-WL. Second, we prove that under a natural
random generation model, most random SAT instances are identified by 1-WL
with high probability.

6.1 Planar SAT

PlanarSAT is a variant of SAT where the clauses are represented as a planar
graph. The PlanarSAT language is NP-complete [24]. The following result is
a consequence of [21], who showed that the 4-WL test distinguishes all planar
graphs.
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Theorem 6. For any SAT formula f , there is an equisatisfiable PlanarSAT
formula f ′ with polynomially many variables and clauses, such that the 4-WL
test distinguishes f ′ from any other formula.

Proof. PlanarSAT is NP-complete [24] (this also works in the LCN representation,
see Lemma 1 in [24]). The 4-WL test distinguishes between all planar graphs [21].

This result shows that, despite the general limitations of the WL-hierarchy in
distinguishing formulas (Section 5.2), there exist natural and computationally
hard subsets of SAT, such as PlanarSAT, where already 4-WL is fully expressive.

The reduction to PlanarSAT is done by replacing edge crossings in the LCN
with gadgets that ensure planarity. Unfortunately, the reduction is not efficient
in practice, because each gadget adds 9 variables and 20 clauses and there may
be up to O(n2) edge crossings.

Note: One might ask whether combining the reduction from GI to GISAT
(Theorem 5) with Theorem 6 gives a fast graph isomorphism algorithm. After all,
Theorem 6 allows us to distinguish any two planar formulas efficiently. However,
the problem is that the reduction to PlanarSAT [24] is not permutation invariant,
which is necessary for the isomorphism between formulas to be preserved.

6.2 Random SAT Instances

Random SAT instances can be defined in various ways, often depending on the
desired structure or difficulty. In this section, we consider instances generated
from randomly sampled literal-incidence graphs (LIGs), where each literal is
a node and edges connect literals that co-occur in a clause. While the LIG
representation loses some logical information, [39] gives a principled procedure
for extracting a CNF formula from it:

Lemma 2 ([39]). Given a literal-incidence graph G, a corresponding CNF
formula can be extracted by computing a minimal clique edge cover of G.3 The
clauses of the formula correspond to the cliques in the edge cover. The generated
formula does not contain duplicate clauses, subsumed clauses or unit clauses.

We show that a CNF formula extracted from a random literal-incidence graph
is likely identified by WL. The proof can be found in Appendix E.

Theorem 7. A CNF formula extracted from a uniformly random literal-incidence
graph with n literals is identified by the WL test with probability at least 1−(n)−1/7,
over the choice of a LIG, for a large-enough n.

3 A clique edge cover is a set of cliques in G, such that all edges belong to at least one
clique.
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7 Experiments

We aim to evaluate whether 1-WL powerful architectures (such as GIN [40]) are,
in principle, capable of predicting a satisfying assignment to SAT formulas. Our
experiments are based on the fact that in a node-level prediction task, nodes that
are equivalent under WL must have the same output. In the context of SAT, this
means that if two literals are indistinguishable by WL, they must have the same
value in a satisfying assignment. For datasets, we use the 2024 SAT competition
instances [16] and random instances generated with the G4SAT benchmark [22].

7.1 Setup

Given a satisfiable formula, we add equality constraints between all WL-equivalent
literals, and check whether the augmented formula remains satisfiable. This is a
necessary (but not a sufficient) condition for a WL-powerful GNN to predict a
satisfying assignment.

Formally, let f be a satisfiable formula. Running WL for r ≥ 1 rounds on
LCN(f) gives a partition of the literals L1, . . . , Ls. We construct an augmented
formula fr that restricts literals in each partition to the same value. For each
equivalence class Lj = {ℓj1, . . . , ℓjnj

}, we add the clauses gj := (¬ℓjnj
∨ ℓj1) ∧∧nj−1

i=1 (¬ℓji ∨ ℓji+1). The formula gj encodes an equality constraint between the
literals in Lj . Given a satisfiable formula f , a WL-powerful architecture can
predict a satisfying assignment within r rounds only if fr = f ∧

∧s
i=1 gj is

satisfiable. We solve fr for different values of r, from r = 1 to r = rconverged,
where rconverged is the number of rounds for WL to converge on the LCN of the
original formula f . We let rcrit be the smallest r such that fr is satisfiable, if
such a round exists. Conversely, if fr is unsatisfiable for all r, we conclude that
1-WL is not sufficiently powerful to predict satisfying assignments for f .

7.2 Datasets

Random Instances. We use the G4SAT benchmark to generate random instances
from various families. The families include random 3-SAT [9], the CA family
mimicking community structures in industrial instances [11], and the SR family
designed for NeuroSAT [31]. Additional families include k-clique, k-domset, and
k-vercov, which encode combinatorial problems on Erdős-Rényi random graphs.
See [22] for a complete list of descriptions of the families.

Competition Instances. We use instances from the 2024 SAT competition [16].
The instances are selected as hard examples for various applications, such as
scheduling, cryptography, and hardware equivalence checking. Some families are
purely synthetic and hand-crafted to be difficult for SAT solvers, such as formulas
encoding the Pigeonhole principle. Detailed descriptions of the families can be
found in the competition proceedings [16].4. The size of the instance varies from
4 A list of instances is available at https://benchmark-database.de/?track=main_
2024&result=sat

https://benchmark-database.de/?track=main_2024&result=sat
https://benchmark-database.de/?track=main_2024&result=sat
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Table 1: Results on random instances, grouped by family. rcrit is the smallest
number of rounds for which the augmented formula fr is satisfiable. rconverged is
the number of rounds for WL to converge. WL-expressible is the percentage of
instances where the augmented formula is satisfiable. All values are reported as
mean ± standard deviation.

family rcrit rconverged WL-expressible

3-sat 2.99 ± 0.13 3.81 ± 0.39 100%
k-clique 4.11 ± 0.62 6.28 ± 0.88 98%
k-domset 4.23 ± 0.66 5.55 ± 0.82 100%
k-vercov 4.86 ± 1.07 6.01 ± 1.23 100%
sr 2.01 ± 0.10 3.00 ± 0.04 100%

a few hundred variables to 50 million variables. Due to limited computational
resources, we limit instances to those under 10 MB in size and test a few instances
from each family.

7.3 Results

See Table 1 for the results. The number of rounds needed for WL to distinguish
literals sufficiently is very low, usually 3 or 4. We observed that in many cases
(about 40% of all formulas), WL actually gives all literals unique identifiers. In
this case, the constrained formula fr is trivially satisfiable because it is equal to
f . The only family with some formulas that could not be solved by WL is the
k-clique. This is likely due to symmetries in the underlying graph that WL cannot
resolve.5 See Table 4 (Appendix F) for the full results on random instances.

For random 3-SAT instances, regardless of the size of the formula, literals
are almost always sufficiently identified after 3 iterations, and WL converges in
4 rounds. This pattern is due to the constant degree of the clauses. In the first
iteration, each literal sees its degree dℓ. However, the second iteration does not
refine the literal partition because every neighbor is a clause with degree 3—only
on the third iteration, the literals observe the degrees of other literals in shared
clauses.

SAT Competition Instances. An overview of the results is shown in Table 2
and a more detailed breakdown is given in Table 3 (Appendix F). WL takes
considerably more rounds to converge, which is partly explained by the larger
size of the instances. Across 28 instance families, 15 contained instances where
WL is not expressive enough, and 15 families contained instances where WL is
expressive enough to predict a satisfying assignment. In general, all formulas
in a family tend to be either sufficiently distinguished by WL or not, with the
5 For example, the instance may contain two nodes that are each fully connected to

the same clique but not to each other, making them indistinguishable under WL yet
mutually exclusive in the satisfying assignment.
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Table 2: Results on a selection of the 2024 SAT competition instances. Each row
is a separate instance. For the formulas where WL is expressive enough, rcrit is
the smallest number of rounds for which the augmented formula fr is satisfiable.

Family rcrit rconverged nvars

circuit-multiplier - 7 1013
heule-folkman - 5 15215
heule-nol - 9 1419
minimum-disagreement-parity - 8 1021
random-circuits - 6 3248
argumentation 2 3 300
binary-tree-parity 22 22 511
cryptography-simon 21 22 4128
hamiltonian 4 5 600
maxsat-optimum 28 29 21894

exception of the scheduling and cryptography families. An example of a family
with indistinguishable structure is heule-nol, which encodes a type of grid coloring
problem [16]. The regular structure of the instances makes it difficult for WL to
distinguish literals.

8 Conclusions and Future Work

Our theoretical results establish fundamental limitations on the expressive power
of GNNs for SAT solving. We show that even the full WL hierarchy cannot
distinguish between satisfiable and unsatisfiable formulas, while also revealing
connections to resolution complexity and offering a new perspective on the
classic construction of Cai, Fürer and Immerman [7]. Additionally, we identify an
NP-complete but WL-indistinguishable class of SAT instances, as well as provide
positive guarantees for distinguishing random and planar SAT instances.

Experimentally, we show that 1-WL powerful architectures are, in principle,
expressive enough to predict satisfying assignments for random SAT instances,
but struggle with industrial and crafted benchmarks. Our test setup allows us
to see if a WL-powerful GNN has the necessary expressive power for predicting
satisfying assignments, though it does not capture whether that expressivity is
sufficient for generalizable learning. Even for random SAT formulas, improved
generalization may require higher-order GNNs, symmetry breaking, or other
architectural improvements.

We hope to see GNNs applied to industrial SAT instances in the future. While
this remains challenging—due to the lack of scalable generators and the large
size of many industrial instances—these instances provide a structurally richer
and potentially more demanding testbed. Progress in this direction could offer
new insights into generalization that remain hidden when only using random
instance distributions.
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c1 c2 c3 c4 c5 c6

x1 x2 x3 x1 x2 x3

c1 c2 c3 c4 c5 c6

x1 x2 x3 x1 x2 x3

Left: f = (x1 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3)
Right: f ′ = (x1 ∨¬x3)∧ (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x3 ∨¬x2)∧ (¬x2 ∨¬x1)∧ (¬x1 ∨¬x3)

Fig. 2: LCNs of f and f ′. The difference between the formulas is highlighted in
bold. Removing the literal-literal edges represented by the dashed lines gives the
literal-clause graphs.

A Graph Representations of SAT formulas

The following lemma highlights the importance of adding the literal-negation
edges.

Lemma 1. There are 3-SAT formulas f, f ′ such that the literal-clause graphs
Gf and Gf ′ are isomorphic but f is satisfiable and f ′ is not.

Proof. Consider the formulas shown in Figure 2 The two LCGs (dashed lines
excluded) are isomorphic. f has a solution x1=1, x2=0, x3=1. However, f ′ is
not satisfiable: x1=1 implies x2=0 because of c5, and x3=0 because of c6. Now
c3 is false. Conversely, x1=0 implies x2=1 because of c2, and x3=0 because of
c1. This makes c4 false.

B k-WL Indistinguishable Instances (Proof of Theorem 4)

In this section, we prove the following theorem:

Theorem 4. There are 3-SAT formulas f, f̃ with O(n) variables and O(n)
clauses such that f is satisfiable and f̃ is not, but the LCNs of f and f̃ are
indistinguishable by the n-WL test.

The construction is based on the seminal work of Cai, Fürer, Immerman [7]
(CFI), giving a pair of non-isomorphic graphs H and H̃ which are indisintuishable
by n-WL. We construct a pair of formulas f, f̃ with LCNs isomorphic to H and
H̃, respectively. On a high level, our formula fG encodes the existence of an
even orientation for a graph G. This is an orientation of the edges such that
each node has an even number of outedges. We show that such an orientation
exists if and only if the number of edges is even. Then, we construct a twisted
formula f̃G, encoding the existence of an even orientation when one of the edges
is bidirectional. Exactly one of fG and f̃G are satisfiable, depending on the parity
of m.
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B.1 The construction

The CFI construction [7] takes in a low degree graph G with only linear sized
separators and produces non-isomorphic graphs X(G) and X̃(G) that are indistin-
guishable by WL. Next, we go over the steps to construct X(G), or equivalently
a formula fG with an LCN isomorphic to X(G). For each vertex v ∈ V (G), we
define the following subformula Xk, where k = d(v):

Literals: Ak ∪Bk, where
Ak = {ai | 1 ≤ i ≤ k},
Bk = {bi | 1 ≤ i ≤ k}
Clauses: Ck ∪Dk, where

Ck = {cS=
(
∨i∈S ai

)
∨
(
∨i ̸∈S bi

)
|S⊆ [k], |S| is even}

Dk = {ai ∨ bi | i ∈ {1, . . . , k}}

Here [k] denotes the set {1, . . . , k}. See Figure 3 for a diagram of the LCN of
Xk with k = 3. This graph corresponds exactly to the graph Xk in the CFI
construction6. Note that the negations of the literals are not contained in Xk –
they will be defined later.

a1∨b1

a2∨b2 a3∨b3

c∅c12 c23c13

a1

a2 a3

b1

b2 b3

Fig. 3: An LCN of the formula X3, corresponding to the graph X3 in the CFI
construction. Literal nodes are circled. The clauses are connected to the literals
by solid lines.

For a given graph G, the full formula fG is constructed as follows. For each
vertex v ∈ V (G), add the subformula Xd(v). Each edge {v, w} of v is associated
with one of the literal pairs (ai, bi), where we call the literals av,w, bv,w. The
node w on the other side of this edge uses the negations of the literals, that is,
aw,v = ¬av,w and bw,v = ¬bv,w. In the LCN, the literal av,w is connected to its
negation aw,v, and bv,w to bw,v. See Figure 4a for an example.

6 The nodes corresponding to the Dk clauses are not present in the standard construc-
tion in [7], but they mention that nodes connecting each ai to bi can be added.
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av,w∨bv,w

aw,v∨bw,v

av,w

aw,v

bv,w

bw,v

(a) A normal edge.

av,w∨bv,w

aw,v∨bw,v

av,w

aw,v

bv,w

bw,v

(b) A twisted edge.

Fig. 4: Constructions in the formula fG and f̃G for an edge {v, w} ∈ E(G). The
edges are represented vertically, with the top ellipse corresponding to v’s side and
the bottom to w’s side of the edge. Solid lines connect clauses to their literals.
Dashed lines connect literals and their negations.

Now, we define a twisted formula f̃G, and the corresponding twisted graph
X̃(G) as follows. An edge {v, w} ∈ E(G) is chosen arbitrarily. The literal-literal
connections are twisted, so that av,w becomes the negation of bw,v and bv,w
becomes the negation of aw,v. A twisted edge is shown in Figure 4b.

Observation 8 The LCNs of fG and f̃G are isomorphic to the graphs X(G) and
X̃(G) in [7], respectively.

To state the result of [7], we need the concept of a separator:

Definition 5. A separator of a graph G is a set S ⊂ V (G) such that the induced
subgraph on V \S has no connected component with more than |V (G)|/2 vertices.

Theorem 9 (Theorem 6.4 in [7]). Let G be a graph such that every separator
of G has at least k + 1 vertices. Then X(G) and X̃(G) are non-isomorphic but
k-WL indistinguishable.

B.2 Satisfiability of fG and f̃G

By construction, literals have their negations on the other side of each edge:

Remark 2. For a normal (not twisted) edge {v, w} ∈ E(G), av,w = ¬aw,v and
bv,w = ¬bw,v. If the edge is twisted, av,w = ¬bw,v and bv,w = ¬aw,v.

The following is true for fG and f̃G, for any edge {v, w} (twisted or not):

Observation 10 The literals av,w, bv,w are non-equal in any satisfying assign-
ment.

Proof. This is forced by (av,w∨bv,w)∧(aw,v∨bw,v) ≡ (av,w∨bv,w)∧(¬av,w∨¬bv,w).

This allows us to talk about satisfying assignments of fG and f̃G as orientations
of edges of G:
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Remark 3. Any satisfying assignment is uniquely characterized by the values
of A. On a graph without twists, assignments to A correspond one-to-one with
orientations of G. On a twisted edge, either both av,w and aw,v are true, or both
are false.

Consequently, the number of A-literals set to true in fG is m, while in f̃G it is
m− 1 or m+ 1.

The next lemma characterizes the satisfiability of Xk:

Lemma 3. Let k be an odd integer and assume that ai ̸= bi for 1 ≤ i ≤ k. Xk

is satisfied if and only if an even number of ai’s (or equivalently bi’s) are set to
true.

Proof. Let T ⊂ {1, . . . , k} be the set of indices i such that ai is set to true. We
start by proving that Xk is satisfied whenever |T | is even. The clauses in Dk are
satisfied whenever ai ≠ bi, which is guaranteed by our assumption. Consider any
clause cS =

(
∨i∈S ai

)
∨
(
∨i ̸∈S bi

)
. Since k is odd, |S| is even, and |T | is even,

S ∪ T is not a partition of {1, . . . , k}. Hence, there is some index i such that i is
in both sets or neither of the sets. If i ∈ S ∩T , then ai satisfies cS . Else i ̸∈ S ∪T ,
and bi satisfies cS .

Conversely, suppose that |T | is odd. Consider the clause cS with S =
{1, . . . , k} \ T . It is a clause because |S| is even. It is unsatisfied, since ai = F
for each i ∈ S and bi = F for each i ̸∈ S.

The following observation is a direct consequence of Lemma 3 and Theorem 10:

Observation 11 Assume the degree of every node in G is odd. In any solution
of fG or f̃G, the number of A-literals set to true is even.

We say that a simple graph G has an even orientation if there is an orientation
of the edges such that all nodes have even outdegree. The following is a simple
fact characterizing the existence of even orientations:

Lemma 4. Let H be a simple connected graph. H has an even orientation if
and only if m = |E(H)| is even.

Proof. Let dout(v) denote the outdegree of a node v. It always holds that∑
v∈V dout(v) = m.
Assume there exists an even orientation of H. Then dout(v) is even for all v.

Since the sum of even terms is always even, m must be even.
Now assume that m is even. Start with an arbitrary orientation of the edges.

For any two vertices v, w with odd outdegree, take an arbitrary path connecting
v and w and reorient the edges on the path. This changes the outdegrees of v
and w from odd to even, while not changing the parity of other nodes. Repeat
this process until all nodes have even outdegree. Suppose that this is not possible,
that is, we are left with a single node v with odd outdegree. We have dout(v) =
m−

∑
w∈V \{v} d

out(w). The left side is odd, while the right side is even because m
and the terms of the sum are even. Hence, we can always find an even orientation.
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Using this, we can prove the main lemma characterizing the satisfiability of
fG and f̃G:

Lemma 5. Let G be a connected graph where all degrees are odd.7 If m = |E(G)|
is even (odd), fG is satisfiable (unsatisfiable), and f̃G is unsatisfiable (satisfiable).

Proof. Suppose that m is even. G has an even orientation by Lemma 4. We
can use this to extract a satisfying assignment of fG by setting av,w = T for
each outedge of v. This assignment satisfies every subformula by Lemma 3. On
the other hand, the twisted formula must have m− 1 or m+ 1 A-literals true
(Remark 3), making it unsatisfiable (Theorem 11).

If m is odd, fG is unsatisfiable by Theorem 11. On the other hand, the twisted
edge allows us to set both a-literals of the edge to false, effectively removing the
edge. The graph G with {v, w} removed has an even number of edges, so we can
find a satisfying assignment by computing an even orientation of the remaining
edges.

Proof of Theorem 4. Let G be a graph with odd degrees, where the size
of the smallest separator is linear in n. We can use the construction of [1] for
3-regular expanders. The LCNs of f and f ′ are isomorphic to X(G) and X̃(G),
respectively. These graphs are indistinguishable by Theorem 9. By the above
Lemma 5, exactly one of fG and f̃G is satisfiable. Note that both fG and f̃G have
at most 3 literals per clause. The number of variables is n ·∆(G) = O(n) and
the number of clauses n · (2∆(G)−1 + 1) = O(n). □

Tseitin Formulas. Interestingly, this construction is related to Tseitin formulas,
which are known as hard instances for resolution refutation proofs [34].

Definition 6. A Tseitin formula is constructed by taking a graph G and a charge
function c : V (G) → {0, 1} labeling the vertices. Each edge e ∈ E(G) is associated
with a variable xe. For each vertex, there is a constraint ξv =

∑
w∈N(v) x{v,w} =

c(v) mod 2, meaning that the parity of the sum of variables of v’s edges is equal
to the charge. The full formula is defined as ∧v∈V ξv.

It is known that a Tseitin formula is satisfiable if and only if the sum of charges is
even. Hence, satisfiability is a global property of the graph. When the underlying
graph is an expander (with small degrees), Tseitin formulas are known to be hard
instances for resolution [34].

C Hardness of Distinguishing SAT Instances (Proof of
Theorem 5)

We show that, in general, distinguishing LCNs is as hard as graph isomorphism.
The graph isomorphism problem (GI) asks whether there is an edge-preserving
7 The proof can be generalized to a mix of odd and even degrees, but we chose to do

this for simplicity of the argument.
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bijection of the nodes. Formally, the decision problem is

GI = {(G,H) : G,H are isomorphic graphs}

Let G = {LCN(f) : f ∈ 3-SAT} be the set of LCNs of all 3-SAT formulas. We
define the graph isomorphism problem on LCNs as the language

GISAT = {(G,H) : G,H ∈ G are isomorphic graphs}

We use the following formula to encode all relevant information about a graph
in a CNF formula:

Definition 7 (fG). For each v ∈ V (G), let xv be a variable. The edges of G
(and |V (G)|) can be encoded as a CNF formula fG =

(∧
{v,w}∈E(G)(xv ∨ xw)

)
∧(∧

v∈V xv

)
.

This formula is trivially satisfiable and not meaningful from a logical perspective,
but it uniquely encodes G up to isomorphism.

Observation 12 The LCN of fG is equal to G with the following modifications.
Each edge is subdivided with the corresponding clause node added in the middle.
The original nodes correspond to the positive literals. Two leaf nodes corresponding
to the negative literal and the unit clause is connected to each positive literal.

Theorem 5. The graph isomorphism problem on LCNs of 3-SAT formulas is
equally hard as graph isomorphism on general graphs.

Proof. GI ≤ GISAT: Let G,H be two graphs and let fG, fH be the corresponding
formulas encoding the graph structure, as in Definition 7. These two formulas
are isomorphic iff G,H are isomorphic: the two-variable clauses encode edges
and the single-variable clauses encode nodes. The LCNs of fG, fH are isomorphic
iff the two formulas are isomorphic (Theorem 1).

GISAT < GI: Let Gf , Gf ′ be two LCNs. This direction is easy, since Gf and
Gf ′ are just two graphs. Note that graph isomorphism between edge-colored
graphs can be reduced to graph isomorphism between uncolored graphs by
replacing each edge with a special gadget that does not occur anywhere else in
the graph, e.g. a K4 since an LCN is tripartite. Specifically, for each literal-literal
edge {x,¬x}, remove the edge and add a K4, connecting x and ¬x to the same
vertex in the K4.

D 3-regular SAT (Proof of Theorem 2)

Recall that a bipartite graph is (a, b)-regular if all nodes in the left partition have
degree a and all nodes in the right partition have degree b.

Observation 13 (a, b)-regular bipartite graphs with nA and nB nodes in the
partitions are indistinguishable by 1-WL.
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We use the following lemma to manipulate the formula:

Remark 4. (x ∨ y) ⇐⇒ (x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z)

Lemma 6 (Theorem 2.1 [32] modified). For any δ ≥ 2, given a 3-SAT
formula f with maximum literal degree ∆, there is an equisatisfiable formula
f ′ with maximum literal degree δ. The formula f ′ has at most n′ = n + 4∆n
variables and m′ = m+ 4∆n clauses.

Proof. Let x be a variable in f with x or ¬x appearing more than δ times. We
break the variable into s = d(x) + d(¬x) variables x1, . . . , xs, where s ≤ 2∆. The
constraint x1 = x2 = . . . , xs is equivalent to (x1∨¬x2)∧(x2∨¬x3)∧· · ·∧(xs∨¬x1).
We use Remark 4 on each clause to make them 3-regular. The end result uses 2s
variables and has 2s clauses. Each original literal is used once in the constraint
clauses, so it can be used δ − 1 times outside of it.

Lemma 7. Given a 3-SAT formula f where each literal appears in at most 3
clauses, there is an equisatisfiable 3-regular formula f ′ where each literal is in
exactly 3 clauses, with at most n′ = 5n variables and m′ = m+ 9n clauses.

Proof. Let Lr ⊆ L be the literals in f that appear in exactly 3 clauses. First,
note that the number of edges in the literal-clause graph of f is

3m = 3|Lr|+
∑

ℓ∈L\Lr

d(ℓ)

Here, the sum of degrees of non-regular literals must be a multiple of 3. We need
to add s =

∑
ℓ∈L\Lr

3 − d(ℓ) = 3|L \ Lr| −
∑

ℓ∈L\Lr
d(ℓ) connections to make

the literals 3-regular. As shown above, s is a multiple of 3, so it is enough to
show how to add 3 connections for literals ℓ1, ℓ2, ℓ3 (possibly some of these are
equal). We introduce auxillary variables a, b, c, d and set a = b = c = 1, while the
value of d does not matter. We add the following clauses to form f ′:

(ℓ1, a,¬b), (a,¬c, d), (b,¬a, d), (c,¬b, d),
(ℓ2,¬a, c), (a,¬c,¬d), (b,¬a,¬d), (c,¬b,¬d),
(ℓ3, b,¬c)

Note that all 9 clauses are satisfied by either a, b or c. Also, all clauses are unique
(even when ℓ1 = ℓ2 = ℓ3) and non-trivial (no clauses of type x∨¬x). All auxillary
literals appear exactly three times. The set of solutions of f ′ projected to the
variables of f is the same as the set of solutions for f .

The number of missing connections s is at most 3n, so the number of added
variables and clauses is at most 4n and 9n.

E Distinguishing Random SAT Instances (Proof of
Theorem 7)

This section uses the seminal results of [4] on random graph isomorphism. To
state our results, we need some related definitions. Let K be a class of graphs
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with n vertices. A canonical labeling algorithm of K is an algorithm which assigns
numbers 1, . . . , n to each graph in K, such that two graphs are isomorphic if and
only if the labeled graphs coincide. Note that the labeling must be permutation
invariant. Given a canonical labeling, we can test if two graphs are isomorphic in
linear time by comparing the edges of the two graphs.

[4] gave a canonical labeling algorithm for isomorphism testing on random
graphs:

Theorem 14 ([4]). There is a class of n-node graphs K and a linear-time
algorithm that decides whether a given graph G belongs to K and computes a
canonical labeling of K. The probability that a uniformly random n-node graph
belongs to K is at least 1− n−1/7, for large enough n.

Proof sketch. In short, their algorithm computes a unique identifier for each
node based on adjacency to high-degree nodes. For this to work, the top r :=
3 log n/ log 2 degrees must be unique. Assuming unique degrees for nodes v1, . . . , vr
ordered by degree, the adjacency patterns to these nodes gives an O(log n)-bit
identifier xv to each node v, where (xv)i = 1(vi ∈ N(v)). If the top degrees and
the generated IDs are unique, this labeling is returned. Otherwise, the graph
does not belong to K. It can be shown that both conditions hold with probability
at least 1− n−1/7 over all n-node graphs.

It is known that the WL test identifies all graphs in K. For clarity, we add
the following lemma to make this formal:

Lemma 8. The WL test distinguishes any two graphs G,H where G∈K and H
is any graph non-isomorphic to G.

Proof. The first round labels χ1
v of WL partition nodes by degree. The partition

given by labels χ2
v after the second round is clearly at least as fine as the partition

given by xv in the algorithm of Theorem 14. Hence, if xv is unique for each node,
then so is χ2

v. Hence, the multiset of second-round labels is different for any
G ∈ K and H ̸∈ K. In the third round, the unique labels encode all information
about edges, so any differences in the adjacency between graphs in K is detected.

Distinguishing Instances Extracted from Random LIGs Recall the literal-
incidence graph representation of a CNF formula, where each literal is a node
and two nodes are connected if they appear in the same clause. A principled way
of extracting a CNF formula from a random literal-incidence graph is given by
[39] (see Lemma 2). We show that a CNF formula constructed this way is likely
identified by the WL test.

Theorem 7. A CNF formula extracted from a uniformly random literal-incidence
graph with n literals is identified by the WL test with probability at least 1−(n)−1/7,
over the choice of a LIG, for a large-enough n.
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Proof. Let G be the corresponding literal-incidence graph. We show that the
LCN is identified if G is identified. Color refinement identifies G, i.e. each node
gets a unique identifier (Theorem 14), with probability at least 1− (n)−1/7.

Consider color refinement on the LCN. We can ignore literal-literal edges –
due to their different color, they only add expressivity. In two iterations, the
information traveling from literals to literals via clauses on the LCN is exactly
the same as in one iteration on G. By construction, the set of two-hop literal
neighbors on the LCN (ignoring literal-literal edges) is exactly the same as the
set of neighbors in G. Hence, color refinement on the LCN produces unique
identifiers for the literals (in at most twice the number of iterations). Since there
are no duplicate clauses, clause nodes become identified by the unique set of
literals they are connected to. Since all nodes have a unique identifier, the LCN
is identified (as in Lemma 8).

F Experimental results

F.1 Details on Instance Generation

The default size of instances in G4SATBench is limited (200-400 variables for
hard instances). To generate very large instances with number of variables in
the thousands, we adapt the generation script for 3-SAT by slightly reducing
the clause-to-variable ratio from the known satisfiability threshold [9] of ⌊4.258 ·
nV + 58.26 · n−2/3

V ⌋, where nV is the number of variables. This is known as the
threshold number of clauses for 3-SAT instances, where the ratio of satisfiable
to unsatisfiable formulas is approximately 50/50, and also where the hardest
instances are typically found. To produce very large instances for the 3-SAT
family, we change the multiplier from 4.258 to 4.158, which reduces the number
of clauses slightly. This enables faster generation of satisfiable instances, while
still maintaining approximately the same complexity.

F.2 Full Results

Below are Tables 3 and 4, presenting the full results of our experiments on the
2024 SAT competition and G4SAT benchmark instances.
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Table 3: Results on the instances from the 2024 SAT competition. All values
are reported as mean ± standard deviation. The WL-expressible (WL-exp)
column indicates whether predicting a satisfying assignment is possible with
a WL-powerful GNN. rcrit denotes the WL iteration where the WL-partition-
constrained formula becomes satisfiable. rconverged is the number of iterations for
the WL algorithm to converge. The number of variables and clauses is given as
average over all instances in the family. For some families, we were only able to
test on one example due to the large size of the instances.

rcrit rconverged Variables Clauses Count
Family WL-exp

argumentation True 2.00 3.00 300 17540 1
battleship False - 1.00 364 2562 1
binary-tree-parity True 22.00 22.00 511 2039 1
circuit-multiplier False - 7.00 1013 18793 1
crafted-cec True 19.00 20.00 30587 91703 1
cryptography True 28.00 ± 25.40 30.80 ± 23.86 46433 ± 42323 196086 ± 121145 5

False - 12.00 ± 0.00 1637 ± 130 19651 ± 2923 2
cryptography-ascon False - 54.00 ± 0.00 158772 ± 32 373432 ± 124 2
cryptography-simon True 17.67 ± 2.73 18.33 ± 2.88 3301 ± 602 10981 ± 2048 6
hamiltonian True 4.16 ± 0.50 5.47 ± 0.51 553 ± 46 4974 ± 409 19
heule-folkman False - 4.91 ± 0.30 16614 ± 1103 20147 ± 1492 11
heule-nol False - 8.82 ± 1.40 1419 ± 0 7831 ± 7 11
knights-problem False - 25.00 122472 442903 1
maxsat-optimum True 28.60 ± 2.51 30.20 ± 2.68 23282 ± 6054 277737 ± 121915 5
minimum-disagreement-parity False - 8.50 ± 0.93 1040 ± 191 5846 ± 1123 8
polynomial-multiplication False - 62.00 ± 38.18 29546 ± 32789 117068 ± 129921 2
pythagorean-triples True 7.00 7.00 3692 13727 1
quasigroup-completion True 4.00 ± 0.00 4.00 ± 0.00 20940 ± 5970 436860 ± 149323 2
random-circuits False - 5.33 ± 1.15 3115 ± 231 184064 ± 13856 3
random-csp True 4.00 ± 0.00 4.00 ± 0.00 862 ± 117 43293 ± 26251 2
random-modularity True 3.00 4.00 2200 9086 1
rbsat True 4.00 ± 0.00 4.00 ± 0.00 806 ± 93 48089 ± 8880 4
scheduling True 12.00 ± 2.37 16.33 ± 3.78 16717 ± 3451 67014 ± 12872 6

False - 28.29 ± 14.26 31646 ± 21671 162269 ± 114314 7
sgen False - 1.00 180 432 1
stedman-triples True 9.00 10.00 2345 61876 1
subgraph-isomorphism True 4.00 5.00 1285 166723 1
summle False - 32.00 ± 0.00 94160 ± 17675 199503 ± 34558 3
tree-decomposition False - 42.00 74804 393322 1
unknown False - 8.00 1385 27650 1



On the Expressive Power of GNNs for Boolean Satisfiability 27

Table 4: Results on the instances from the G4SAT benchmark. Instances are
divided by family and hardness (which is based on size). All instances were
initially satisfiable. All values are reported as mean ± standard deviation. The
WL-expressible column indicates whether predicting a satisfying assignment is
possible with a WL-powerful GNN. rcrit denotes the WL iteration where the
WL-partition constrained formula becomes satisfiable. rconverged is the number
of iterations for the WL algorithm to converge. On average, a few iterations
is enough for WL to sufficiently distinguish literals, except for a few outlier
instances in the k-clique, k-vertex cover and ca families. The PS family is omitted
due to problems with the generation script.

rcrit rconverged Variables Clauses Count
family difficulty sat

3-sat easy True 2.97 ± 0.18 3.68 ± 0.47 26 ± 9 119 ± 36 1000
medium True 3.00 ± 0.04 3.92 ± 0.28 119 ± 47 509 ± 198 1000
hard True 3.00 ± 0.00 4.00 ± 0.00 250 ± 29 1065 ± 125 100
hard+ True 3.00 ± 0.00 4.00 ± 0.00 921 ± 48 3775 ± 196 24
hard++ True 3.08 ± 0.28 4.00 ± 0.00 5001 ± 62 20504 ± 256 25

k-clique easy True 4.12 ± 0.73 6.26 ± 0.83 33 ± 13 543 ± 426 960
False - 6.00 ± 0.78 22 ± 7 217 ± 194 40

medium True 4.11 ± 0.52 6.33 ± 0.95 68 ± 17 2156 ± 960 999
False - 6.00 45 939 1

hard True 4.00 ± 0.00 6.00 ± 0.00 114 ± 20 5554 ± 1718 100
k-domset easy True 4.11 ± 0.71 5.61 ± 0.93 39 ± 12 329 ± 186 1000

medium True 4.33 ± 0.58 5.50 ± 0.72 88 ± 18 1647 ± 687 1000
hard True 4.42 ± 0.67 5.54 ± 0.69 137 ± 22 3986 ± 1315 100

k-vercov easy True 4.75 ± 1.14 6.18 ± 1.38 39 ± 13 358 ± 245 993
False - 4.00 ± 0.00 26 ± 8 159 ± 108 7

medium True 4.94 ± 1.00 5.88 ± 1.08 96 ± 20 2052 ± 936 1000
hard True 5.00 ± 1.01 5.80 ± 0.85 179 ± 25 7198 ± 2159 100

sr easy True 2.00 ± 0.05 3.00 ± 0.06 25 ± 9 146 ± 54 1000
medium True 2.01 ± 0.12 3.00 ± 0.00 118 ± 47 644 ± 249 1000
hard True 2.05 ± 0.22 3.00 ± 0.00 299 ± 62 1613 ± 343 100
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