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Abstract. Accurately modeling long-range dependencies in graph struc-
tured data is critical for many real-world applications. However, prop-
erly incorporating long-range interactions beyond the nodes’ immedi-
ate neighborhood remains an open challenge for graph machine learning
models. Existing benchmarks for evaluating long-range capabilities can-
not guarantee that their tasks actually depend on long-range informa-
tion or are artificial. Therefore, claiming long-range modeling improve-
ments based on empirical performance on those datasets remains a fragile
and weak form of evidence. We introduce the Long-Range Ising Model
(LRIM) Graph Benchmark, a physics-grounded benchmark based on the
well-studied Ising model whose ground truth theoretically depends on
long-range dependencies. Our benchmark consists of multiple datasets
that scale from 256 to 65k nodes per graph and provide controllable
long-range dependencies through multiple tunable parameters, allowing
precise control over the hardness and "long-rangedness" of tasks. We
provide model-agnostic evidence showing that local information is insuf-
ficient, further validating the design choices of our benchmark. This is
ongoing, new research to provide a framework towards principled and
provable long-range capability evaluation for graph machine learning.

Keywords: Graph Benchmark, Long-range interactions, Graph Neural
Networks

1 Introduction

Since the early days of deep learning on graphs [45,33,23,43, 32] researchers
have tried to automatically learn a task-defined mapping from graph-structured
data to some output. At the very heart of the most popular architecture, namely
Graph Neural Networks (GNNs), is the idea that repeated aggregation of local
information expands the “receptive field” of each node [3] in a way similar to
convolutional neural networks for images [28]. Such an expansion is crucial, for
instance, in tasks where the true mapping requires a non-local processing of
information among nodes in the graph. In this case, researchers typically talk
about capturing long-range dependencies.

* Work conducted while the author was an intern at NEC Laboratories Europe.
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Long-range dependencies or interactions are an important component of
physics and chemistry, manifesting, for example, in quantum systems [15], pro-
tein folding [24] or astronomy [11]. An example from biology is mRNA splicing,
a fundamental part of the gene expression process: splicing is inhibited if we
“disable” long-range dependencies between distant regions of mRNA [41]. The
protein binding mechanism, whose understanding is crucial for the development
of vaccines, also depends on long-range interactions between proteins [19].

As of today, most deep learning models on graphs struggle to solve long-range
tasks. For GNNs, the reason is tied to their efficient but limited message-passing
scheme: expanding the receptive field rapidly increases the amount of infor-
mation that every node has to process and store, generating a computational
bottleneck [2]. When addressing the long-range limitations of existing models,
it should be natural to benchmark novel methods on tasks that provably de-
pend on long-range information while being relevant for real-world applications.
Unfortunately, while popular existing benchmarks focus on real-world data [17],
they cannot guarantee that i) the task to solve hinges on long-range depen-
dencies and %) that there are no shortcuts models can find while learning from
the data [47]. In both cases, the reason is that the task definition is unknown,
which is almost always the case in machine learning. Researchers have also tried
to formalize a heuristic notion of “long-rangedness” [5], but a priori defining
a task that can be tuned and theoretically analyzed has many advantages, for
instance interpreting and inspecting the learned models that approximate the
task function.

This work presents a first attempt at a provable long-range benchmark based
on the well-studied and fundamental Ising model with power-law long-range
node (called spin) interactions. The Ising model was originally introduced in
statistical physics to study magnetic materials [39] and fundamental properties
related to phase transitions [49,46,51]. Over the decades, the influence of the
model has spread to aid understanding and analyzing complex phenomena far
beyond the original intention, with applications in protein folding [10], percola-
tion [4], the theory of disordered systems [38], or social systems such as stock
markets [16] to name only a few. The d = 2 LRIM we use in this work models a
ferromagnetic material by placing binary variables called spins on a grid lattice.
The problem we want to solve is the prediction of the energy change AFE; when
one component is updated, as often required for Markov Chain Monte Carlo
simulations of such systems. The tunable parameters of the Ising model control
the dependency of each spin’s energy on distant spins, thereby allowing us to
control the impact of long-range dependencies; in other words, we can easily
control the “long-rangedness” of the task.

In what follows, we describe the dataset creation process, highlighting impor-
tant design choices such as the physics-based pseudo-critical temperature and
the hardness of the task. We validate the hardness of the task by measuring the
error of “partial oracle” functions that have access to a limited neighborhood for
each node, showing that the error increases for specific choices of parameters con-
trolling the impact of long-range dependencies. Then, we train classical GNNs
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and provide their performance as a baseline starting point for future evaluations,
together with the details of the replicable evaluation process.

2 Related Work

The literature on long-range benchmarks for graph-structured data is rather
limited. The most popular one is perhaps the Long Range Graph Benchmark
(LRGB) [17], which proposes image segmentation tasks — adapted to graphs — to-
gether with peptides’ function classification and property regression tasks. These
tasks are considered to require long-range interactions, especially the image-
based tasks where graph transformers [37] perform much better than classical
GNNs, but there are no strong guarantees that they are. Moreover, such em-
pirical claims are prone to reevaluations [48,6]. On the other hand, synthetic
tasks such as predicting eccentricity, shortest path distance, and diameter on
randomly generated topologies [14] are provably long-range, but their real-world
impact is unclear. Recently, node eccentricity has been computed on large real
road networks, however, eccentricity was approximated by a 16-hop radius for
computational reasons [30]. The recent dataset of [30] uses real-world data but
considers an artificial task. In this work, we propose a benchmark that relies
on simulated data whose task is connected to real-world applications and fully
controllable. Hopefully, this allows us to have a greater impact while being able
to carefully control whether models learn the true objective function.

Lastly, we mention that heterophilic datasets have often been believed to re-
quire long-range capabilities of GNNs, but this viewpoint was recently criticized
by [2] by providing clear counterexamples that the task might induce heterophily
regardless of the nature of the problem.

3 Background

Spin Models The description of systems with many interacting components
is ubiquitous in the natural and social sciences. Using domain-specific model-
ing approaches, these systems can be investigated on a case-by-case basis using
convoluted system prototypes that are often difficult to understand and inter-
pret. Spin models, such as the Ising model, have proven powerful in describing
relevant features of real systems while retaining simplicity. Based on simple mi-
croscopic interaction laws, they show rich emergent behavior and non-trivial
phase-transition and spin-spin correlations.

Formally, the system is defined by the graph topology and the interaction
law between the so-called spins s;, referred to as the spin Hamiltonian (without
external magnetic field).

H(sih) = =3 3 Jusis, )

where s; € R™ are the spin variables described as unit vectors of dimension
n, i.e., for O(n = 1) one has binary spins s; = +1. The interaction potential
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Fig.1: Absolute magnetization |M| versus temperature T for the LRIM with
o = 0.6 for different system sizes L. The snapshots show respective configurations
from simulations for L = 256.

Ji; describes the graph connectivity, and depending on the choice one can in-
terpolate from the fully-connected mean-field model to nearest-neighbor models
where spins only interact within a short-ranged neighborhood. We here consider
this model in contact with a thermal environment, that is, a canonical setting
in which the microscopic configurations occur according to the Boltzmann dis-

tribution.
1 _H({si})
P({sih) = exp (). )

where the Boltzmann constant is set to unity (k; = 1) and T is the temperature.

The ferromagnetic model with J;; > 0 for all edges with the nodes placed on
a regular graph shows three distinct phases depending on T i) disordered, i)
critical, or ii7) ordered. The phases are characterized by distinct behavior of the
connected correlation function

Ge(r) = (sisj) = (si)(s5), (3)

where (...) symbolized expectations under the Boltzmann distribution of Eq. 2.
One has

1. An ordered phase for T' < T,: At low temperatures, the system orders and
one has spontaneous magnetization m # 0. G.(r) decays exponentially with
distance r = |r; — r;| as

Go(r) ~e 8 r - . (4)

Here, £ is the correlation length and r; is the position of spin s;.
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Fig.2: Visualization of the mapping from spin configuration s; to the corre-
sponding AF; including the resulting histogram of predictions. The presented
snapshots were generated for L = 256 and ¢ = 0.6 at the pseudo critical point.

2. Critical phase at T' = T,: At the critical point, fluctuations are correlated
across all distances, and no length scale dominates. Self-similar structures
emerge, and the spin clusters become fractal. Furthermore, G.(r) decays
algebraically

Golr) ~ rin r = o0, (5)
with the critical exponent 7.

3. Disordered phase with T' > T,.: Above T, the system is disordered and in
a paramagnetic state. The correlation function decays again exponentially.
As the correlations vanish rapidly at large distances, there is no long-range
order in this phase.

If one approaches the critical temperature from either side, the correlation length
& diverges as
E~NT-T™", T—T,, (6)

with the critical exponent v. This means, that spins are correlated over large
distances in a nontrivial way, posing an ideal way to construct appropriate con-
figurations for our benchmark.

The critical exponents 1 and v are universal, i.e., they do not depend on
microscopic details of systems, and are instead determined by dimensionality d,
symmetry of order parameters n, conservation laws, and range of interactions.

Long-Range Ising Model For the LRIM we consider in this work, we place
the spins on a regular grid in d = 2 spatial dimensions. The spins interaction

with power-law potential
1

[rj — |+’

Jij = (7)
where o controls the long-rangedness of the interactions. The value of o not only
controls the long-rangedness of the interaction, but also changes the equilibrium
and nonequilibrium behavior of the model. This is reflected in different values
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for the critical exponents, for example n for the correlation function and v for
the correlation length:

1. For ¢ < 1, one has mean-field behavior with the corresponding critical ex-
ponents [25].

2. For 1 < 0 < 0y, the critical exponents depend on o.

3. For o« < o, one is in the short-range (nearest-neighbor) universality class.

The value of oy is discussed in the literature [40,1,44], with ox = 2 [20] or
ox = 1.75 [42] being the most likely candidates.

For nonequilibrium simulations investigating phase-ordering kinetics and re-
lated properties [8], the nonequilibrium exponents show non-trivial dependence
on o, with o = 1 being the point of interest in most cases for d = 2 [7, 13,12, 34,
35].

Simulation To simulate the LRIM, a Markov Chain Monte Carlo simu-
lation can be set up by proposing a random single spin flip {...,s;,...} —
{...,=si,...}, and accepting the proposal according to the Metropolis criterion
with probability

p=min (1,exp (—2AF;/kpT)), with AE; = s; Z 553 (8)

J

Although there exist cluster algorithms that decorrelate quickly in equilibrium [31,
22,21], and recent advances for single spin flip simulations [36] that avoid exact
calculations of AFE; by exploiting the way Monte Carlo simulations are con-
structed, the calculation of AF; is at the heart of many other models and tasks
where certain properties cannot be exploited [26].

To obtain our samples from the target distribution for the dataset, we imple-
ment the single cluster variant for the LRIM as presented in [21]. We make sure
to equilibrate the simulation before measuring, and write out data only after
sufficient decorrelation from the previous sample.

4 LRIM Graph Benchmark

In this section, we outline how exactly we make use of the previously discussed
physical spin model to construct our LRIM Graph Benchmark. The main goal is
to directly translate the system into an appropriate graph-based task formula-
tion while preserving its simplicity and controllable mechanisms for long-range
interactions. We focus on the d = 2 LRIM on a grid lattice and want to predict
AFE; energies present throughout the system. Each LRIM instance gives us a
graph G with L x L nodes that are arranged in a 2D periodic grid. Note that the
topology is shared among all instances and that each node is connected to its
4 nearest neighbors. Moreover, each node has a single feature, representing the
physical spin {—1,+1}. We formulate the energy prediction as a node regression
task, where each node v has to predict its energy change AF € R. A visual
illustration of how the graph task is constructed is shown in Figure 3.
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Fig.3: On the left how an Ising configuration is represented as an attributed
graph in the LRIM Graph Benchmark. On the right a depiction of four config-
urations and their associated AFE from the LRIM-M dataset.

Table 1: Dataset specifications for the LRIM-S, LRIM-M, LRIM-L, LRIM-XL,
and LRIM-XXL versions of the LRIM benchmark.

Property LRIM-S LRIM-M LRIM-L LRIM-XL LRIM-XXL
Number of Nodes 256 1024 4096 16384 65536
Number of Edges 512 2048 8192 32768 131°072
Diameter 16 32 64 128 256

Avg. Shortest Path 8.03 16.01 32.01 64.00 128.00

Avg. Effective Resistance 0.49 0.60 0.71 0.82 0.93

Node Degree 4 4 4 4 4

o easy 1.6 1.6 1.6 1.6 1.6

o hard 0.6 0.6 0.6 0.6 0.6
Number of Graphs 1000 1000 1000 1000 1000

Node Features 1 1 1 1 1

Edge Features

Task Node Prediction Node Prediction Node Prediction Node Prediction Node Prediction
Prediction Target AE € R AE € R AE € R AE €R AE €R
Performance Metric logMSE logMSE logMSE logMSE logMSE

We want to precisely evaluate the long-range capabilities with the LRIM
benchmark and therefore provide datasets across different scales and difficulty
levels. The benchmark comprises five dataset sizes from LRIM-S (256 nodes) to
LRIM-XXL (65,536 nodes). Each dataset variant contains 1,000 distinct graph
instances. To vary the long-range interaction strength, we generate two vari-
ants for each system size L (graph size). The "hard" variant uses ¢ = 0.6,
creating stronger long-range dependencies that require models to aggregate in-
formation from more distant nodes. The "easy" variant sets o = 1.6. Data gen-
eration follows the outlined Monte Carlo sampling protocol. For each system size
L and o value, we first determine the appropriate pseudo-critical temperature
T.(c, L) where the system exhibits longest correlation lengths, thereby creating
the most interesting configurations. We then sample datapoints at ten temper-
atures equally spaced between 0.957, and 1.057,, capturing the critical region
where long-range correlations are present. Each configuration is sampled from a
simulation which is first equilibrated followed by a decorrelation phase between
two subsequent samples to ensure statistical independence between them. Then,
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we split the dataset into 80/10/10 for training, validation, and testing. Complete
graph and dataset statistics for all variants are provided in Table 1.

We want to highlight the computational efficiency aspect when evaluating
methods for their long-range capabilities, as improvement often comes at signifi-
cant computational cost or techniques. To ensure rigorous and fair comparisons,
we ask that methods report their runtime complexity for their computa-
tional budget (e.g. O(L - E) for standard MPNNs with L layers and E edges)
and any precomputation costs, including creation of additional structure
and feature preprocessing. We put little restriction on what can be used on the
benchmark on purpose, encouraging novel methods. However, all modifications
and their computational overhead must be transparently documented.

5 Evaluation

5.1 Long-Range Analysis

In this section, we aim to demonstrate why our proposed LRIM benchmark
is suitable for testing long-range interactions. Because the dataset consists of
synthetic simulation data, we have complete knowledge about the underlying
generation process as well as full control over the fundamental parameters. This
allows us to study the intrinsic properties and determine whether long-range
interactions are required independently of any specific proposed model baseline.
We consider three different perspectives: how the simulation accuracy degrades
when restricted to local neighborhoods, what limitations WL imposes on the
realized dataset, and theoretical error bounds on the worst case. Together, these
analyses provide strong evidence that our benchmark captures tasks that require
long-range reasoning capabilities.

First, we analyze how prediction accuracy degrades when information is re-
stricted to local neighborhoods only. We construct an "oracle" predictor that has
access to the r-hop neighborhoods of each target node and predicts AE based
on the correct contributions within the r-hop neighborhood. Although this is
not a strict upper bound on achievable performance, as a model could pick up
correlated information beyond the r-hop neighborhood in the data, we expect
this to be close to the best possible predictor.

We vary the parameter r from 1 to the diameter of the graph on a selection
of different datasets, illustrated in Figure 4. These datasets differ in their chosen
o € {0.6,1.6}, where a smaller o corresponds to stronger long-range interactions,
and system sizes L € {16 x 16,32 x 32}. These results show that task difficulty
can be precisely controlled by both the parameter ¢ and the size of the system
L. We observe that lower ¢ values consistently require larger neighborhoods
to achieve the same prediction accuracy, since the ¢ = 0.6 curves lie above the
o = 1.6 curves across system sizes, indicative of stronger long-range interactions.
Furthermore, for the same o larger system sizes increase task difficulty, supported
by the L = 32 curves lying above the L = 16 curves. The prediction error decays
smoothly as the neighborhood size increases from local to global, showing that
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Fig. 4: LogMSE of oracle predictions restricted to the r-hop neighborhood. Re-
sults show that the task difficulty can be controlled and increased by both smaller
o values and larger system sizes as they require larger neighborhoods to achieve
the same prediction accuracy. Therefore, to achieve low prediction error requires
to account for long-range interactions across substantial fractions of the entire
graph. The right side depicts the behavior over the full system size, whereas on
the left only the first 10 hops are shown.

incorporating information from more distant nodes consistently improves the
prediction accuracy. Crucially, this analysis reveals that achieving high accuracy
requires considering interactions across substantial fractions of the entire graph.

Next, we discuss how easy it is for MPNNs to fit the instantiated datasets.
The Weissfeiler-Leman (WL) [29] test provides a theoretical framework to un-
derstand the expressivity limitations of message-passing neural networks. Since
standard MPNNs cannot distinguish between nodes that have identical WL la-
bels, nodes within the same WL equivalence class must predict the same outputs.
We compute 1-WL labels for all nodes in our datasets up to depth k, creating
equivalence classes of nodes that are indistinguishable to k-layer MPNNs. For
each equivalence class, we measure the range of AE values between the nodes.
Figure 5 shows the maximum range among all equivalent classes depending on
the size of the considered neighborhood. As seen in Figure 5, the maximum range
is not negligible initially, but decreases as the neighborhood increases. This exem-
plifies two important insights: First, there are nodes with similar neighborhoods
that have very different prediction targets in our datasets. This is desirable as it
requires information beyond the immediate neighbors to distinguish these cases.
As a consequence, there is an inherent drive towards an increased receptive field,
which is also necessary to capture long-range dependencies, in order to uniquely
shatter the equivalence classes. Second, the curve drops off faster than the analy-
sis of the oracle predictor. That is, because of finite data, there exists a potential
pitfall to approximate the true prediction with fewer than the minimum required
number of layers. However, it is crucial to note that this analysis does not provide
conclusions about how well models can generalize beyond the training data. In
fact, we expect the number of layers to be necessary to closely follow the oracle
predictor. However, we should be aware of this discrepancy between the number
of layers required for (over)fitting and generalizing.
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Fig. 5: Maximum range of AFE values among nodes sharing the same 1-WL label,
plotted as a function of number of hops. Results show that WL equivalence
classes initially contain nodes with very different prediction targets, requiring
larger receptive fields to distinguish them. The faster decay compared to the
oracle predictor (Figure 4) indicates potential overfitting with finite data, though
generalization likely requires distances closer to the oracle.

Finally, we provide a theoretical argument that underscores the fundamental
necessity of long-range information for the best performance of the task. We
establish a lower bound on the worst-case error that any method restricted to
local neighborhoods must exhibit by not considering the rest of the graph.

Lemma 1. Let fy be a model that predicts AE for a given node v on an instance
X with a periodic grid graph G of size N = n x n with diameter D = n. If
fo only considers the spins of nodes within radius v < D, then there exists a

configuration X' where fo(X), = fo(X')y but |Y,) — fo(X')y| > n"°.

The idea is that we can create several instances that share the same local neigh-
borhood, but the spins that were not taken into account can create a range of
possible AE values. Therefore, no predictor that only considers the local infor-
mation can have a maximum error significantly below that range.

5.2 Empirical Evaluation

To see how current graph learning approaches perform on our proposed bench-
mark, we evaluate three common architectures GIN [50], GCN [27], and Gat-
edGCN [9] on the hard variants of our LRIM datasets. Moreover, we add an
MLP baseline, which predicts only based on the individual node feature. Due
to computational constraints, we focus our evaluation on the S - XL dataset
sizes, omitting the computationally intensive XXL variant. We report the mean
logMSE in Table 2 with standard deviations over 3 runs. Complete hyperpa-
rameter configurations for each architecture are provided in the Appendix. Per-
formance consistently worsens as the size of the graph increases from LRIM-S
to LRIM-XL, confirming the increased difficulty of larger datasets. All three
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Table 2: We report the log MSE of different baselines on the hard LRIM bench-

mark variant across different dataset sizes, including computational complexity

analysis. The number of edges E corresponds to 4N in our datasets.
Preprocessing Computation LRIM-S-hard LRIM-M-hard LRIM-L-hard LRIM-XL-hard

MLP - O(N) 1.363 &£ 0.000 1.353 £ 0.001 1.339 £ 0.001 1.326 % 0.001
GIN - O(L-FE) 0.630 & 0.005 0.662 £ 0.00s3 0.705 £ 0.007 0.714 £ 0.005
GCN - O(L-E) 0.596 % 0.001 0.641 % 0.002  0.682 &£ 0.001 0.693 % 0.001
GatedGCN - O(L-E) 0.582 =+ 0.003 0.621 £ 0.001  0.654 £ 0.001 0.667 =% o0.001

MPNNSs achieve comparable performance with a slight edge by the GatedGCN
architecture. This suggests that the challenge might not be due to the specific
architecture, but in the challenges and limitations of local message-passing when
used for long-range tasks.

To better understand how performance relates to the size of the receptive
field, we perform an ablation study of the number of message-passing layers us-
ing the GIN architecture. Figure 6 shows the performance from 2 to 20 layers.
Note that the dataset has a diameter of 16, therefore, we would expect im-
provement up to that point. We observe that performance consistently improves
with increased depth. However, it plateaus around 8 to 12 layers, well before
the diameter of 16. However, there is a significant gap between the empirically
achieved performance of these message-passing based models and the oracle pre-
dictor. This might be due in part to the limited size of the current dataset ver-
sion, although preliminary investigations with more data yielded similar results.
However, it hints at known phenomena, such as computational bottlenecks, and
requires further investigation. However, such a steep drop off is surprising and is
exactly the kind of insight we hope to uncover with the LRIM Graph Benchmark
as a new valuable tool towards developing more capable long-range techniques
for graph learning.

6 Limitations

Our proposed LRIM benchmark is fundamentally a synthetic dataset with a well-
understood mechanism, and as such it has limited direct real-world applicability.
Its primary purpose and main advantage is to provide an understandable and
controllable framework to assess long-range capabilities rather than to solve an
open real-world problem. As such, we do not intend LRIM as a replacement for
real-world benchmarks, but rather as a complementary tool for advancing the
study of long-range interactions for the domain of graph learning. Furthermore,
our current benchmark is limited to regular lattice structures, which may not
capture the diverse topological patterns encountered in general graphs. Future
extensions could incorporate other structured graph types, but this would require
careful consideration of how to properly obtain appropriate simulated data and
the accompanied long-range analysis. Finally, empirical performance on LRIM
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Fig.6: LogMSE performance of GIN architecture depending on number of
message-passing layers on LRIM-S-hard dataset. For each number of rounds
a new model is trained and results are averaged over three seeds. Performance
improves with increased depth but plateaus around 8-12 layers, well before reach-
ing the graph diameter. Noteably, there is a significant performance gap between
GIN performance and the simulation oracle.

may not translate directly to real-world tasks, as practical applications involve
additional complexities beyond pure modeling of long-range interactions. The
benchmark value lies in its ability to isolate and systematically evaluate this
single but crucial capability as one component of their overall effectiveness.

7 Conclusion

Using current graph learning benchmarks, it is difficult to properly isolate and
assess the ability to capture long-range dependencies. Performance is usually
argued through empirical evidence, although it is often unclear to what ex-
tent tasks depend on or require long-range information. We introduce the Long-
Range Ising Model (LRIM) Graph Benchmark, a physics-grounded framework
based on the Ising model that provides controllable and provable long-range
dependencies. This allows us to precisely control and vary the hardness of the
task across datasets that scale from 256 to 65k nodes. In addition, we provide
model-agnostic evidence through which LRIM tasks genuinely require long-range
reasoning, with oracle prediction degrading when information is restricted to lo-
cal neighborhoods. Our empirical evaluation reveals large gaps between current
methods and oracle performance, highlighting fundamental limitations in exist-
ing graph learning approaches when confronted with provably long-range tasks.
This benchmark establishes a foundation for developing, properly evaluating,
and advance our understanding of what architectural innovations are needed to
tackle long-range dependency modeling in graph-structured data.
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Dataset

The Diameter D of a graph G as the maximum shortest hop distance between
any two nodes in the graph. For a periodic grid graph of size N, the distances
can be calculated using the manhattan distance and the diameter is v/ N.

D= max d(u,v)
u,veV(G)

The average shortest path of a graph is the average shortest hop distance

between two nodes in the graph. For a periodic grid graph of size N = n - n it is
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. n3
gliven as m

SP = Z Z d(u,v)

uEV (@) veV(G),v#u

N Z d(u,vo) topology of all nodes is the same
veV(G)
! > min{ } + min{ } hatten dist
= min{ug,n — uz } + min{u,,n — u manhatten distance
veV(G)

)2 Z minf{u,,n — u,} symmetry and linearity of coordinates

UGV(G)
V-1 2n Z min{i,n — i} repeated summation of each row

%
= 2n 2 )
(N-1) ;

- (N1_1)2"(g(g“)*g)

n3

2(n?—1)

The effective resistance was calculated using the networkx implementation
following the Kirchhoff index[18] and normalized by the number of edges.

B Evaluation

Lemma 2. Let fy be a model that predicts AE for a given node v on an instance
X with a periodic grid graph G of size N = n x n with diameter D = n. If
fo only considers the spins of nodes within radius r < D, then there exists a
configuration X' where fo(X), = fo(X')y but |V, — fo(X')y| > n"°.

Proof. We construct two candidate instances X7, X5, which have the exact same
spins as X within radius 7 and are all —1, respectively +1 outside of that. The



LRIM Graph Benchmark 17

error of any prediction will then be at least §|Y/, — Yy |.

Yl"v — Y2/7v = Z 55/17u37/1,vd(u7 v)_(2+”) — Z x'27u$’27vd(u, v)~ 2+ def. of AE
ueG ueG
= Y b du) T — N g at d(u,v) )
weG,d(u,v)>r weG,d(u,v)>r

= Z (‘rll,u - x/Z,u)mll,vd(uav)_(2+0)
weG,d(u,v)>r

=22, Z d(u,v)~ )
uwe€G,d(u,v)>r

1
§|Y1/,v - Y2/,v| = Z d(u’ U)_(2+U)
w€G,d(u,v)>r
1 (2+0) . 72
> (- -
>n? r<n

C Empirical Evaluation

Model selection and hyperparameter optimization are performed exclusively on
LRIM-S, with the best configurations then applied to larger datasets. All models
were trained using the MSE loss for 500 epochs using the AdamW optimizer with
weight decay of le-5 using a cosine scheduler with 5 epochs warmup and gradient
clipping (12 norm of 1). Moreover, the MPNNs use a residual connection between
layers, a linear encoder as well as a two layer MLP for readout.

Table 3: Hyperparameter configurations for the best performing GNN architec-
tures. Bold values indicate the optimal setting for each architecture.

Hyperparameter gatedgcnconv ~ gcnconv ginconv
base_Ir {0.0001, 0.001} {0.0001, 0.001} {0.0001, 0.001}
batch _size {64, 128} {64, 128} {64, 128}
batchnorm {False, True} {False, True} {False, True}
dropout {0.0, 0.1, 0.2} {0.0, 0.1, 0.2} {0.0, 0.1, 0.2}
dim_ inner (32, 64, 128} {32, 64, 128} {32, 64, 128}

layers mp {5, 10} {5, 10} {5, 10}




