Geometry-Aware Edge Pooling for
Graph Neural Networks

Katharina Limbeck* 2, Lydia Mezrag* 3%, Guy Wolf"34, and
Bastian Rieck! 125

! Helmholtz Munich, Ingolstidter Landstrake 1, 85764 Neuherberg, Germany
2 Technical University of Munich, Arcisstrafe 21, 80333 Munich, Germany
3 Université de Montréal, 2900 Edouard-Montpetit, Montréal QC H3T 1J4, Canada
4 Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal QC H2S 3H1, Canada
5 Université de Fribourg, Av. de ’Europe 20, 1700 Fribourg, Switzerland
* These authors contributed equally. T These authors jointly supervised this work.

Abstract. Graph Neural Networks (GNNs) have shown significant suc-
cess for graph-based tasks. Pooling layers are crucial components of GNNs
that enable faster training and potentially better generalisation by reduc-
ing the size of input graphs. However, existing pooling operations often
optimise for the learning task at the expense of discarding fundamental
graph structures, thus reducing interpretability. This leads to unreliable
performance across varying dataset types, downstream tasks and pooling
ratios. Addressing these concerns, we propose novel graph pooling layers
for structure-aware pooling via edge collapses. Our methods leverage
diffusion geometry and iteratively reduce a graph’s size while preserving
both its metric structure and structural diversity. We guide pooling using
magnitude, an isometry-invariant diversity measure, which permits us
to control the fidelity of the pooling process. Further, we use the spread
of a metric space as a faster and more stable alternative ensuring com-
putational efficiency. Empirical results demonstrate that our methods
(i) achieve superior performance compared to alternative pooling layers
across a range of diverse graph classification tasks, (ii) preserve key spec-
tral properties of the input graphs, and (iii) retain high accuracy across
varying pooling ratios.

Keywords: Graph Pooling - Geometric Deep Learning - GNNs

1 Introduction

Graph pooling layers are important components of successful GNN architec-
tures. They are implemented alongside convolutional layers to reduce the size of
graph representations enabling GNNs to scale to large and complex real-world
graphs. However, the choice of pooling method strongly influences downstream-
applications and task-performance. In fact, the question of which graph properties
to preserve during pooling [33] B36] [45], remains an ongoing debate. It is thus
crucial to design expressive, efficient, and interpretable pooling layers that are ca-
pable of reliably encoding task-relevant information. Most graph pooling literature

2 K. Limbeck et al.

takes a node-centric view [33]. However, this focus on node-centric rather than
edge-centric pooling often leads to the loss of important structural information.
Common pooling methods either drop nodes or optimise for a node clustering
while treating graph connectivities as a secondary objective. As visualised in
this frequently leads to counter-intuitive pooling decisions that fail to retain key
geometric structures in the graph. Addressing these concerns, topological and
geometric descriptors of graphs are uniquely poised to interoperate structural
information into graph pooling. Throughout this work, we treat graphs as metric
spaces and assess their geometry via diffusion distances, which naturally work
alongside message passing to effectively encode key graph structures. Motivated by
ongoing research on novel geometric invariants, we find that generalised measures
of size and diversity are especially promising candidates for guiding graph pooling.
In particular, we use the magnitude of a metric space, which measures a graph’s
structural diversity, to control the loss of structural information during edge
pooling [31]. Our work is motivated by successful applications of magnitude across
a range of machine learning tasks, such as the evaluation of diversity for latent
spaces [32], boundary detection for images [1], and the study of generalisation for
neural networks [2, [3]. Building up on this research, we are the first to propose
the use of magnitude in the context of graph learning. We further advance on
existing applications by investigating an alternative and closely-related measure,
known as the spread of a metric space, to greatly improve the computational
efficiency of our methods. Our main contributions are as follows:
— We propose MagEdgePool and SpreadEdgePool, novel edge-contraction based
pooling layers, which preserve graphs’ structural diversity.
— We investigate the spread of a metric space as a faster and more stable
alternative to magnitude.
— We show that our methods preserve key structural properties during pooling.
— We find that our algorithms perform well at graph classification, surpassing
alternative pooling layers across varying datasets and pooling ratios.

2 Background

2.1 Graph Pooling for Graph Neural Networks

As an ongoing field of interest for graph learning, a wide range of pooling methods
has been proposed. The most successful of these methods are hierarchical and
sequentially coarsen the graph representation while reducing its size [33]. Research
has traditionally focused on node-based pooling via node clustering or node
dropping. Amongst node drop pooling methods, Node Decimal Pooling (NDP) [7]
is non-trainable, while TopK [9] 23] and SAGPool [28], are trainable approaches.
However, all these methods inevitably lose information because they remove
entire sections of the graph during pooling [33]. Node clustering approaches, are
either non-trainable, such as Graclus [14] and Non-Negative Matrix Factorization
(NMF) [5], or trainable, such as MinCUT [6] and DiffPool [46], which output
dense graph representations. In comparison to node drop pooling, clustering-based
methods usually require high memory costs [33]. Trainable methods have the

Geometry-Aware Edge Pooling for Graph Neural Networks 3

Original MagEdgePool NDP Graclus NMF

Fig.1: Pooled graphs across different pooling layers. Our proposed methods,
MagEdgePool and SpreadEdgePool, respect the original graphs’ geometry during
pooling. Alternative approaches create counter-intuitive edges (Graclus, NMF),
disconnect entire portions of the graphs (TopK, SAGPool), or return dense
representations that do not preserve any geometric structure (DiffPool, MinCut).

potential to better optimise for a specific objective, but might overfit to the task.
Non-trainable methods can act as a stronger inductive bias on the underlying
graph representation, and do not introduce additional trainable parameters
or optimisation objectives [20]. Edge-based methods have been studied less
extensively than node-centric pooling [15], [27] despite their potential for encoding
connectivities in a more faithful manner. EdgePool [15], the most successful edge-
based method, uses iterative edge-contraction based on edge scores, which are
learned from features of adjacent nodes. However, EdgePool does not explicitly
consider a graph’s topology and selecting edges based on node features can
lead to counter-intuitive decisions, for example by retaining local structures in
strongly-connected communities [15]. Interpretability remains a leading concern
[33], and non-trainable approaches are capable of being well-performing and
traceable pooling methods [26]. We therefore find that there is strong potential
for designing geometry-aware edge pooling operations. Figure (1] further illustrates
how many of the aforementioned pooling methods inherently fail to preserve key
graph structures even for simple toy examples. Trainable methods in this overview
were optimised for a spectral loss [26], but this does not ensure interpretable
preservation of graphs’ underlying geometry. Addressing these shortcomings,
it is of interest to leverage alternative tools from computational geometry to
quantify the qualitative difference between graphs. While pooling based on
spectral properties has been investigated extensively [7] [26], alternative geometric
invariants like curvature or persistent homology have only been explored more
recently [20] [45], and have not yet been applied to edge pooling specifically.

2.2 The Magnitude and Spread of Metric Spaces

Magnitude is an invariant of (finite) metric spaces that measures the ‘effective
size’ of a space. It is a measure of entropy and diversity [3I] that has first been
proposed in theoretical ecology [40]. Since its mathematical formalisation [29)],

4 K. Limbeck et al.

magnitude has been connected to numerous key geometric invariants, such as
entropy, curvature, density, volume, and intrinsic dimensionality [3I]. Because of
its intriguing theoretical properties magnitude has received increasing interest
for machine learning tasks [32]. However, the magnitude of graphs [30], despite
being a strong graph invariant, has not yet found its way into applications.

We consider an undirected finite graph G = (X, E) with n nodes as a finite
metric space consisting of the node set X equipped with a metric d: X x X — R>.
Its similarity matrix (x C R™*" is defined by (x (z,y) = e~ =) for z,y € X.
This allows us to introduce similarity-dependent notions of the diversity of metric
spaces. To this end, we define a weighting on the metric space (X,d), which
is a vector w € R™ such that {(xw = 1, where 1 is the column vector of ones.
Whenever such a weighting exists, the magnitude of the metric space (X, d) is
uniquely defined by Mag(X) = >""" , w(¢). This is guaranteed if (x is positive
definite, which essentially means that (x is invertible. A finite metric space with
positive definite similarity matrix is called positive definite [35]. Metric spaces of
negative type are positive definite [31]; this includes R™ equipped with Euclidean
distances [29], effective resistance distances [13], and diffusion distances [10].

Throughout this paper, we will refer to the magnitude of a graph G as the
magnitude of its associated metric space (X, d). That is, we define the magnitude
of a graph as

Mag(G) = Y (x'(x,y). (1)
z,yeX
Closely related to magnitude, the spread of a metric space is another measure of
‘size’ introduced by [42]. Given a metric graph G = (X, F) with the graph metric
d, its spread is defined by

1
Sp(G) =) = —amm (2)
zEZX ZyEX e~ (@)

As diversity measures on graphs, both magnitude and spread summarise the
number of distinct sub-communities in a network based on the distance metric
and degree of similarity between nodes. This view on structural diversity nat-
urally aligns with our goal of contracting redundant graph structures during
pooling. Throughout this work, we investigate to what extent spread is a valid
alternative to magnitude in practice. Magnitude is well-studied and has received
increasing interest in both theory [31] and application [32]. However, computing
it either requires inverting a matrix, solving a system of linear equations [32], or
approximating [4], which can be notoriously expensive or unstable to compute.
Metric-space spread in comparison can be computed given any distance (ob-
viating the requirement of metric spaces of negative type), making it much
more versatile [42]. Moreover, as the sum of reciprocal mean similarities, spread
can be calculated or approximated [I8] much more efficiently than magnitude
and does not require inverting a matrix. Although spread has been studied less
extensively [I8] [42], there are strong reasons to assume that it shares the same
advantages as magnitude. In fact, for a positive definite metric space X, we have
Sp(X) < Mag(X) [42, Theorem 2|. Moreover, magnitude and spread coincide

Geometry-Aware Edge Pooling for Graph Neural Networks 5

for finite homogeneous metric spaces [42, Theorem 3], such as the ring graph in
In practice, as we further explore in the magnitude and
spread of graphs from real-world datasets, such as NCI1, exhibit nigh-perfect
correlation when computed based on diffusion distances, underlining the strong
connection between the two quantities.

2.3 Diffusion Geometry on Graphs

In this work, we use diffusion distances to compute magnitude and spread
on graphs. This is motivated by their desirable theoretical properties and the
capability of diffusion to aid and act along message passing in GNNs [24].

We now briefly detail the type of diffusion distance used throughout this
paper [I0]. Consider a graph G = (X, F) and its adjacency matrix A. The
latter could be an affinity matrix derived from a kernel. Let D be the diagonal
degree matrix whose diagonal entries D;; = Z;L:O A;j equal the degree of each

vertex. The symmetrically normalised adjacency matrix A:= D 2AD? is a
simple example of a Markov transition matriz and represents the probability of
moving from one vertex to another. The normalised graph Laplacian is defined as
L=I-A=D2(D- A)D_%. Since L is symmetric and positive definite it has
positive eigenvalues 2 > Ao > A\ > A2 > -+ > Ay_1 > 0 with eigenvectors {¢;};.
This provides a natural embedding of the graph G in Euclidean space given by:

D(x) = (Mt1(x), -, Av_1¥Nn-_1(2)) for z € X. (3)
The diffusion distance is then defined by:

d(x,y) = |P(x) — D(y)l2 for z,y € X. (4)

Theorem 1. Any finite metric space (X, d) endowed with the diffusion distance
is positive definite.

Proof. See

As a consequence of Theorem [T} the magnitude of any metric graph equipped
with this diffusion distance is well defined. Diffusion distances are at comparable
scales across graphs because the normalised graph Laplacian, which works with
the relative conductivities, is robust to varying node degrees and graph sizes.
This enables us to compute and compare magnitude and spread directly.

3 Methods

3.1 Magnitude-Guided Graph Pooling

At the heart of our approach, we use magnitude or spread to monitor and control
structural changes in the graph during edge contraction pooling. Edge contraction
is chosen as a pooling operation because it respects graph connectivity, while

6 K. Limbeck et al.

Pooling Ratio 90% Pooling Ratio 60% Pooling Ratio 40% Pooling Ratio 20%

faagr e 1242728201
SO

Fig. 2: Tllustrating our proposed pooling method, MagEdgePool, on a graph from
the ENZYME dataset across varying pooling ratios. Each edge is coloured by its
magnitude difference, which measures the impact its contraction would have on
the graph’s structural diversity. Edges with low magnitude differences are most
redundant for the graph’s geometry and are collapsed first.

outputting a sparsely-connected graph representation. Conceptually, edge pooling
thus aligns well with the goal of making minimal changes to the graph and
keeping its diversity and geometry as unchanged as possible. Intuitively, pooled
graphs with comparable magnitude will be similar in terms of effective size. That
is, the effective number of distinct communities in the graphs are deemed similar
based on their diffusion distance, i.e. information-flow between vertices. More
formally, let G = (X, E) be a graph and denote by G/e the graph resulting from
the contraction of the edge e € E in G. We choose a pooling ratio r € (0,1] and
aim to reduce the graph to the corresponding number of nodes i.e. k = |r - | X]|].
Initially, we set the pooled graph G’ = (X', E’) := G. To assess which edges to
contract first, we determine their importance for the graph’s global geometry by
computing a selection score for each edge defined as

s(e) = [Mag(G) — Mag(G/e)|. (5)

That is, we calculate the difference in magnitude between the original graph and
the graph for which the edge has been collapsed. In this manner, we score an
edge’s relevance for the graph structure by the impact its collapse would have
on the graph’s magnitude. At each iteration i, we then select the edge with the
lowest magnitude difference
e; € arg eeI]Ii‘l’l{lEc s(e) (6)
and assign G’ = G’ /e; where E, C E’ is the set of all edges that are not adjacent
to an already contracted edge. The edge to contract e; is chosen randomly
amongst the possible choices whenever there is more than one valid option. If
all edges that meet this requirement have been collapsed, but the pooling ratio
is not reached, we re-compute the edge scores on the new graph and repeat the
same procedure. We stop if the pooling ratio is reached, i.e. |X'| = [r-|X|[], or if
there are no edges left in the reduced graph, i.e. E/ = (). This approach allows us
to flexibly reduce graphs to any desired size.
Edge pooling then gives a hard assignment of nodes, where each vertex is
assigned to a single super-node in the output graph based on the neighbours it
has been merged with. To compress the node features, we average the features of

Geometry-Aware Edge Pooling for Graph Neural Networks 7

any node that contributed to a pooled super-node. This ensures that information
on all nodes’ features is preserved during pooling. Restricting the number of times
a vertex can be merged is enforced to prevent our methods from collapsing entire
portions of a graph early in the pooling process. This enables a more uniform
pooling across the graph, which aids feature preservation and expressivity.

Our methods assume that the most redundant edges will be those whose
removal would change the diversity of the graph the least. Magnitude informs us
about the global importance of an edge. Intuitively, that means we want to start
with merging edges from well connected communities whenever their contraction
does not notably change the graph’s effective size. As illustrated in this
ensures that globally influential edges will be collapsed late in the pooling progress.
For example, the edge which bridges the two parts of this enzyme graph, is scored
more highly and thus merged later than well-connected cliques. Redundant local
structures are collapsed first, and the overall diffusion geometry is respected. For
the graph in this ensures that key topological characteristics, such as
the cycle, are retained across the pooling process. Our algorithm is explained in
more detail in Whenever we use magnitude to compute the edge
scores, we denote our algorithm by MagEdgePool. Similarly, the use of spread is
denoted by SpreadEdgePool.

3.2 Theoretical Analysis

We now present theoretical properties of our pooling methods. First, we highlight
fundamental invariances and properties of magnitude and spread used to design
our algorithms. Further, we provide a bound on the difference in magnitude
during pooling by the difference in spread, demonstrating the close relationship

between the two. For a complete list or theorems and proofs see

Additivity for disjoint graphs. An important property of magnitude is that it
behaves like the cardinality of sets. This behaviour is useful when computing the
magnitude of a disconnected graph by splitting the problem into calculating the
magnitude of the disconnected components.

Theorem 2. Consider a positive definite metric graph G = G1UGs consisting of
the disjoint union of two graphs G1 and Go. Then Mag(G) = Mag(G1)+ Mag(G2).

Isomorphism invariance. Our pooling layers are invariant under isometries of
the input graph provided that the edge choice at each iteration is deterministic
whenever the edge scores coincide. This is a consequence of the following result.

Theorem 3. If the metric graphs G1 and Gy are isometric then Mag(G1) =
Mag(G2) and Sp(G1) = Sp(Ga).

Edge contraction on graphs. Edge contraction is the main operation of our pooling
methods and can be considered as a map f between graphs. The following result
provides a sufficient condition to ensure that the morphism f is compatible with
the metric structure.

8 K. Limbeck et al.

Theorem 4. Consider an edge-contraction map f : (Gy,d1) — (Ga,ds) between
positive definite metric graphs. If the map is Lipschitz (i.e. do(f(v1), f(v2)) <
di(vi,v2) Yoi,v2 € X1) then Mag(Go) < Mag(G1).

Starting from an initial metric graph G = (X, F), a Lipschitz edge-contraction
map f yields a sequence of graphs {G;}¥_, where k is the number of edges that
have been contracted. This sequence can be constructed as described by our
algorithms in Let A®Mag(G) = [Mag(G*~1) — Mag(G®)| and
let AMSp(G) = [Sp(GT~Y) — Sp(GM)].

Bounding magnitude by spread. We track the difference in magnitude and spread
throughout the edge contraction process detailed above. This allows us to propose
an inequality that describes the relation between the difference of magnitude
and spread during pooling. The bound then demonstrate the close conceptual
relationship between SpreadEdgePool and MagEdgePool.

Theorem 5. Consider a positive definite metric graph G with positive weights.
Assume that the edge-contraction maps describing MagEdgePool and SpreadEdge-
Pool induce distance decreasing surjections on the vertex sets. If | Mag(G*F=1) —
Sp(G™M))| < CA® Sp(@), then

AR Mag(G) < 3¢ AP Sp(G).

Computational Complexity. The time complexity of our pooling methods is
independent of the GNN and is dominated by the cost of computing the edge
scores in Given a graph G = (X, F), magnitude has time complexity
O(]X]3). In comparison, spread has time complexity O(|X|?) and can be more
efficiently approximated [I8]. Spread thus offers a considerably faster alternative.
Now, let O(Cy) be the time complexity of computing the metric on G. The time
complexity of SpreadEdgePool is dominated by O(|E|(Cy + | X|? + log|E|)) and
MagEdgePool by O(|E|(Cy4 + | X|? + log|E|)). We note that on large graphs, it is
possible to speed up the distance computations further to ensure scalability. See
for a full description of computational costs and for
an empirical evaluation, which shows that our algorithm performs on-par with
existing pooling methods across the datasets evaluated throughout this work.

4 Experimental Results

Across our experiments, we address the following three key tasks: (i) graph clas-
sification performance, (ii) graph structure preservation during pooling, (iii) and
performance across varying pooling ratios.

4.1 Graph Classification

We first investigate how well our proposed edge pooling methods perform at
graph classification tasks in comparison to alternative pooling layers.

Geometry-Aware Edge Pooling for Graph Neural Networks 9

Table 1: Mean and standard deviation of the graph classification accuracy. The
best performing model is marked in bold. All models that did not perform
significantly different from the best model are coloured green. The rightmost
column shows the mean rank of each pooling method across datasets.

Method ENZYMES PROTEINS Mutagenicity DHFR IMDB-B IMDB-M NCI1 NCI109 Mean Rank

No Pooling 87.3 + 2.5 73.8 £ 0.8 80.1 £ 1.3 7144+ 19 69.7+£0.7 46.0£0.7 765+ 1.8 743 £2.0

MagEdge 91.5 £ 3.2 76.4 + 3.9 77.5 £ 2.7 880438 724+1.7 474+ 1.7 727+24 73.0+£33 2.4
SpreadEdge 92.8 + 1.6 75.1 + 3.1 76.0 £4.0 90.7 3.8 7T1.8 +1.5 473 £ 1.7 734 +25 T71.8 + 1.8 3.0
NDP 922+ 1.6 73.7+ 39 73.4 £ 3.1 79.6 £4.4 73.3 £ 2.0 473 £25 70.6+22 700+ 2.2 3.6
Graclus 91.3 £3.7 76.6 + 3.7 72.5+ 2.0 644 £58 719+ 1.5 49.3 + 2.4 688+ 1.4 69.5+ 2.1 5.6
NMF 78.6 + 8.0 73.0 £ 8.1 71.0 + 4.7 66.5 £ 7.7 69.4+25 433+ 1.7 71.0+ 37 720453 6.0
TopK 822 £ 75 732+ 14 75.8 £ 4.7 68.9+30 689+ 15 456+ 1.0 75.3 & 2.4 73.9 + 3.3 4.9
SAGPool 82.4 £ 4.5 73.8 £ 1.3 76.0 &£ 2.6 69.9£3.0 69.1+0.6 457 +£05 743+ 28 74.0 £ 2.3 4.7
DiffPool 74.0 £ 57 68.9 2.0 68.4 £ 1.9 79.8 £3.2 683 £0.8 444 £0.8 68910 683%19 7.6
MinCut 80.2 + 6.6 75.6 £ 1.3 709 £ 1.5 63.8 £3.7 69.3+0.7 46.1 £0.8 66.7+ 1.4 66.9+ 2.0 7.4

Ezperimental Setup. We evaluate 8 different graph datasets [37], as detailed in
If node features are unavailable, we use node degree as an input
feature. We follow an established experimental benchmark [26] and guidance for
fair model comparison [19]. Specifically, we plug in each pooling layer into the
model architecture of the following form [26]:

MLP(X) — GNN(X, A) - POOL(X, A) - GNN(X, A) - SUM(X) — MLP(X)

The model includes pre-processing and post-processing MLPs with 2 layers, 256
hidden units, ReLU activation, and batch normalization. GNN(X, A) refers to
a graph neural network layer, more specifically a general convolutional layer
[47] with parameters chosen according to the best results achieved in a GNN
benchmark [47]. As an intermediate layer, POOL(X, A) corresponds to a specific
pooling layer. All pooling layers are configured to pool each graph to around 50%
of nodes. We also compare with ‘No Pooling,’ the same model architecture without
any pooling layers. We use 10-fold stratified cross-validation and further partition
the training data into 90% training and 10% validation data while keeping the
labels balanced between splits. Finally, we report the best test accuracy of each
model trained using Adam with a cross-entropy loss (batch size 32, learning rate
0.0005, and early stopping based on the validation loss with a patience of 50

epochs). Further details are described in |[Appendix B.5

Classification Results. reports the mean and standard deviation of the
test accuracy achieved by different pooling methods. We furthermore highlight
which methods do not perform statistically significantly different from the best
model (using pairwise Wilcoxon signed-rank tests applied to the accuracy scores
and employing Holm-Bonferroni correction at a significance threshold of p = 0.05)
to identify pooling methods that achieve top performance.

Notably, both MagEdgePool and SpreadEdgePool achieve the best mean ranks
across datasets in terms of their accuracy. Further, they are always among the
top-performing methods across all evaluated datasets. Altogether, both their
ranking and their individual accuracy scores thus demonstrate superior and
consistently high performance across graph classification tasks.

10 K. Limbeck et al.

. Normalised spectral distance N N Relative magnitude difference
Spectral Distance at pooling ratio 0.5 Magnitude Difference at pooling ratio 0.5 Method
* ¢ « MagEdgePool

SpreadEdgePool
* NDP
* Graclus
e TopK

SAGPool

spectral distance

Fig. 3: Structure preservation for all graphs in the NCI1 dataset across varying
pooling ratios. Left: The spectral distance between the normalised Laplacians
of the the original and the pooled graphs. Right: The relative difference in
magnitude, which summarises the proportional difference in structural diversity
after pooling. Violinplots show the variability across graphs at pooling ratio 0.5.

The performance benefits of our pooling methods are most pronounced on
DHFR [41], where they surpass even the GNN without pooling layer by around
17 percentage points. This provides evidence that the regularising effects of
our pooling approach can help reduce overfitting, especially for small datasets
and geometrically-rich graphs. For other biological datasets (Mutagenicity, NCI1
and NC109), our methods show competitive performance with trainable layers,
indicating that the introduction of additional trainable components into the
pooling layer is not necessary to guarantee high task performance. On ENZYMES,
DHFR, IMDB-BINARY, and IMDB-MULTI, non-trainable methods generally
outperform trainable pooling layers, with MagEdgePool and SpreadEdgePool
consistently reaching high accuracy.

Comparing pooling methods to using no pooling, we observe that MagEdge-
Pool and SpreadEdgePool reach similar or even higher performance across
datasets. For six datasets, our diversity-guided pooling methods improve mean
accuracy, indicating that pooling retains task-relevant information while aiding
the generalisation capabilities of the GNN. MagEdgePool and SpreadEdgePool
act as interpretable and expressive pooling transformations, which reduce the
computational costs making GNNs learn from graphs’ coarsened geometry.

As reported in MagEdgePool and SpreadEdgePool achieve very
similar accuracies across datasets superior to alternative pooling layers. In practice,
especially for large graphs, we recommend using SpreadEdgePool due to its high
predictive performance and superior computational efficiency.

4.2 Magnitude and Graph Structure Preservation

Motivated by the visual comparison of graphs pooled using different pooling
layers from we next set out to investigate the link between structure
preservation and task performance. Specifically, we choose NCI1, a dataset of
4,110 graphs corresponding to chemical compounds, because it has been shown
to possess both informative features and task-relevant graph structures [IT].
We follow the same classification procedure as before and extract the pooled
graph representations after training the GNNs described in Three
pooling layers, MinCut, DiffPool and NMF, were removed from further comparison

Geometry-Aware Edge Pooling for Graph Neural Networks 11

because they showed notably worse qualitative results for the motivating examples
in and classification performance in NDP and Graclus are
evaluated across fewer pooling ratios than more adaptive methods, because they
pool graphs to around half their size at every step. To assess graph structure

preservation we use the spectral distance defined as Zszl(/\k — X,.)2, the lo-
norm between the eigenspectra of the normalised Laplacians of the original and
the pooled graphs [43]. We also report the magnitude difference between graphs
to evaluate the preservation of structural diversity.

MagEdgePool and SpreadEdgePool show low spectral distances across pooling
ratios as visualised in This indicates that contracting edges guided
by structural diversity preserves key spectral properties. Our methods also
demonstrate low magnitude differences confirming that they perform as intended.
In fact, the structure preservation scores for MagEdgePool and SpreadEdgePool
coincide almost perfectly, giving empirical evidence that spread offers an alterative
to magnitude. indicates that preserving magnitude corresponds to lower
spectral distances and better retention of spectral properties. This link supports
our motivation of guiding pooling by magnitude.

Alternative pooling layers fail to effectively preserve graphs’ structural prop-
erties during both qualitative and quantitative comparisons to varying extents.
Node decimal pooling (NDP) [7] was specifically designed to preserve spectral
properties during pooling. However, it still reaches both higher spectral distances
and higher magnitude differences than MagEdgePool on average across pooling
ratios as visualised in Finally, the sparse pooling layers Graclus, Top-
KPool, and SAGPool, all show higher spectral distances than our approach. This
difference is even more pronounced in terms of magnitude differences, where all
these three methods demonstrate high distortion of the underlying metric space
diversity. These findings agree with the qualitative comparisons between graphs
pooled using different pooling layers as visualised in We thus conclude
that MagEdgePool and SpreadEdgePool successfully encode graphs’ coarsened
geometry during pooling, surpassing alternative pooling methods.

4.3 Pooling Ratio and Task Performance

From we observe that it is possible to reach very high performance on
benchmark datasets even while pooling each graph to half its size. Based on
this, we further investigate how the pooling ratio influences pooling layers and
their classification performance. We consider two datasets, NCI1 and ENZYMES,
which contains 600 graphs representing protein tertiary structures from 6 classes
of enzymes and is selected as an example of a multi-class prediction task. We keep
the same experimental setup described in but use GIN layers instead
of general convolutional layers to further assess whether the trends in performance
differ across model architectures. [Figure 4] then reports the classification accuracy
achieved by each pooling layer for varying pooling ratios.

Notably, we observe that MagEdgePool and SpreadEdgePool consistently
reach very high test accuracies even at low pooling rations. Meanwhile, the

12 K. Limbeck et al.

o GIN ENZYMES GIN NCIL o GIN ENZYMES GIN NCI1
Method
09 \Q< 080 09— =, 0.80 s MagEdgePool
> 07518 > DA D= SpreadEdgePool
Ros \\ IS gos \/\,/\ ER -/‘\§ « NOP
3 3070 \\ 3 3 o8 * Graclus
H g S N £on0 \\\
0.7 065 \ \ \ e TopK
0.6 0.65 N SAGPool
0.6 0.60 .

05 04 03 02 01 05 04 03 02 01 08 06 04 02 08 06 04 02
pooling ratio pooling ratio pooling ratio pooling ratio

Fig. 4: Classification performance across varying the pooling ratio for different
pooling layers. Pooling is applied as part of a GIN architecture. Results are shown
for the ENZYME and NCI1 datasets. Lines show the mean and shaded areas the
standard deviation of the test accuracy.

performance of other non-trainable methods drops notably more when graphs are
pooled to up to 6.25% of their original size showing that they fail to preserve task-
relevant information for both ENZYMES and NCI1. We note that the trainable
pooling layers, TopK and SAGPool, reach higher or comparable performance on
NCI1 for pooling ratios above 50%, but decrease in accuracy for more extreme
pooling ratios. They consistently perform worse on ENZYMES, indicating that
they distort important graph features or key graph structures during pooling.
MagEdgePool and SpreadEdgePool in comparison reach superior performance
and lower decreases in accuracy across varying pooling ratios demonstrating their
potential to offer reliable, interpretable and stable pooling operations. Overall,
the reported accuracies in agree with results in indicating
that our observations hold for varying choices of GNN layers. We thus find
across experiments that MagEdgePool and SpreadEdgePool constitute useful
general-purpose pooling approaches, demonstrating their capability to faithfully
encoding graphs’ geometry, which ensures stable performance across pooling
ratios, datasets and GNN architectures.

5 Discussion

Our pooling methods implicitly require redundancy and homophily in the graph
representation and assume that preserving graph structure is beneficial to the
learning task. Moreover, our algorithm relies on efficient distance computations
and we only explore one case of diffusion distances, which could be generalised
further in future work. Although our methods are non-trainable, our experiments
show that trainable pooling layers do not guarantee higher performance.

Across experiments we find that MagEdgePool and SpreadEdgePool constitute
useful general-purpose pooling approaches that perform well for a wide range of
classification tasks and pooling ratios. Guiding edge pooling to preserve graphs’
structural diversity successfully encodes key graph properties and ensures stable
and interpretable performance. Further, we overcome one major limitation of
computing magnitude on large graphs by proposing the spread of a metric space
as a faster and closely-related alternative, which has the potential to aid research
in geometric deep learning beyond the scope of this paper.

1]

2]

3]

4]

[5]

[6]

8]

19]
[10]

[11]

[12]

[13]

[14]

Bibliography

Adamer, M.F., De Brouwer, E., O’Bray, L., Rieck, B.: The magnitude vector
of images. Journal of Applied and Computational Topology 8(3), 447473
(2024)

Andreeva, R., Dupuis, B., Sarkar, R., Birdal, T., Simsekli, U.: Topological
generalization bounds for discrete-time stochastic optimization algorithms.
Advances in Neural Information Processing Systems 37, 47654818 (2024)
Andreeva, R., Limbeck, K., Rieck, B., Sarkar, R.: Metric space magnitude and
generalisation in neural networks. In: Topological, Algebraic and Geometric
Learning Workshops 2023. pp. 242-253. PMLR (2023)

Andreeva, R., Ward, J., Skraba, P., Gao, J., Sarkar, R.: Approximating
metric magnitude of point sets. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 39, pp. 15374-15381 (2025)

Bacciu, D., Di Sotto, L.: A non-negative factorization approach to node
pooling in graph convolutional neural networks. In: AT* TA 2019-Advances
in Artificial Intelligence: XVIIIth International Conference of the Italian
Association for Artificial Intelligence, Rende, Italy, November 19-22, 2019,
Proceedings 18. pp. 294-306. Springer (2019)

Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph
neural networks for graph pooling. In: International conference on machine
learning. pp. 874-883. PMLR (2020)

Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Hierarchical representation
learning in graph neural networks with node decimation pooling. IEEE
Transactions on Neural Networks and Learning Systems 33(5), 2195-2207
(2020)

Borgwardt, K.M., Ong, C.S., Schoénauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21, i47-i56 (2005)

Cangea, C., Veli¢kovié¢, P., Jovanovi¢, N., Kipf, T., Lio, P.: Towards sparse
hierarchical graph classifiers. arXiv preprint arXiv:1811.01287 (2018)
Coifman, R.R., Lafon, S.: Diffusion maps. Applied and computational har-
monic analysis 21(1), 5-30 (2006)

Coupette, C., Wayland, J., Simons, E., Rieck, B.: No metric to rule them
all: Toward principled evaluations of graph-learning datasets. arXiv preprint
arXiv:2502.02379 (2025)

David, G., Averbuch, A.: Hierarchical data organization, clustering and de-
noising via localized diffusion folders. Applied and Computational Harmonic
Analysis 33(1), 1-23 (2012)

Devriendt, K., Lambiotte, R.: Discrete curvature on graphs from the effective
resistance. Journal of Physics: Complexity 3(2), 025008 (2022)

Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors
a multilevel approach. IEEE transactions on pattern analysis and machine
intelligence 29(11), 1944-1957 (2007)

14
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]
28]
[29]

[30]

[31]

[32]

K. Limbeck et al.

Diehl, F.: Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990 (2019)

Diehl, F., Brunner, T., Le, M.T., Knoll, A.: Towards graph pooling by
edge contraction. In: ICML 2019 workshop on learning and reasoning with
graph-structured data (2019)

Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-
enzymes without alignments. Journal of molecular biology 330(4), 771-783
(2003)

Dunne, K.: Efficiently approximating spread dimension with high confidence.
arXiv preprint arXiv:2408.14590 (2024)

Errica, F., Podda, M., Bacciu, D., Micheli, A., et al.: A fair comparison of
graph neural networks for graph classification. In: Proceedings of the Eighth
International Conference on Learning Representations (ICLR. 2020) (2020)
Feng, A., Weber, M.: Graph pooling via ricci flow. arXiv preprint
arXiv:2407.04236 (2024)

Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch
geometric. In: ICLR Workshop on Representation Learning on Graphs and
Manifolds (2019)

Fey, M., Sunil, J., Nitta, A., Puri, R., Shah, M., Stojanovic, B., Bendias,
R., Alexandria, B., Kocijan, V., Zhang, Z., He, X., Lenssen, J.E., Leskovec,
J.: PyG 2.0: Scalable learning on real world graphs. In: Temporal Graph
Learning Workshop, KDD (2025)

Gao, H., Ji, S.: Graph u-nets. In: Proceedings of the 36th International
Conference on Machine Learning (2019)

Gasteiger, J., Weiflenberger, S., Glinnemann, S.: Diffusion improves graph
learning. Advances in neural information processing systems 32 (2019)
Grattarola, D., Alippi, C.: Graph neural networks in tensorflow and keras
with spektral. IEEE Computational Intelligence Magazine 16(1), 99-106
(2021)

Grattarola, D., Zambon, D., Bianchi, F.M., Alippi, C.: Understanding pooling
in graph neural networks. IEEE transactions on neural networks and learning
systems 35(2), 2708-2718 (2022)

Landolfi, F.: Revisiting edge pooling in graph neural networks. In: ESANN
(2022)

Lee, J., Lee, 1., Kang, J.: Self-attention graph pooling. In: International
conference on machine learning. pp. 3734-3743. pmlr (2019)

Leinster, T.: The magnitude of metric spaces. Documenta Mathematica 18,
857-905 (2013)

Leinster, T.: The magnitude of a graph. In: Mathematical Proceedings of
the Cambridge Philosophical Society. vol. 166, pp. 247-264. Cambridge
University Press (2019)

Leinster, T.: Entropy and Diversity: The Axiomatic Approach. Cambridge
University Press (2021)

Limbeck, K., Andreeva, R., Sarkar, R., Rieck, B.: Metric space magnitude
for evaluating the diversity of latent representations. In: Advances in Neural
Information Processing Systems. vol. 37, pp. 123911-123953 (2024)

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

Geometry-Aware Edge Pooling for Graph Neural Networks 15

Liu, C., Zhan, Y., Wu, J., Li, C., Du, B., Hu, W., Liu, T., Tao, D.: Graph
pooling for graph neural networks: progress, challenges, and opportunities.
In: Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence. pp. 67126722 (2023)

Long, A.W., Ferguson, A.L.: Landmark diffusion maps (I-dmaps): Accelerated
manifold learning out-of-sample extension. Applied and Computational
Harmonic Analysis 47(1), 190-211 (2019)

Meckes, M.W.: Positive definite metric spaces. Positivity 17(3), 733-757
(2013)

Mesquita, D., Souza, A., Kaski, S.: Rethinking pooling in graph neural
networks. Advances in Neural Information Processing Systems 33, 2220—
2231 (2020)

Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann,
M.: Tudataset: A collection of benchmark datasets for learning with graphs.
arXiv preprint arXiv:2007.08663 (2020)

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G.,
Schomburg, D.: Brenda, the enzyme database: updates and major new
developments. Nucleic acids research 32, D431-D433 (2004)

Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borg-
wardt, K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning
Research 12(9) (2011)

Solow, A.R., Polasky, S.: Measuring biological diversity. Environmental and
Ecological Statistics 1, 95-103 (1994)

Sutherland, J.J., O’brien, L.A., Weaver, D.F.: Spline-fitting with a genetic
algorithm: A method for developing classification structure- activity rela-
tionships. Journal of chemical information and computer sciences 43(6),
1906-1915 (2003)

Willerton, S.: Spread: a measure of the size of metric spaces. International
Journal of Computational Geometry & Applications 25(03), 207-225 (2015)
Wills, P., Meyer, F.G.: Metrics for graph comparison: a practitioner’s guide.
Plos one 15(2), 0228728 (2020)

Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the
21th ACM SIGKDD international conference on knowledge discovery and
data mining. pp. 1365-1374 (2015)

Ying, C., Zhao, X., Yu, T.: Boosting graph pooling with persistent homology.
Advances in Neural Processing Systems (2024)

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierar-
chical graph representation learning with differentiable pooling. Advances in
neural information processing systems 31 (2018)

You, J., Ying, Z., Leskovec, J.: Design space for graph neural networks.
Advances in Neural Information Processing Systems 33, 17009-17021 (2020)

16 K. Limbeck et al.

Acknowledgments. This work was partially funded by the Helmholtz International
Lab Causal Cell Dynamics InterLabs-0029 grant by the Initiative and Networking Fund
of the Hermann von Helmholtz-Association Deutscher Forschungszentren e.V. [K.L.],
Mila EDI scholarships [L.M.], Humboldt Research Fellowship, CIFAR AI Chair, NSERC
Discovery grant 03267, FRQNT grant 343567, and NSF grant DMS-2327211 [G.W.].
This work has received funding from the Swiss State Secretariat for Education, Research,
and Innovation (SERI). K.L. is supported by the Helmholtz Association under the joint
research school ‘Munich School for Data Science (MUDS).” The content provided here
is solely the responsibility of the authors and does not necessarily represent the views
of the funding agencies.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

Appendices and Supplementary Material

To elaborate on the results reported in our main paper, we first detail extended
theoretical results and proofs for our theoretical contributions. Next, we detail our
experimental evaluation, the assets used for our experiments, and the algorithm
describing our pooling methods. Finally, we report extended results on the
experiments included in our main paper.

A Theoretical Analysis

This section details full proofs and extended explanations for the mathematical
theory introduced in [Section 2]and the theoretical analysis of our pooling methods
described in

A.1 Diffusion Distances

As detailed in the diffusion distance is defined by:

d(z,y) = |®(x) — D(y)|2 for z,y € X. (7

Theorem 1 Any finite metric space (X,d) endowed with the diffusion distance
is positive definite.

Proof. By definition of the diffusion distance, the map ¢ : X — R¥"! in
defines an isometry (X,d) < 15’ ~! := (RV=1 dy), where d; is the
metric induced by the l3-norm. Finally, by Theorem 2.5.3 in [29], subsets of
Euclidean space 15’ ~! are positive definite.

Geometry-Aware Edge Pooling for Graph Neural Networks 17

A.2 Computational Complexity

We next analyse the computational complexity of our pooling methods, which
are described in [Appendix B.4] and [Section 3.1] Specifically, we expand on the
statements in by detailing the computational complexity of the
pooling process. Given a graph G = (X, E), let k = | (1 —)| X|| be the number
of nodes that should be contracted as determined by the pooling ratio r. The
time complexity of our pooling approach can be split up into the following steps:

Computing magnitude or spread. Magnitude has time complexity O(|X|?)
and can further be approximated via iterative normalisation in O(i x |S;| %
|X|?) time assuming G has a positive weighting where i is the number of iter-
ations and S; C X [4]. Spread computations have time complexity O(|X|?),
which is a notable improvement to magnitude. It is possible to approxi-
mate spread computations via subsets [I8] or iterative optimisation using
mini-batching [4]. For i iterations on subsets S; C X, the time complexity
of approximating spread reduces to O(i x |S;| x |X|) [4, [I8]. Spread thus
offers a much faster alternative to magnitude and can scale to large graphs
considerably more efficiently.

Computing distances and similarities. For large datasets, it is key to speed
up the distance calculations. Diffusion distances have time complexity O(| X |?),
but can be reduced to O(k|X|?) when restricting the computations to the
top k eigenvectors. Diffusion maps can further be approximated via low-rank
approximations. To reduce the cost of repeated distance computations, it is
possible to approximate the metric on the reduced graph G/e by directly up-
dating the distances for G. Given a distance matrix, computing the similarity
matrix then has linear time complexity in the number of entries. Denote the
time complexity of computing the distances and similarities by O(Cjy).

Edge contraction. To get G’ = G/e, contracting an edge e € E takes O(|X])
time.

Edge score computations. For each edge, its edge score is computed by ap-
plying the edge contraction and computing the magnitude or spread of the
reduced graph, which takes O(|X| 4+ Cy 4+ Cs) time, where Cg refers to the
cost of computing either magnitude or spread as detailed above. Note that
the computation of these edge scores is independent across edges and can be
parallelised.

Edge score sorting. The edge scores can be sorted from lowest to highest in
O(|E|log |E|) time.

Feature aggregation. The node features, F C RIXI.¥ can be aggregated in
O(|X| x F) time.

Putting this all together, we get that the cost of our pooling algorithms can
be described by a worst-case time complexity of

O(E|(IX] + Ca + Cs + log|E) + | X[(F + k))

if £ < 0.5/X| and the graph is not pooled to less than half its size. Otherwise,
if £ > 0.5|X|, we re-compute the edge scores whenever no valid edges are left

18 K. Limbeck et al.

as described in In this scenario, the first term of the complexity
expression is repeated, corresponding to re-computations on successively smaller
graphs. In summary, the overall time complexity of our pooling method is
dominated by the cost of calculating and sorting the edge scores. This cost is
independent of the choice of GNN architecture, ensuring that the training costs
remain stable and do not escalate with model complexity. In practice, as further

explored in we thus find that our pooling algorithms perform on

par with alternative pooling layers in terms of computational efficiency.

A.3 Magnitude and Spread

Additivity for disjoint graphs As a measure of the effective size, one appealing
property of magnitude is that it behaves akin to cardinality. In fact, magnitude
is additive when taking the disjoint union of multiple metric spaces.

Theorem 2 Consider a positive definite metric graph G = G1UGs consisting of
the disjoint union of two graphs G1 and Gs. Then Mag(G) = Mag(G1)+ Mag(Gs).

Proof. Let G = (X, E) together with the metric d be a positive definite metric
graph. Assume G is a disjoint union of two metric graphs (G1,d;) and (Ga,ds)
over the vertex sets X; and X, respectively, such that d, x, = d; and d x, = da
and d(z1,z2) = oo for all z; € X3, 2 € Xs. Then, (¢ = (a, @ (g, and
Mag(G) = Mag(G1) + Mag(G?).

This result applies to graphs equipped with the shortest-path distance or the
diffusion distance considered in this paper, because the distance between two
nodes depends only on the connected component they belong to and is infinite if
there is no path between them. Therefore, we can naturally see the similarity
matrix (g as block-diagonal and compute the magnitude of G by summing up
the magnitude of its disconnected subgraphs.

Isomorphism invariance A key property of magnitude and spread is that they
are isometry invariants of metric spaces. Note that by graph isometry we mean
an isometry on the underlying vertex set equipped with a metric.

Theorem 3 If the metric graphs G1 and Go are isometric then Mag(G1) =
Mag(G2) and Sp(G1) = Sp(Ga).

Proof. Let f : (X1,d1) — (Xa,d2) be a bijective isometry between the met-
ric graphs G; and (s, respectively. Then, for all z,y € X; we have that
do(f(x), f(y)) = di(z,y). A consequence of the bijectivity of f is that the
distance matrices coincide (up to permutations) and that {; = (3. This implies
in turn that Mag(G1) = Mag(G2) and that Sp(G;1) = Sp(Ga).

Based on this property for magnitude and spread, we can show that isometry
invariance also holds for our proposed pooling algorithm further detailed in

D
Append b.4

Geometry-Aware Edge Pooling for Graph Neural Networks 19

Corollary 1 MagEdgePool and SpreadEdgePool are isometry-invariant if applied
to isomorphic graphs provided the choice of edges to contract at each iteration is
deterministic whenever the edge scores coincide.

Proof. Let f : (G1,d1) — (Ga,d2) be a graph isomorphism and an isometry.
From Theorem [3| we have that the edge scores as defined in for
e1 € Fy and f(e1) € E2 will coincide, i.e. s(e1) = s(f(e1)). Because the choice
of edges to contract at each iteration is further assumed to be deterministic if
edge scores coincide, it follows that every edge to contract in G5 corresponds to
the image f(e) of an edge e to contract in Gy and vice versa. Hence, the pooled
graphs output by our algorithm are isomorphic.

Edge contraction on graphs We will first recall important results about
magnitude in the context of (strictly) positive definite finite metric spaces and
refer the interested reader to work by Leinster [29] for further details.

Proposition 1 (Proposition 2.4.3, [29]) Let (X, d) be a positive definite met-
ric space with finite cardinality | X| = n. Then

n 2
Mag(X) = sup (21*701). (8)
veRm\{0} V'CxV
Proposition [1] implies that the magnitude of positive definite metric spaces is
always positive. Another consequence of this result is a monotonicity property
on subsets of these metric spaces.

Corollary 2 (Corollary 2.4.4, [29]) Let (X,d) be a positive definite finite
metric space and consider a subset Y C X (endowed with the induced metric).
Then

Mag(Y) < Mag(X). (9)

We will now show an analogous result for graphs constructed via edge con-
traction.

Theorem 4 Consider an edge-contraction map f : (G1,d1) — (Ga,da) between
positive definite metric graphs. If the map is Lipschitz (i.e. da(f(v1), f(v2)) <
dl(’Ul,’Ug) V’Ul,’Ug S Xl) then Mag(GQ) < Mag(Gl).

Proof. Let f: (G1,d1) = (Ga,d2) be an edge-contraction map and let n := |X;]
and m := | Xz|. We will identify R™ with a subset of R™ = R™ @ R" ™™ using the
map (v1, -+ ,Um) € R™ < (v, , 0,0, -+ ,0) € R™. Then,

VG0 =Y 0iCx, [, 4lv;
,J
= Z V; (e_dl (1‘77m7))1}]
(2]
S Z UiCXQ [Za .j]vj7

,J

20 K. Limbeck et al.

and
1 1
<
vix,v ~ vi(x,v
Finally, by Proposition [I] and Inequality [I0} we get that

Vv 0. (10)

Mag(G1) = sup M> S M

veRm\{0} v (x, v "~ verm\{0} vi(x,v

mov)?

> oy sty

veRm\{0} V'(x,v

Bounding magnitude by spread Recall that for positive definite metric
spaces, magnitude is known to be an upper bound for spread.

Theorem 6 (Theorem 2.2. [42]). Suppose that X is a finite metric space. If
X is positive definite then

Sp(X) < Mag(X).

We will now use this bound as well as the results in[Appendix A.3|to investigate
the relationship between MagEdgePool and SpreadEdgePool. Through a process

of iterated edge contraction, our pooling algorithm produces a sequence of
hierarchically pooled graphs (as described in [Section 3.1| and [Appendix B.4)).
Note that it is not guaranteed that MagEdgePool and SpreadEdgePool yield the
same sequence. For this reason, we will refer to the graphs resulting from the kth
edge-contraction with magnitude and spread by G*) and G*) respectively.

For each k the edge contraction map G*) — G®#+1) is a surjection on
the underlying vertex sets X*) and X*+1) respectively, i.e X*+1) < x*),
Moreover, we will assume that for any k this map is distance-decreasing. That is,
dEHD(f(y), f(z)) < d® (z;,25) for all z;,z; € X*+HD),

Recall that for any k, Mag(G(k)) is the magnitude of a finite positive definite
metric space (X*), d*)). Then, by Theorem |4, we deduce that for any ,

Mag(G*+D) < Mag(G™) (11)

Note that by construction, scoring the edges in Algorithm [B-4] translates into
the following:

X® = argminy ¢ x oo 1) |y 11— x -0 [Mag(X*7D) — Mag(Y)] (12)

and, _ B
X = argminyc)?wfl),\Y|+1:\)?(k71>||SP(X(k71)) —Sp(Y)]. (13)

Then, by monotonicity of magnitude (Inequality ,

xX®) = argmaxy - x (-1 |y|4+1=|x -1 Mag(Y) = argmaxy - x -1 Mag(Y).

Let A®)Mag(G) = [Mag(G*~1)—Mag(G®)| and let A®)Sp(G) = [Sp(G*—1)—
Sp(G¥))|. For the following result, we assume that scores are only computed
once and that they are the only criterion for edge contraction. Furthermore, we
will assume that spread is monotonically decreasing.

Geometry-Aware Edge Pooling for Graph Neural Networks 21

Theorem 5 Consider a positive definite metric graph G with positive weights.
Assume that the edge-contraction maps describing MagEdgePool and SpreadEdge-
Pool induce distance decreasing surjections on the vertex sets. If \Mag(G(k’l)) —

Sp(G*))| < CA® Sp(@), then
AP Mag(G) < 3C AW Sp(G).
Proof. For any k we have the following inequality:

[Mag(G*~1) — Mag(G™)| < [Sp(G*~Y) — Sp(GH))| + [Mag(G®) — Sp(GH)|
+ [Mag(G*1) — sp(G*=1).

Assume that [Mag(G*—1) — Sp(G*))| < CAFISp(G) for some constant C' > 0.
By the monotonicity of magnitude (Theorem H)), we get that Mag(G™*)) <
Mag(G®*~1) and,

Mag(G™)) — sp(G™)) < Mag(G*~Y) — Sp(GM) < CAWSp(@).
Similarly, assuming monotonicity of spread yields Sp(G*)) < Sp(G*~1) and,
Mag(G*~1) — Sp(G*~1) < Mag(G*~1) — Sp(G™M) < CAWSp(@).

Since 0 < Sp(G*~1) — Sp(G™M) < Mag(G*F~1) — Sp(G*), the constant C
must be greater than or equal to 1. We conclude that

AP Mag(@) < 3¢AFISP(@).

B Extended Methods

B.1 Hardware and Software

The experiments reported in our study were implemented using spektral 1.3.1
[25[7] and tensorflow 2.16.27% As further detailed in [Appendix B.5and [Sec]
tion 4.1] we base our graph classification experiments on the benchmark setup
and code by MEL which also include implementations for the pooling layers
compared across our study. By relying on this existing framework, we aim to
ensure the reproducibility of our results.

Further, to calculate magnitude and spread we rely on magnipy, a Python
package [BZﬂ for magnitude and diversity computations. As a novel contribution
of this paper, we extend the computation of magnitude to graph data and novel

Thttps://graphneural network | available under an MIT license.
https: //pypi.org/project /tensorflow /2.16.2 /| available under the Apache Software
License (Apache 2.0).

Ihttps://github.com/danielegrattarola/SRC| available to the research community

“Ihttps://github.com/aidos-lab/magnipy| available under a BSD 3-Clause License.

22 K. Limbeck et al.

Table 2: Summary of the graph datasets considered for our experiments.

dataset library # classes # node features # graphs avg # nodes avg # edges
MUTAG TUDataset 2 no 187 18 40
Enzymes TUDataset 6 18 600 33 62
COX2 TUDataset 2 3 467 41 44
DHFR TUDataset 2 3 756 42 45
IMDB-B TUDataset 2 no 1000 20 97
IMDB-M TUDataset 3 no 1500 13 65
AIDS TUDataset 2 4 2000 15 16
Proteins TUDataset 2 29 1113 39 72
Mutagenicity TUDataset 2 no 4337 30 31
NCI1 TUDataset 2 no 4110 30 32
NCI109 TUDataset 2 no 4127 30 32
OGBG-MOLHIV OGB 2 9 41127 25 27
BZR TUDataset 2 3 405 36 38
BZR_MD TUDataset 2 no 306 21 225
COX2_MD TUDataset 2 no 303 26 335
DHFR_MD TUDataset 2 no 393 24 283
ER_MB TUDataset 2 no 446 21 235

graph metrics. Specifically, we modify the computations, so that the magnitude of
disconnected subgraphs is computed separately (based on Theorem [2)) using the
Networkxﬂ package. We also implement graph distances that have not previously
been used to compute magnitude, such as the diffusion distances detailed in
All experiments were run requesting one GPU with 32GB video
memory or less.

B.2 Datasets

We briefly describe the graph datasets analysed throughout our work. Simulated
graphs, as used for are created using either PyGSP E| or Networkxm and
all example graphs were created to consist of 64 nodes. For our main graph
classification experiments, we analyse six graph datasets taken from biological or
chemical applications [8], 17, [38] 39] 4T], and two datasets which represent social
networks [44]. All datasets are taken either from the TUDatasetﬁ benchmark [37]
or the Open Graph Benchmarkﬂ More specifically, the main results in
analyse the following graph classification datasets described in Note that
we only consider node and not edge features for our experiments.

B.3 Magnitude and Spread Computations

Across our experiments, we compute magnitude and spread as outlined in the

main text, and further described in Elaborating on these descrip-
tions, we now aim to give an extended explanation of practical and theoretical
considerations for computing the magnitude of graphs in practice.

https://github.com /networkx/ networkx| available under a BSD 3-Clause License.
Jhttps://pygsp.readthedocs.io/en/stable/| available under a BSD-3-Clause license.
Ihttps://github.com /networkx /networkx| available under a BSD 3-Clause License.
https: chrsmrrs.github.io/datasets/| available under a CC BY 4.0 license.
https://ogb.stanford.edu/| available under an MIT licence.

Geometry-Aware Edge Pooling for Graph Neural Networks 23

Defining the magnitude of a graph. In mathematical literature, the magnitude
of graphs is often studied with the shortest path metric [30]. However, shortest
path distances are not guaranteed to be of negative type, thus leading to sce-
narios and well-known examples for which the similarity matrix is not invertible
and magnitude based on this metric cannot be computed [29]. In comparison,
resistance distances, diffusion distances, or Euclidean distance always permit the
computation of magnitude. Because of this difference in the choice of distance
metric, we note that our definition of the magnitude of a graph in
differs from the definition used by Leinster [30]. While we choose to investigate
diffusion distances, we note that the distance metric can easily be replaced if
needed to explore alternative geometries.

Diffusion geometry. For further research, we believe that the usage of diffusion
distances offers the chance to leverage a rich theory on approximation methods
via landmarks [34], or localised diffusion computations [12], which can lead to
further computational improvements and extension of our methods.

Magnitude and spread as multi-scale functions. Note that magnitude and spread
can also be defined as multi-scale functions i.e. t — Mag((X,t - d)) for a metric
space (X,d) and a scale parameter ¢ € RT. This parameter ¢ can be likened to
choosing a kernel bandwidth or the scale of distances or similarity determining
when observations are considered to be distinct. In practical applications, it
is advisable to carefully consider the choice of scaling factor ¢ or the type
of normalisation used to compare distances [32]. [32] propose a heuristic that
uses root-finding to find a suitably large ¢t. However, this requires repeated
computations of magnitude and increases the computational costs. A faster and
more desirable default choice of ¢ would be based solely on the distance metric.
For diffusion distances, we find that setting ¢ = 1 is sufficient for our goals. This
is because, as discussed in diffusion distances are computed from
the normalised graph Laplacians and are inherently comparable across graphs.
Nevertheless, investigating magnitude and spread as multi-scale functions on
graphs remains an interesting extension for further work.

Magnitude and spread as diversity measures. We extensively discuss the rela-
tionship between magnitude and spread throughout our work. However, our
main paper does not have the space to fully explain the theoretical motivations
behind the formulations of magnitude, spread, and other generalised measures of
diversity. For a more complete discussion we refer the interested reader to [31],
an extensive reference work on the mathematical motivation behind entropy and
diversity. Furthermore, [42] specifically discusses the spread of a metric space,
and [32] describe the practical usage of magnitude as a diversity measure in ML.
These works also give descriptions on how and why the magnitude or spread of a
metric space can be interpreted as an effective size i.e. as the effective number of
distinct points in a metric space or the number of dissimilar nodes in a graph.

24 K. Limbeck et al.

B.4 Pooling Algorithm

We now detail our pooling algorithm introduced in by describing a
pseudocode implementation. Note that to describe the algorithm we assume we
have pre-selected a distance metric for computing either magnitude or spread.

Algorithm 1 Graph Pooling Methods: SpreadEdgePool and MagEdgePool

Require: input graph G = (X, E), node features F € R"*%, pooling ratio r € (0,1],
diversity measure Mag(G) or Sp(G)
Ensure: Pooled graph G' = (X', E’), pooled features F’
1: Initialise the super-node set S(z) < z for all z € X
2: Initialise the set of contracted edges E. < ()
3: Initialise the pooled graph G’ + G
4: Compute initial edge scores:

s(e) = [Mag(G) — Mag(G/e)| Vee E

5: while | X'| # |r|X|] AND |E’| # 0 do

6: Select edge e = (z,y) = argmin.cp\ g, s(e)

7: if e is not adjacent to any previously contracted edge in E. then
8: Contract edge e, update G’ «+ G’ /e

9: Add e to E.

10: Update the node selection: merge S(z) and S(y)

11: end if

12: if no more valid edges AND pooling ratio not reached then
13: Recompute the edge scores s(e) on the updated graph G’
14: Reset E. < ()

15: end if

16: end while

17: Initialize F’ < 0

18: for each supernode representative w € S do
19: Let Sy ={z € X | S(z) = w}

20: Compute aggregated feature:

1
F’/UJ,: = m Z Fz,:

Y zes,

21: Append F, to F’
22: end for
23: return Pooled graph G’, pooled features F’

B.5 Extended Experimental Details

We briefly describe extended details for our main experiments.

Geometry-Aware Edge Pooling for Graph Neural Networks 25

Overview Experiment To create the illustration in and visually
compare the outputs of different pooling methods, we follow the experimental
setup by [26] on understanding structure preservation in graph pooling layers.
Specifically, we simulate a ring graph with 64 nodes, a barbell graph with 20
nodes on each side connected by 24 nodes in the middle, and a sensor graph with
64 nodes. Graphs are then pooled to a pooling ratio of approximately 50%. All
trainable pooling layers were then trained in a self-supervised manner to optimise
the following spectral loss between the original graph G and the pooled graph G':

d
L(G,G")=Y FLF;-F/LF, (14)
=0

where L, L’ are the corresponding Laplacian matrices. The features F' are taken
to be the top 10 eigenvectors of L concatenated with the coordinates of the
nodes in G. F” is the reduced version of F after pooling. Note that this type of
spectral loss is one particular proposal on structure preservation and alternative
objectives could be investigated.

Structure Preservation Experiment and Pooling Ratios For reporting
the structure preservation results described in [Section 4.2} we considered multiple
different proposals for what it means to preserve graph structure during pooling. In
the end, we settled to compare the spectral distance between the symmetrically
normalised graph Laplacians as an established measure of spectral property
preservation, and investigated the relative difference in magnitude between the
original graph G and the pooled graph G’ computed from diffusion distances.
Specifically, the reported relative magnitude difference is calculated as
_ |[Mag(G) — Mag(G')|

MagDiff(G, G') = o8 . (15)

For this experiment we further varied the pooling ratios across different
pooling methods. However, some of the pooling layers considered in our study
(NDP, Graclus and NMF) were configured to always pool graphs to around half
their size. To allow us to compare these methods across increasing pooling ratios,
we choose to reapply these pooling operations repeatedly, which is why these
three pooling methods are evaluated at pooling ratios that are powers of 0.5.

Graph Classification Experiment Our graph classification architecture fol-
lows the experimental setup described in and is based the benchmark
[26]. Across our main classification experiment detailed in different
pooling layers are configured to reduce each input graph to around 50% of the
number of nodes in the original graphs. Depending on the pooling method, this
is chosen so each graph is reduced to 50% of its original size k = |0.5 % N |, (for
NDP, Graclus, MagEdgePool, SpreadEdgePool, TopKPool, and SAGPool), or
to 50% the average size of all graphs in the training dataset k = 0.5+ N | (for

26 K. Limbeck et al.

Magnitude vs. Spread NCI1 Magnitude vs. Spread ENZYMES Magnitude vs. Spread IMDB-MULTI
40
. . .

spread

4 50 100 0 100 200 0 50 100 150 200
magnitude magnitude magnitude
Magnitude vs. Spread NCI1 Magnitude vs. Spread ENZYMES Magnitude vs. Spread IMDB-MULTI

8000 3500 50000

2 40000
6000

rap
g
8

f graph:

5 30000

< 4000 5 °
£ 1500 £ 20000

mt
umb

number of graphs
ofg
g
g
8

2000 10000

o o LMk
1.00 103 1.00

115 1000 1002 1004 1006 1.008

1.01 1.02 105 110
Mag(G)/Sp(G) Mag(G)/Sp(G) Mag(G)/Sp(G)

Fig.5: Comparison between magnitude and spread computed from diffusion
distances for all graphs in three datasets, NCI1, ENZYMES and IMDB-Multi.

DiffPool, and MinCutPool). Interpreting the experimental results in it is
thus of interest that the sizes of the pooled graphs can vary across pooling layers,
which might explain some of the difference in performance between the fixed-size
methods DiffPool and MinCUT compared to more adaptive pooling methods.

C Extended Results

C.1 Correlation between Magnitude and Spread

As stated in the magnitude and spread of a metric space are closely
related with magnitude giving an upper bound for spread when computed from the
same positive definite metric space. Across our experiments on real graph datasets,
we further find that this bound in practice can be very tight and magnitude
and spread measure very related notions of effective size. More specifically, when
computing both magnitude and spread from the diffusion distances detailed in
we observe that magnitude and spread almost coincide for all graphs
from the NCI1, ENZYME or IMDB-Multi datasets as illustrated in In
fact, magnitude and spread correlate almost perfectly across these three graph
datasets (Pearson correlation r2 > 0.99). Further, we confirm that across these
examples, magnitude is generally greater or equal to spread by a relatively low
multiplicative factor close to 1. We therefore find empirical evidence for the
fact that spread offers a valid and highly related alternative to magnitude in
practice supporting our theoretical analysis of the relationship between spread

and magnitude during pooling (Appendix A.3|) as well as our observations on

the similar performance of MagEdgePool and SpreadEdgePool.

Geometry-Aware Edge Pooling for Graph Neural Networks 27

C.2 Evaluating Computational Efficiency
As detailed in the computational costs of our algorithm are

determined by the costs of computing the edge scores used for pooling. To illus-
trate how this theoretical discussion translates into practice, we now investigate
computational costs empirically in comparison to alternative pooling methods
considered throughout this study.

Training Costs We first compare the runtime (in seconds) and memory usage
(in MB per cross-validation run) of our pooling methods (MagEdgePool and
SpreadEdgePool) to trainable pooling methods in Specifically, we train
the GNN architecture specified in [Appendix B.5| and [Section 4.1] using GIN
layers across 200 epochs using 10-fold stratified cross-validation. We compare
our edge pooling methods (MagEdgePool, SpreadEdgePool) to trainable pooling
methods from torch_geometriﬂ [211, 22] (EdgePool, TopKPool, SAGPool) or
from torch—geometric—poolﬂ (DiffPool, MinCutPool). We record the mean
and standard deviation of the runtimes in seconds in and GPU memory
usage in MB per cross-validation run in We note, in particular, that
our proposed edge pooling methods, MagEdgePool and SpreadEdgePool, allow
for significantly more efficient GNN training than EdgePool as highlighted in
Similarly, our methods generally improve on the runtimes for dense
pooling methods such as DiffPool and MinCutPool. To generalise this runtime
comparison to other datasets sizes and experimental setups, we note that our

algorithm will scale with dataset size as described in

Pre-training Costs Having observed that pre-computed edge-pooling speeds
up GNN training times, we further investigate the computational costs of this
preprocessing step by comparing the runtime and memory costs of our methods
against other non-trainable pooling operators (NDP, NMF and Graclus) prior to
training. [Table 5] and [Table 6| report the computational costs of computing the
pooling assignment for all graphs in the datasets. We observe that SpreadEdgePool
is generally more efficient than MagEdgePool. Beyond exact computations of our
pooling methods (described in [Appendix B.4)), [Table 5| and [Table 6] also present
approximate versions that reduce the cost of distance computations. Specifically,
these approximate versions, referred to as MagEdgePool* and SpreaFEdgePool*,
use the minimum distance to the original nodes to update the (diffusion) distances
during edge contraction. This leads to a considerable improvement in runtime and
memory usage during pre-training. The results reported in this section highlight
one of the limitations of our edge pooling approach, namely, it scales in the
number of edges as well as in the number of nodes. Nevertheless, our proposed
pooling methods still outperform EdgePool in terms of computational efficiency
when considering both pre-processing and training costs.

Yhttps: //pytorch-geometric.readthedocs.io/en/latest /| available under an MIT li-
cense.
Yhttps://github.com/tgp-team /torch-geometric-pool| available under an MIT license.

28 K. Limbeck et al.

Table 3: Training times in seconds compared across pooling methods. The fastest

methods are marked in bold.

Method DHFR ENZYMES NCI109 Mutagenicity IMDB-BINARY IMDB-MULTI
MagEdge 39.8 £6.0 22.0+ 0.2 186.0+ 9.1 180.3 £+ 29.0 754+ 1.4 89.6 £ 6.1
SpreadEdge 34.8 £ 1.0 23.0 £ 0.7 181.3 + 29.4 206.7 £+ 20.6 62.7 + 0.9 99.7 £ 4.3
EdgePool 184.1 £ 4.0 209.3 £4.1 807.4 4222 790.7 £ 22.1 362.3 £ 3.4 392.7 £ 11.9
TopKPool 50.7 £ 0.8 241 +£0.6 226.1 £21.3 2438+ 154 88.2 £ 1.1 110.9 + 2.2
SAGPool 544+ 13 25.7+£04 2504 +£257 253.0+ 20.0 92.6 £ 2.1 131.1 &+ 1.3
DiffPool 522+ 6.8 364 +33 2424 +125 2740+ 215 106.7 £ 5.5 74.9 £ 2.0
MinCut 33.8 £ 2.5 282+ 1.7 210.3+344 201.0+3.7 932+ 1.6 132.8 £ 3.2

Table 4: Memory usage in MB compared across pooling methods. The most
efficient methods are marked in bold.

Method DHFR ENZYMES NCI109 Mutagenicity IMDB-BINARY IMDB-MULTI

MagEdge 84.0 £ 0.1 91.2 + 2.5 97.0 £ 1.1 94.8 + 1.0 283.4 £+ 28.0 197.6 + 17.8
SpreadEdge 84.0 + 0.1 90.6 + 2.3 96.8 £ 1.0 95.2 + 1.0 283.4 + 28.0 197.4 £ 17.8
EdgePool 125.6 + 10.4 148.4 £+ 15.0 118.6 £ 7.7 118.0 + 74 666.6 = 106.6 526.2 £ 89.2
TopKPool 89.6 £9.0 944+ 4.0 1050+ 1.4 1058 +6.5 259.4 £+ 31.5 193.8 + 17.5
SAGPool 1042 £ 0.6 942 £ 3.8 1052+ 14 107.8 £8.1 273.4 £+ 30.1 209.0 £ 17.9
DiffPool 90.2 £10.2 946+ 25 103.8 £ 1.1 299.8 + 31.9 258.0 £+ 40.3 240.8 £ 26.4
MinCut 90.6 = 10.3 94.2 £ 2.4 103.6 = 1.0 288.4 + 38.3 258.0 £+ 40.3 196.6 + 26.0

Table 5: Pre-training times in seconds compared across non-trainable pooling
methods. The fastest method is marked in bold. The fastest approximation of

our pooling method is marked in cursive.

Method DHFR ENZYMES Mutagenicity NCI109 IMDB-BINARY IMDB-MULTI
MagEdge 61.9 197.4 4765.1 678.8 801.8 480.2
MagEdge* 24.6 21.0 81.3 74.9 7.4 69.9
SpreadEdge 66.7 68.3 316.1 208.8 287.2 243.8
SpreadEdge* 10.9 16.0 52.8 55.6 56.0 66.0
NDP 5.6 4.1 37.1 32.6 5.8 7.0

NMF 7.8 10.8 39.0 32.1 8.7 9.0
Graclus 3.8 2.9 54.5 18.2 4.5 6.0

Table 6: Pre-training memory usage in MB compared across non-trainable pool-
ing methods. The most efficient method is marked in bold. The most efficient
approximation of our pooling method is marked in cursive.

Method DHFR ENZYMES Mutagenicity NCI109 IMDB-BINARY IMDB-MULTI
MagEdgePool 76.2 163.8 158.9 179.0 162.1 93.1
MagFEdgePool* 83.7 34.8 47.0 72.2 11.5 65.2
SpreadEdgePool 61.9 60.1 177.9 93.1 204.1 75.8
SpreadEdgePool* 33.6 54.1 60.5 72.9 53.2 23.8
NDP 3.0 5.0 7.0 13.4 5.1 6.5
NMF 3.8 5.9 39.9 10.5 4.2 5.9
Graclus 15.8 7.5 17.5 59.5 1.0 1.5

Geometry-Aware Edge Pooling for Graph Neural Networks 29

Fig. 6: Runtime comparison for training the GNNs reported in [Section 4.1| for
NCI1 using different pooling layers. Plots show the mean time in seconds per
run using general convolutional layers (left) or GIN layers (right).

500

450

400

time in seconds
NN oW w
s & & &
& & & 3

Q
3

S
8

Vi

'\\: é . /\.__: S,

«

/

o

5

time in seconds

Nowow
8
s

500

I
&
3

IS
&
8

&
3

&
g

~.

X S
\\><7< .\\it;::x’Q-

o, .___./'
<A
0.6 0.4 0.2

08 06 0.4
pooling ratio

0.2

pooling ratio

Method
MagEdgePool
SpreadEdgePool
NDP
Graclus
TopK
SAGPool

Furthermore, the pre-training costs of our method, range in a number of
seconds, need to be computed only once per dataset and the memory requirements
remain below what is required by GNN training. Hence, while the scalability
to very large graphs is a limitation, we find that our proposed pooling methods
scale sufficiently well to standard graph datasets. In practice, based on the
computational complexity , we recommend that our pooling
method is particularly suitable for small to medium graphs that show a certain
degree of sparsity rather than being fully connected. For future work, we believe
that there is a strong potential for adapting our methods to scale on large graphs.
For instance, edge score calculations could be parallised, sampling heuristics
could restrict the edge score computations to a subset of candidate edges, or edge
scores could be estimated from local subgraphs to improve the computations.

Runtimes across Pooling Ratios Further, we compare the runtimes of
training the models used in to compare the accuracy of different
pooling methods across varying pooling ratios. then reports the mean
runtime of training the GNN on one CV-fold for different choices of pooling ratios
and pooling methods for the NCI1 dataset using either general convolutional
layers or GIN layers. All models are trained as specified in on a
single GPU with 32GB memory. Notably, we observe that MagEdgePool and
SpreadEdgePool overall perform on par with alternative pooling methods in terms
of runtimes. SpreadEdgePool has a consistent advantage over MagEdgePool due
to the higher computational efficiency of computing spread rather than magnitude.
Notice that for increasing pooling ratios, our algorithm re-computes the edge
scores repeatedly, leading to a less pronounced decrease in computational costs
than alternative methods. Nevertheless, we conclude that it is generally more
efficient to apply SpreadEdgePool than to rely on trainable approaches, such
as TopK and SAGPool for this dataset, indicating the computational benefit of
non-trainable graph pooling operations.

30 K. Limbeck et al.

Table 7: Mean and standard deviation of the reconstruction MSE for reconstruct-
ing the original node positions from the pooled graph representations for different
example graphs and pooling methods. Our proposed algorithm, SpreradEdgePool,
does well at faithfully encoding the feature representations.

Ring Sensor barbell community erdosrenyi torus
SpreadEdge 5.47e-07 + 2.63e-07 2.78e-05 & 3.04e-07 3.42e-04 £ 1.42e-06 3.71e-03 + 5.80e-05 6.49e-07 + 3.33e-07 5.29e-07 + 1.33e-07
NDP 3.08e-07 £ 3.57e-07 4.07e-05 £ 4.57e-06 4.54e-04 £ 2.01e-05 2.52e-01 & 9.50e-06 1.46e-06 £ 1.18e-06 5.68e-07 & 1.02e-07
Graclus 6.87e-04 £ 7.56e-07 2.67e-06 & 2.31e-06 1.82e-03 £ 3.22e-07 2.42e+00 £ 2.11e-04 4.76e-02 £ 3.75e-07 7.10e-07 + 8.60e-08
NMF 4.78¢-07 £ 2.95e-07 1.96e-05 £ 1.39e-05 5.80e-04 £ 4.53e-07 6.06e-01 £ 1.43e-04 5.04e-07 £ 3.31e-07 2.52¢-07 + 2.93e-07

TopK 1.21e-01 & 8.23e-03 5.83¢-03 £ 2.16e-03 1.55¢-02 £ 1.10e-02 6.03e+00 £ 2.21e+00 5.30e-03 £ 7.49¢-03 1.72e-01 & 8.51e-03
SAGPool 1.45¢-01 & 2.52e-02 2.01e-03 =+ 2.73e-03 4.12¢-02 + 4.18¢-02 4.76¢+00 + 1.57¢-+00 9.60e-05 + 1.35¢-04 1.88¢-01 + 4.63¢-02
DiffPool 8.63e-06 & 4.73e-06 3.50e-04 £ 8.32e-05 6.50e-04 £ 1.01e-06 2.14e-01 & 2.84e-01 3.74e-04 £ 1.46e-04 5.17e-05 £ 8.90e-06
MinCut 2.55e-06 £ 2.68e-06 6.56e-06 + 3.86e-06 2.35e-06 & 1.50e-06 1.80e-04 £ 2.01e-04 1.44e-06 £ 5.24e-07 1.49e-06 £ 9.81e-07

C.3 Node Feature Preservation and Expressivity

Graph pooling should not only preserve graph structure, but also preserve relevant
node feature information during pooling. That is, pooling is frequently used after
initial rounds of message passing and data representations learnt by previous
layers should be respected and effectively encoded by the pooling procedure [26].
One way of investigating node feature retention during pooling, is to evaluate
how well a graph can be reconstructed from its pooled version. We follow the
experimental setup by [26] to investigate. In particular, this experiment uses a
model architecture, similar to the model proposed in where each
graph gets pooled to around 50% of nodes after the initial MLP and GNN layer.
Then, the pooled graphs are up-scaled again by reversing the node selection step
used by each pooling layer. From these unpooled graph representations, a further
GNN and post-processing MLP layer are trained and the task is set to output the
reconstructed node feature representation. This model is trained on each example
graph using Adam to minimize the mean squared error (MSE) between the input
and output node features with a learning rate of 0.0005 and early stopping on
the training loss with a patience of 1000 epochs and a tolerance of 10~%. Each
experiment is repeated three times across different random seeds. See [26] for
further explanations on the model architecture and experimental setup.

For this experiment, we expect SpreadEdgePool to perform comparably well
as we specifically designed our pooling algorithm so that features are averaged
during pooling. Further restricting the number of times a node can be merged
effectively prevents the collapse of entire portions of the graph, which aids recon-
struction. SpreadEdgePool pooling thus successfully encodes node information
while allowing for a flexible choice of pooling ratio. This is confirmed by the
results in which highlight that SpreadEdgePool overall performs well
at the features reconstruction task, especially for the sensor graph reaching low
reconstruction errors. Alternative methods, in particular node drop approaches
such as TopK and SAGPool, show notably worse feature preservation during this
experiment indicating the benefits of more expressive pooling operations, such as
SpreadEdgePool. Note that the results in capture one specific aspect of
feature preservation, namely how well the features of specific example graphs can

Geometry-Aware Edge Pooling for Graph Neural Networks 31

Magnitude Difference Normalised Spectral Difference Spectral Loss
MagEdgePool - 0.4 0.0 0.5+ 0.0 0.2%0.0 MagEdgePool - 4.6 + 0.0 49200 MagEdgePool - 0.1 £ 0.0 0.1 0.0 0.4+ 0.0
SpreadEdgePool - 0.4 £ 0.0 0.4 +0.0 0.2 = 0.0 SpreadEdgePool - 0.0 £ 0.0 0.1 + 0.0 0.1 = 0.0

SpreadEdgePool - 4.5 + 0.3 5.2 + 0.1 4.8+ 0.0
NDP-0.5+00 04+0.1 02+0.0 NDP - 51+03 NDP-0.0+0.0 0.1+0.0 0.2+0.0

Graclus - 09+0.6 0.6=*0.5 P 50+ 0.1 56+02 Graclus-0.1 0.0 0.2+0.0 1.0+0.0
NMF NMF 6.0 + 0.0 I 1.2 +1.117.1+2286.1+7.9

TopK * 5 Topk 54400 TopK-0.1+0.0 0.3 0.0 1.1%0.0
SAGPool - 0.0 + 0.0 0.2 %0.0 0.8 0.1
DiffPool - 0.0 = 0.0 0.0 0.0 0.0 + 0.0

MinCut - 0.0 + 0.0 0.1£0.0 0.2 0.0

SAGPool .2 % 0. 12+ 0. SAGPool -
DiffPool -2.1 £ 0.0 1.6 = 0.0 DiffPool - 4.9 + 0.0 =8
MinCut-19+0.0 1.3+0.1 05=0.0 MinCut - 4.8 £ 0.0

i i i ! i]]]
Ring barbell Sensor Ring barbell Sensor Ring barbell Sensor

Fig. 7: Structure preservation measures for the examples in Pooling is
repeated for three different random seeds and the annotations report the means
and standard deviations of the structure preservation scores.

be reconstructed. This experiment does not assess the generalisation capability
of pooling layers. Further, the experimental setup assumes that it is relevant
to preserve all node features during pooling, which might not be realistic in
practice, where the aim of pooling could be to solely encode task-relevant feature
representations. Nevertheless, as discussed above, this extended experiment gives
evidence to support that our proposed pooling algorithm, SpreadEdgePool, is
capable of outputting expressive feature representations and aggregates node
features in a faithful manner, which is likely one of the reasons for its high
performance in graph classification tasks.

C.4 Overview Experiment

Expanding on the qualitative comparison between the example graphs in [Figure 1}
shows quantitative structure preservation measures for all example
graphs and pooling methods. Specifically, we summarise the spectral loss [26], the
spectral distance between the normalised graph Laplacians, and the magnitude
difference between the pooled and original graphs as further detailed in [Section 4.2}
demonstrates that SpreadEdgePool and MagEdgePool do not only reach
low magnitude differences across these three example graphs, they also show
comparatively low spectral distances supporting our findings in
Further, methods that show worse visual preservation of graph structures, such
as NMF, TopK, DiffPool, and MinCut, also reach consistently higher magnitude
differences and spectral distances supporting our claim that these methods fail
to faithfully preserve graph structures during pooling to varying extents.

C.5 Graph Classification

further reports extended classification results on additional datasets ex-
tending on the results shown in [Table 1] We chose not to report on these datasets
in the main text because they showed fewer and less notable differences between
pooling methods. Note that for the open graph benchmark MolHIV dataset,
instead of using stratified cross-validation, we evaluate each model across prede-
fined training, test and validation splits and evaluate their performance across 5

32 K. Limbeck et al.

Table 8: Classification performance of different pooling layers. For each dataset,
the best performing model is marked in bold and models that do not perform
significantly different from the best performing model are coloured green.

Method MolHIV (AUROC) MUTAG COX2 BZR BZR_MD COX2_MD DHFR_MD ER_MD AIDS

No Pooling 74.4 £ 0.7 81.6 £6.3 83.8+38 76.1+91 73.7+53 70.2=+8.1 71.3+£19 749 £0.8 99.0 £ 0.1
MagEdge 64.6 + 8.7 84.0+ 74 86.0+7.3 88.1 +10.0 659+22 765+92 779+ 94 799+71 99.7+ 0.1
SpreadEdge 70.1 £29 8594+ 74 85.1%+56 87.4+£95 69.7+10.0 77.1 £ 9.0 746+ 11.1 83.1£4.0 99.7 £ 0.1
NDP 91.6 £ 2.486.1 £ 7.1 863+94 723+11.3 73.9+10.6 722+ 114 84.2 + 1.7 99.6 + 0.1
Graclus 87.4+£95 792+ 125 80.1+71 720+£96 754+99 711 +£123 81.7+£39 99.5+£0.1
NMF 84.0 £9.4 83.¢ 8.7 80.8£85 69.0+10.2 704 +£6.6 70.8 £86 80.9+20 97.0£ 1.7
TopK 819439 764 +£72 T758+80 684485 65970 69.5+33 740+ 1.0 99.3 £0.1
SAGPool 829+23 76.8+78 T77.8+50 668+70 67.0+64 70.5 426 756 +£1.2 99.0£0.1
DiffPool 833+28 769+£65 768+ 10.1 72.3+30 69.2%2.1 679 £26 734+£11 98.8+£0.2
MinCut 80.6 £ 3.7 79.1 £44 T0.8+86 69.0+50 70.0%37 69.7+19 733£16 99.2+0.1

random seeds. Further, we report AUROC as the performance metric for MolHIV
because is the suggested evaluation metric for this very imbalanced dataset. All
other results are reported as in via the mean and standard deviation
of the test accuracy across 10-fold stratified cross-validation. In agreement with
our main results, we observe that MagEdgePool and SpreadEdgePool constitute
high performing general-purpose pooling methods that reach top performance
across these extended datasets. In particular, for smaller biological datasets, such
as MUTAG, BZR, or COX2, pooling via magnitude or spread notably improves
on the GNN that uses no pooling layer, which indicates the beneficial effects of
structure-aware pooling for graph learning.

C.6 Comparison with EdgePool

To extend our evaluation, we compare with the pytorch_geometric implementa-
tion of EdgePool [15] [16]. To do so, we implement the GNN architecture specified
in in PyTorch and repeat our main experiment reported in
We find that there is no significant difference in performance between our methods
and EdgePool when computed on e.g. IMDB-M, where EdgePool reaches an
accuracy of 47.6 £+ 3.3, or on IMDB-B, where EdgePool reaches an accuracy of
70.9 + 4.5. We expect this same pattern to hold across further datasets.

As a major advantage, our methods have notably lower computational costs
during training than EdgePool as reported in Our methods thus
make edge-contraction pooling scalable to larger datasets and enable significantly
faster GNN training. On IMDB-B for example, EdgePool takes 362.2 seconds and
666.6 MB for 200 epochs during training, but our method SpreadEdgePool only
requires 62.7 seconds and 283.4 MB. We thus find that learning feature-based edge
scores as done by EdgePool, is not necessary to ensure classification performance,
but rather adds a notable computational burden. The main advantage of our
pooling methods over EdgePool is thus improved scalability as well as the flexible
choice of pooling ratio.

Geometry-Aware Edge Pooling for Graph Neural Networks 33

C.7 Preserving Graph Structure

Extending on the results reported in|Figure 3land [Section 4.2] we further report the
distribution of structure preservation measures across pooling ratios. Specifically,
shows line plots that summarise the mean magnitude difference relative
to the original graph and the normalised spectral distance between all original
and pooled graphs from the NCI1 dataset in the leftmost column. The remaining
plots illustrate the quantiles of the same measures split up per pooling method.
Overall, these individual plots support our assessment that MagEdgePool and
SpreadEdgePool consistently reach low magnitude differences and comparably
low spectral distances, with these trends being more pronounced in terms of the
relative difference in magnitude after pooling.

Spectral Distance MagEdgePool
0

spectral distance

05 o4
booling ratio

Magnitude Difference

magnitude difference

Fig.8: Structure preservation for the NCI1 dataset across varying pooling ratios.
Top row: The spectral distance between the normalised Laplacians of the original
and pooled graphs. Bottom row: The relative difference in magnitude. Bold lines
show the mean values of each score across graphs and thin lines the 10%, 25%,
75% and 90% quantiles.

	Geometry-Aware Edge Pooling for Graph Neural Networks

