
RuleGNNs: A Rule Based Approach for Learning
on Graphs⋆

Florian Seiffarth[0009−0004−5251−0894]

University of Bonn, Friedrich-Hirzebruch-Allee 8, 53113 Bonn, Germany
seiffarth@cs.uni-bonn.de

Abstract. A common problem of classical graph neural networks is
their limitation regarding long range dependencies, varying graph sizes,
restricted expressive power and their lack of interpretability. To overcome
these limitations, we propose a new type of graph neural networks called
RuleGNNs. The advantage of RuleGNNs is that their architecture is
dynamic and depends on the input graphs. More precisely, their archi-
tecture can be designed by formal rules, e.g., using expert knowledge.
We prove that RuleGNNs are by definition permutation invariant, i.e.,
the order of the nodes in the input graph does not affect the output.
Moreover, their distinguishing power depends on the chosen rules and can
be adapted to the specific problem. Our experiments show that the pre-
dictive performance of RuleGNNs is comparable to state-of-the-art graph
classification algorithms using simple rules based on Weisfeiler-Leman
labeling and pattern counting. In addition, we show that RuleGNNs give
interpretable results by visualizing the learned weights and biases. Finally,
we introduce new synthetic benchmark graph datasets to outline the
strengths of RuleGNNs compared to ordinary graph neural networks.

1 Introduction

The message passing paradigm [10] is one of the most successful approaches for
classifying graphs. Information is aggregated over the neighborhood of a node
and the node embeddings are updated based on this information. Nevertheless,
the paradigm has some limitations. Graph neural networks tend to over-smooth
the node embeddings, i.e., the embeddings of nodes in a graph become more
similar with increasing number of layers [15]. Thus, long range dependencies in a
graph are hard to capture. If the graph neural network is based on pure message
passing, its distinguishing power is restricted to the 1-WL test [17]. Another
problem is the interpretability of the model because of the heterogeneity of the
data. By proposing a new type of dynamic neural network layer called rule based
layer in this work we aim to overcome these limitations. The main idea is to use
formal rules that determine the positions of the weights in the weight matrix
and the bias terms. In difference to ordinary network layers we consider a set
Θ of learnable parameters instead of fixed weight matrices. We construct the

⋆ The long version of this paper is available at https://arxiv.org/abs/2406.09954

https://arxiv.org/abs/2406.09954

2 F. Seiffarth

G
ra
ph

La
be

l:
1

All Weights Top 10 Weights Top 3 Weights

G
ra
ph

La
be

l:
1

G
ra
ph

La
be

l:
1

1

(a) DHFR

G
ra
ph

La
be

l:
0

All Weights Top 10 Weights Top 3 Weights

G
ra
ph

La
be

l:
0

G
ra
ph

La
be

l:
1

1

(b) IMDB-BINARY

Fig. 1: Visualization of the learned parameters of the best RuleGNN model on
DHFR (a) and IMDB-BINARY (b) for three different random graphs from the
test set. The label of the graph is given on the left side of the figure. Positive
weights are denoted by red arrows and negative weights by blue arrows. The
thickness and color corresponds to the absolute value of the weight. The size of
the nodes corresponds to the bias values. The second to fourth columns of (a)
resp. (b) show all, 10 and the 3 largest positive and negative weights.

weight matrices and bias terms depending on the input sample using learnable
parameters from Θ. More precisely, each learnable parameter in Θ is associated
with a specific relation between an input and output feature of a layer increasing
the interpretability of the model. As an example consider Figure 1 where each
input and output feature corresponds to a specific node in the graph. The input
samples are (a) molecule graphs resp. (b) snippets of social networks and the
task is to predict the graph class. Each colored arrow in the figure corresponds to
a parameter from Θ, i.e., a specific relation between two atoms in the molecules
or two nodes in the social network. Considering only the 3 parameters with the
largest absolute values, see the last column of (a) resp. (b), we see that our
approach has learned to propagate information from outer atoms to the rings
respectively from the nodes to the “important” nodes of the social network. This
example shows several advantages of our approach: (1) the architecture is very
flexible compared to classical architectures and allows to deal with arbitrary input
dimensions, (2) messages can pass over arbitrary distances in one layer, and (3)
the learned parameters and hence also the models are interpretable and can be
used to extract new knowledge from the data or to improve existing rules.

In this work we introduce RuleGNNs, a new type of graph neural networks,
that are based on concatenations of rule based layers. Considering various real-
world graph datasets, we demonstrate that RuleGNNs are competitive with state-
of-the-art graph neural networks and other graph classification methods. Using
synthetic graph datasets we show that “expert knowledge” is easily integrable
into our neural network architecture and leads to better classification results.

RuleGNNs 3

The rest of the paper is structured as follows. In Section 2 we discuss related
work. In Section 3 we introduce the concept of rule based layers and show how
they can be used to define RuleGNNs. In Section 4 we present our experiments
and results. Finally, in Section 5 we conclude the paper.

2 Related Work

Graph neural networks based on the message passing paradigm [10] have been
successfully applied to graph classification [14,11,26,27]. The limitations men-
tioned in the introduction are addressed by various recent algorithms. Using
k-hop approaches aggregating information over long distances has been con-
sidered [1,19]. To overcome the limitations of 1-WL test recent algorithms use
additional information like subgraph structures or topological information to
improve the performance [2,3,4,25] In [30] the authors show that graph neural
networks can learn chemical rules like the ortho-para rule for molecules which
goes in the direction of interpretability. To increase the interpretability and
explainability of graph neural networks there exist different approaches [28,20].
Moreover, also dynamic approaches are considered in the literature [24].

In contrast to these approaches, we provide a simple and general scheme to
overcome different limitations of GNNs at once. In fact, we are not aware of any
other approach that is able to dynamically adjust the architecture for each input
sample based on additional information using formal rules. Moreover, rule based
layers are easily integrable into existing architectures and can be extended to
other tasks like node classification and even to other domains, e.g., images [22].

3 Rule based layers and RuleGNNs

In this section we first present a new type of neural network layer called ruled based
layer that gives rise to a new type of graph neural networks called RuleGNNs.
One of the main advantages of RuleGNNs is that their dynamic neural network
architecture is freely configurable using almost arbitrary formal rules. We first
present the basic notions and the definition of a rule based layer followed by the
definition of RuleGNNs. An example based on molecule graphs to illustrate the
concept of RuleGNNs is given in Appendix B.

3.1 Preliminaries

For some n ∈ N we denote by [n] the set {1, . . . , n}. A graph is a pair G = (V,E)
with V denoting the set of nodes of G and E ⊆ {{i, j} | i, j ∈ V } the set of edges.
All graphs are undirected and do not contain self-loops or parallel edges. In case
that it is clear from the context we omit G and only use V and E. The distance
between two nodes i, j ∈ V in a graph, i.e., the length of the shortest path between
i and j, is denoted by d(i, j). A labeled graph is a graph G = (V,E, l) equipped
with a function l : V → L that assigns to each node a label from the set L ⊆ N.

4 F. Seiffarth

In this paper the input samples corresponding to a graph G = (V,E) are always
vectors of length equal to |V |. In particular, the input vectors can be interpreted
as signals over the graph and each dimension of the input vector corresponds
to the one-dimensional input signal of a graph node. A rule based graph neural
network (RuleGNN) is a function f(−, Θ,R) : R∗ −→ R∗ depending on a set
of learnable parameters Θ and formal rules R. The definition of rules is given
in (2). Informally, a rule R ∈ R is a function that determines the distribution
of the weights in the weight matrix or the bias term of a layer certain layer of
f . The notation ∗ in the domain and codomain of f indicates that the input
and output can be of arbitrary dimension. As usual f is a concatenation of sub-
functions f1, . . . , f l called the layers. More precisely, the i-th layer is a function
f i(−, Θi,Ri) : R∗ −→ R∗ where Θi is a subset of the learnable parameters Θ
and Ri is an element of the ruleset R. The input data is a triple (D,L, I) where
D = {x1 . . . , xk} is the set of input samples or input signals with xi ∈ R|V | for
the corresponding graph G = (V,E). The labels are denoted by L = (y1 . . . , yk)
with yi ∈ R∗ and I is some additional information known about D, e.g., the
graph structure, node or edge labels or the importance of certain neighborhoods.
We assume that I can be used to derive a meaningful set of rules R.

3.2 Rule Based Layer

In this section we will give a formal definition of a rule based layer. Let
f i(−, Θi,Ri) : R∗ −→ R∗ be the i-th layer of f . For simplicity, we assume
i = 1 and omit the indices, i.e., we write f := f i, Θ := Θi and R := Ri. Let
x ∈ D with x ∈ Rn be some input signal of a graph G = (V,E) with |V | = n.
Then f(−, Θ,R) : Rn −→ Rm for n,m ∈ N is given by

f(x,Θ,R) = σ(WRW (x) · x+ bRb(x)) . (1)

Here σ denotes an arbitrary activation function andWRW (x) ∈ Rm×n rsp. bRb(x) ∈
Rm is some weight matrix rsp. bias term depending on the input vector x and the
rule R. The set Θ := {w1, . . . , wN , b1, . . . , bM} consists of all possible learnable
parameters of the layer. The parameters {w1, . . . , wN} are possible entries of
the weight matrix while {b1, . . . , bM} are possible entries of the bias vector. The
key point here is that the rule R determines the choices and the positions of
the weights from Θ in the weight matrix WRW (x) and the bias vector bRb(x)

depending on the input signal x. In particular, not all learnable parameters
must be used in the weight matrix and the bias vector for some input sample
x. In contrast to ordinary neural network layers the weight matrix and the bias
vector are not fixed but functions of the input signal x. Moreover, for two signals
x, y ∈ D, e.g., x ∈ Rn and y ∈ Rk with n ≠ k corresponding to graphs of different
sizes the weight matrices WRW (x) and WRW (y) also have different dimensions
and the learnable parameters can be in totally different positions in the weight
matrix. Given the set of learnable parameters Θ := {w1, . . . , wN , b1, . . . , bM}, for
each input signal x ∈ Rn each rule R induces two rule functions

RuleGNNs 5

RW (x) : [m]× [n] −→ {0} ∪ [N] and Rb(x) : [m] −→ {0} ∪ [M] (2)

where m ∈ N is the output dimension of the layer that can also depend on x.
For simplicity, we assume that matrix and vector indices start at 1 and not at 0.
Using the associated rule functions (2) we construct the weight matrix resp. bias
vector by defining the entry (i, j) ∈ Rm×n in the i-th row and the j-th column
of the weight matrix WR(x) ∈ Rm×n via

WRW (x)(i, j) :=

{
0 if RW (x)(i, j) = 0

wRW (x)(i,j) o.w.
(3)

and the entry at position k in the bias vector bRb(x) ∈ Rm by

bRb(x)(k) :=

{
0 if Rb(x)(k) = 0

bRb(x)(k) o.w.
. (4)

Hence, an entry of the weight matrix or the bias vector is zero if the value of
the rule function is zero, otherwise the entry is the learnable parameter from the
set Θ and the index is given by the rule function. More precisely, the rule controls
the connection between the i-th input and the j-th output feature in the weight
matrix. If m = n, the multiplication of the weight matrix with the input vector
can be interpreted as a special case of signal processing with learnable parameters.
Note that in contrast to ordinary message passing the signal processing is not
restricted to the neighbors of a node but can be done over the whole graph in
one layer only depending on the rule R. The definition in (2) allows arbitrary
rule functions. Of course, not all valid functions are useful. In case of graphs
only such rule functions are of interest that are equivariant resp. invariant under
node permutations as there is no canonical order of graph nodes. Thus, in the
following section we will present a construction instruction for an interesting
subclass of equivariant rule functions for graphs.

3.3 Graph Rules

Note that for m = n = |V | the rule functions as defined in (2) can be interpreted
as a mapping from node pairs (i, j) ∈ V × V (RW) or nodes i ∈ V (Rb) to 0 or
the index of the learnable parameter in Θ. Two different node pairs (i, j) and
(k, l) should map to the same integer if and only they “behave similar” in the
graph. Our starting point for a general scheme to define rule functions for graphs
is a labeling function l : V → L. In case of molecule graphs take for example the
atom labels as node labels, see Appendix B for an example. For unlabeled graphs
it is possible to use the degree of a node. Moreover, we use a property function
p : V × V → 0 ∪ N that defines a relation between two nodes i, j ∈ V in a graph.
Examples are the distance between two nodes, the type of edge connecting the
nodes or the information that i and j are in one circle or not. In this way we

6 F. Seiffarth

assign a triple t(i, j) = (l(i), l(j), p(i, j)) to each pair of nodes (i, j). Wit this
preliminary work we can define RW and Rb from (2) as follows. We recall that
the output of RW maps each pair of nodes to some integer (index of the weight)
or zero (no connection). If a certain property is not fulfilled, e.g., if the distance
between two nodes is too large or the type of the edge is invalid there should be
no connection between the nodes. Thus, for D ⊆ 0 ∪ N being the set of all valid
values for p values we require RW (i, j) = 0 if p(i, j) /∈ D. Moreover, we require
RW (i, j) = RW (k, l) if and only if t(i, j) = t(k, l) and p(i, j) = p(k, l) ∈ D. For
the bias term we require that Rb maps each node to zero or some integer and
two nodes i and j to the same integer if and only if l(i) = l(j). Besides these
requirements the exact value of the integer is not important as it is only the
index of the weight in the set of learnable parameters. Of course in practice it is
of advantage to use consecutive integers starting at 1 for the indices.

Proposition 1 Let f(−, Θ,R) be a graph rule based layer and x ∈ R|V | the
input signal corresponding to a graph G = (V,E) Then for every permutation π
of the node order of G (permutation of the entries of x) it holds f(π(x), Θ,R) =
π(f(x,Θ,R)), i.e., f is permutation equivariant.

In particular, Proposition 1 shows that each l and p as defined above gives rise to
a permutation equivariant rule based layer. Thus, finding a meaningful rule for
graphs reduces to finding a meaningful labeling function l and property function
p. In the following we focus on three different rule based layers that are based on
well-known graph labeling functions.

Weisfeiler-Leman Layer Recent research has shown that Weisfeiler-Leman label-
ing is a powerful tool for graph classification [23,17,3,25]. Thus, we propose to
use 1-Weisfeiler-Leman labels of iteration k as one option for l. The 1-Weisfeiler-
Leman algorithm assigns in the k-th iteration to each node of a graph a label based
on the structure of its local k-hop neighborhood, see [23] for the details1. For p we
use the distance between two nodes, i.e., p ≡ d and D ⊂ 0 ∪ N is the set of valid
distances. We denote the induced rule by RWLk,D . For computational reasons in
the experiments we restrict the maximum number of different Weisfeiler-Leman
labels by L. We relabel the most frequent L− 1 labels to 1, . . . , L− 1 and set all
others to L. The corresponding layer is denoted by fWLk,D,L

.

Pattern Counting Layer Beyond labeling nodes via the Weisfeiler-Leman al-
gorithm, it is a common approach to use subgraph isomorphism counting to
distinguish graphs [4]. This is in fact necessary as the 1-Weisfeiler-Leman al-
gorithm is not able to distinguish some types of graphs, for example circular
skip link graphs [5] and strongly regular graphs [3,4]. Thus, we propose a node
labeling function l based on pattern counting. The function p is the same as
for the Weisfeiler-Leman layer. In general, subgraph isomorphism counting is a
hard problem [6], but for the real-world and synthetic benchmark graph datasets

1 Usually, Weisfeiler-Leman labels are represented via strings. For our purpose the
strings are hashed to integers.

RuleGNNs 7

that are usually considered, subgraphs of size k ∈ {3, 4, 5, 6} can be enumerated
in a preprocessing step in a reasonable time, see Appendix C.2. Given a set of
patterns, say P, we compute all possible embeddings of these patterns in the
graph dataset in a preprocessing step. Then for each pattern P ∈ P and each
node i ∈ V we count how often the node i is part of an embedding of P . Using
those counts we define a labeling function l : V → L ⊆ N and two nodes i, j ∈ V
are mapped to the same label if and only if their counts are equal for all patterns
in P. Patterns that are often used in practice are small cycles, cliques, stars or
paths. We denote the corresponding rule by RPD . As for the Weisfeiler-Leman
Rule we restrict the maximum number of different labels to some number L. The
corresponding layer is denoted by fPD,L

.
The total number of learnable parameters for Weisfeiler-Leman or Pattern

counting layer is bounded by L ·L · |D| for the weight matrix and |L| for the bias.

Aggregation Layer In contrast to the above layers we assume that m = M and
n = |V |. Let l : V → L be an arbitrary labeling function, e.g., the atom labels
in molecule graphs, the degree of the nodes or the Weisfeiler-Leman labels. We
require the rule function RM

Aggr associated with the weight matrix to assign each
pair (n, i) with i ∈ V and n ∈ [M] an integer or zero based on n and l(i). In
fact, for each element of L the rule defines M different learnable parameters. The
rule function RM

Aggr associated with the bias is the identity, i.e., it represents
an ordinary bias term with M learnable parameters. The corresponding layer
is denoted by fRM

Aggr
. We use this layer as output layer because its output is a

fixed dimensional vector of size M ∈ N independent of the input size. The total
number of learnable parameters for the aggregation layer is bounded by M · |L|
for the weight matrix and M for the bias term.

Proposition 2 The aggregation layer fRM
Aggr

is permutation invariant, i.e., for

any permutation π of the nodes of G = (V,E) with corresponding input signal x
it holds fRM

Aggr
(π(x), Θ,R) = fRM

Aggr
(x,Θ,R).

3.4 Rule Graph Neural Networks (RuleGNNs)

The layers defined above are the building blocks of RuleGNNs. Each RuleGNN
is a concatenation of different rule based layers from type Weisfeiler-Leman
and Pattern Counting with different parameters followed by an Aggregation
Layer. The input of the network is a signal x ∈ R|V | corresponding to a graph
G = (V,E). We note that for simplicity we focus on one-dimensional signals but
our approach also allows multidimensional signals, i.e., x ∈ R|V |×d. The output
of the network is a vector of fixed size M ∈ N determined by the aggregation rule
where M is usually the number of classes of the graph classification task. The
output can be also used as an intermediate vectorial representation of the graph
or for regression tasks. Using Proposition 1 and Proposition 2 it follows directly
that RuleGNNs are invariant under the chosen node order of the input signal.
Note that RuleGNNs can be also used for node classification tasks by setting

8 F. Seiffarth

M = |V | or by omitting the aggregation layer. Moreover, we can show that the
expressive power of RuleGNNs is at least as powerful as the underlying labeling
function l and thus using an appropriate labeling function we can distinguish
arbitrary non-isomorphic graphs.

Theorem 1 (Expressive Power of RuleGNNs) For each non-isomorphic
graphs G and G′ it exists a RuleGNN f(−, Θ,R) that distinguishes G and G′.

4 Experiments

We evaluate the performance of RuleGNNs on different real-world and synthetic
benchmark graph dataset and compare the results to state-of-the-art algorithms.
For comparability and reproducibility of the results, we make use of the ex-
perimental setup from [9]. For each graph dataset we perform a 10-fold cross
validation, i.e., we use fixed splits of the dataset into 10 equally sized parts, and
use 9 of them for training, parameter tuning and validation 2. We then use the
model that performs best on the validation set and report the performance on the
previously unseen test set. We average three runs of the best model to decrease
random effects. The standard deviation reported in the tables is computed over
the results on the 10 folds.

Data and Competitors Selection A problem of several heavily used graph bench-
mark datasets like MUTAG or PTC [16] is that node and edge labels seems
to be more important than the graph structure itself, i.e., there is no signifi-
cant improvement over simple baselines [21]. Moreover, in case of MUTAG the
performance of the model is highly dependent on the data split because of the
small number of samples. Thus, in this work for benchmarking we choose DHFR,
Mutagenicity, NCI1, NCI109, IMDB-BINARY and IMDB-MULTI from [16] be-
cause the structure of the graphs seems to play an important role, i.e., simple
baselines [9,21] are significantly worse than more evolved algorithms. Additionally,
we consider circular skip link graphs CSL [5] and some new synthetic benchmark
graph datasets called LongRings, EvenOddRings and Snowflakes [18] to show
that RuleGNNs can overcome limitations of ordinary graph neural networks. For
more details on the datasets see Appendix C.1. For NCI1, IMDB-BINARY and
IMDB-MULTI we use the same splits as in [9] and for CSL we use the splits as
in [8] and a 5-fold cross validation. We evaluate the performance of the RuleGNNs
on these datasets and compare the results to the baselines from [9] and [21] and
the Weisfeiler-Leman subtree kernel (WL-Kernel) [23] which is one of the best
performing graph classification algorithm besides graph neural networks. For
comparison with state-of-the-art graph classification algorithms we follow [9]
and compare to DGCNN [29], GIN [27] and GraphSAGE [11]. Additionally,
we compare to the results of some recent state-of-the-art graph classification
algorithms [2,3,4,25]. For the latter we use the results from the respective papers
that are obtained using another evaluation setup.

2 See https://github.com/fseiffarth/RuleGNNCode for the data splits and the code.

https://github.com/fseiffarth/RuleGNNCode

RuleGNNs 9

We introduce the following four new synthetic benchmark graph datasets to
test the ability of graph neural networks to capture long range dependencies, to
encode expert knowledge and to distinguish graphs that are not distinguishable
by the 1-WL test.

LongRings The dataset consists of 1200 cycles of 100 nodes each and is designed
to test the ability to detect long range dependencies. Four of the cycle nodes are
labeled by 1, 2, 3, 4 and all others by 0. The distance between each pair of the
four nodes is exactly 25 or 50. The label of the graph is 0 if 1 and 2 have distance
50, 1 if 1 and 3 have distance 50 and 2 if 1 and 4 have distance 50. There are 400
graphs per class. The difficulty of the classification task is that information has
to be propagated over a long distance. Regarding RuleGNNs this is very easy as
we can define an appropriate rule.

EvenOddRings The dataset consists of 1200 cycles of 16 nodes each and is
designed to test the ability to encode expert knowledge in the neural network
architecture. The nodes in each graph are labeled from 0 to 15. The graph label
is determined by labels of the nodes that have distance 8 respectively 4 to the
node with label 0. We denote them by x resp. y, z. We have four cases: x is even
and y + z is even, x is even and y + z is odd, x is odd and y + z is even, x is odd
and y + z is odd. There are 300 graphs per class, i.e., each of the four cases. The
expert knowledge we use is that the information has to be collected from nodes
of distance 8 and 4 only.

EvenOddRingsCount The dataset consists of the same graphs as EvenOddRings
but the graph labels are different. For all nodes and their opposite node (distance
8) in the circle the sum of the labels is computed. If there are more even sums
than odd sums the graph is labeled by 0 and by 1 otherwise. There are 600 graphs
per class. The expert knowledge we use is the information that only distance 8 is
relevant.

Snowflakes The dataset consists of graphs proposed by [18] that are not distin-
guishable by the 1-WL test, see Figure 5 for an example. The dataset consists
of circles of length 3 to 12 and at each circle node a graph from M0,M1,M2 or
M3 is attached, see Figure 6 and [18] for the details. M0,M1,M2 and M3 are
non-isomorphic graphs that are not distinguishable by the 1-WL test. One node
in the circle is labeled by 1 and all other nodes are labeled by 0. The label of
the graph is determined by the graph M0,M1,M2 or M3 that is attached to the
circle node with label 1.

Experimental Settings and Resources All experiments were conducted on an AMD
Ryzen 9 7950X 16-Core Processor with 128 GB of RAM. For the competitors we
use the implementations from [9]3. For the real-world datasets we tested different
rules and combinations of the layers defined in Section 3.3. More details on the

3 See https://github.com/fseiffarth/gnn-comparison for the code.

https://github.com/fseiffarth/gnn-comparison

10 F. Seiffarth

tested hyperparameters can be found in Appendix C.3. We always use tanh for
activation and the Adam optimizer [13] with a learning rate of 0.05 (real-world
datasets) resp. 0.1 (synthetic datasets). For the real-world datasets the learning
rate was decreased by a factor of 0.5 after each 10 epochs. For the loss function
we use the cross entropy loss. All models are trained for 50 (real-world) resp. 200
(synthetic) epochs and the batch size was set to 128. We stopped the training if
the validation accuracy did not improve for 25 epochs.

4.1 Results

Real-World Datasets The results on the real-world datasets (Table 1) show
that RuleGNNs are able to outperform the state-of-the-art graph classification
algorithms in the setting of [9] even if we add all the additional label information
that RuleGNNs use to the input features of the graph neural networks (see the
(features) results in Table 1). This shows that the structural encoding of the
additional label information is crucial for the performance of the graph neural
networks and not replaceable by using additional input features. The Weisfeiler-
Leman subtree kernel [23] is the best performing graph classification algorithm on
NCI1, NCI109 and Mutagenicity but not on DHFR, IMDB-BINARY and IMDB-
MULTI. For IMDB-BINARY and IMDB-MULTI our approach performs worse
than the state-of-the-art graph classification algorithms that are not evaluated
within the same experimental setup. This can be the result of the different
evaluation setup or the fact that we do not used the best rule for these datasets.

Synthetic Datasets The results on the synthetic benchmark graph dataset (Ta-
ble 2) show that the expressive power of RuleGNNs is higher than that of the
standard message passing model. Moreover, the integration of expert knowledge
in the form of rules leads to a significant improvement in the performance of the
model. In fact, CLS and Snowflakes are not solvable by the message passing model
because they are not distinguishable by the 1-WL test. The results on LongRings
show that long range dependencies can be easily captured by RuleGNNs and also
dependencies between nodes of different distances as in case of the EvenOddRings
dataset can be easily encoded by appropriate rules.

Interpretability of RuleGNNs Each learnable parameter of RuleGNNs used for
the weight matrices can be interpreted in terms of the importance of a connection
between two nodes in a graph with respect to their labels and their shared
property (in our case the distance). That is, each model provides the relevance
of two nodes i, j in a graph with labels l(i), l(j) and distance d(i, j). In Figures 1
and 2 we see how the network has learned the importance of different connections
between nodes for different distances and labels. The weights are visualized by
arrows (thickness corresponds to the absolute value and the color to the sign).
The biases are visualized by the nodes (size corresponds to the absolute value
and the color to the sign). Figure 1 shows an example of the relevance of the
weights for graphs from the DHFR and IMDB-BINARY datasets using the best
model. We can see that in case of DHFR the RuleGNN has learned to pass

RuleGNNs 11

NCI1 NCI109 Mutagenicity DHFR IMDB-B IMDB-M

Baseline (NoG) [21] 69.2 ± 1.9 68.4 ± 2.2 74.8 ± 1.8 71.8 ± 5.3 71.9 ± 4.8 47.7 ± 4.0
WL-Kernel[23] 85.2 ± 2.3 85.0 ± 1.7 83.8 ± 2.4 83.5 ± 5.1 71.8 ± 4.5 51.9 ± 5.6

DGCNN[29] 76.4 ± 1.7 73.0 ± 2.4 77.0 ± 2.0 72.6 ± 3.1 69.2 ± 3.0 45.6 ± 3.4
DGCNN (features) 73.6 ± 1.0 72.5 ± 1.5 76.3 ± 1.2 76.1 ± 3.4 69.1 ± 3.5 45.8 ± 2.9
GraphSage[11] 76.0 ± 1.8 77.1 ± 1.8 79.8 ± 1.1 80.7 ± 4.5 68.8 ± 4.5 47.6 ± 3.5
GraphSage (features) 79.4 ± 2.2 78.6 ± 1.6 80.1 ± 1.3 82.4 ± 3.9 69.7 ± 3.1 46.6 ± 4.8
GIN[27] 80.0 ± 1.4 79.7 ± 2.0 81.9 ± 1.4 79.1 ± 4.4 71.2 ± 3.9 48.5 ± 3.3
GIN (features) 77.3 ± 1.8 77.7 ± 2.0 80.6 ± 1.3 81.8 ± 5.1 70.9 ± 3.8 48.3 ± 2.7

GSN (paper) [4] 83.5 ± 2.3 - - - 77.8 ± 3.3 54.3 ± 3.3
CIN (paper) [2] 83.6 ± 1.4 84.0 ± 1.6 - - 75.6 ± 3.7 52.7 ± 3.1
SIN (paper) [3] 82.7 ± 2.1 - - - 75.6 ± 3.2 52.4 ± 2.9
PIN (paper) [25] 85.1 ± 1.5 84.0 ± 1.5 - - 76.6 ± 2.9 -

RuleGNN 82.8 ± 2.0 83.2 ± 2.1 81.5 ± 1.3 84.3 ± 3.2 75.4 ± 3.3 52.0 ± 4.3

Table 1: Test set performance of several state-of-the-art graph classification
algorithms averaged over three different runs and 10 folds. The ± values report
the standard deviation over the 10 folds. The overall best results are colored red
and the best ones obtained for the fair comparison from [9] are in bold. The
(features) variants of the algorithms use the same information as the RuleGNN
as input features additionally to node labels. The (paper) results are taken from
the respective papers using another experimental setup.

LongRings EvenOddRings EvenOddRingsCount CSL Snowflakes

Baseline (NoG) [21] 30.17 ± 3.2 22.25 ± 3.0 47.9 ± 3.9 10.0 ± 0.0 27.3 ± 5.3
WL-Kernel [23] 100.0 ± 0.0 26.83 ± 4.2 47.8 ± 4.3 10.0 ± 0.0 27.9 ± 4.1

DGCNN [29] 29.9 ± 2.6 28.4 ± 2.5 59.1 ± 5.2 10.0 ± 0.0 26.0 ± 3.3
GraphSAGE [11] 29.8 ± 2.8 24.9 ± 2.7 51.3 ± 1.9 10.0 ± 0.0 25.0 ± 1.8
GIN [27] 32.0 ± 3.1 26.8 ± 2.5 51.0 ± 3.7 10.0 ± 0.0 24.5 ± 2.2
RuleGNN 99.0 ± 3.3 90.2 ± 7.2 100.0 ± 0.0 100.0 ± 0.0 97.9 ± 3.2

Table 2: Test set performance of several state-of-the-art graph classification
algorithms averaged over three different runs and 10 folds. The ± values report
the standard deviation over the 10 folds. The best results are highlighted in bold.

messages from the outer nodes to ring nodes. Some ring nodes seem to be more
important than others. It is an interesting open question if these connections
can be interpreted in a chemical context. In case of the IMDB-BINARY dataset
we can see that the RuleGNN has learned to pass messages to some specific
nodes. It would be interesting to further investigate if these nodes have a specific
meaning in the context of the dataset. Figure 2 shows an example of the learned
parameters for our synthetic datasets. Considering the dataset RingEvenOdd
in Figure 2b we see that in the first layer the RuleGNN passes the messages
between opposite nodes as given by the rule. In the second layer it has learned
the relevant information, i.e., to collect the information from the nodes that have
distance 4 to the node with label 0 (dark blue node). All other connections of
distance 4 have a smaller weight, i.e., are less important. For the Snowflakes
dataset Figure 2c we see that the RuleGNN has learned to distinguish between
the four different subgraphs M0,M1,M2 and M3 glued to the central circle by
looking at the learned parameters. Indeed, each subgraph from type M0,M1,M2

and M3 can be identified by the characteristics given by the learned parameters.

12 F. Seiffarth

This shows that the RuleGNN we have used for the Snowflakes dataset is more
powerful than the 1-WL test.

G
ra
ph

La
be

l:
1

Layer: 1

G
ra
ph

La
be

l:
1

G
ra
ph

La
be

l:
0

1
(a) EvenOddCount

G
ra
ph

La
be

l:
3

Layer: 1 Layer: 2

G
ra
ph

La
be

l:
2

G
ra
ph

La
be

l:
0

1
(b) EvenOddRings

G
ra
ph

La
be

l:
3

Layer: 1

G
ra
ph

La
be

l:
0

G
ra
ph

La
be

l:
3

1
(c) Snowflakes

Fig. 2: Visualization of the learned parameters for the EvenOddRingsCount (a),
EvenOddRings (b) and Snowflakes (c) dataset. The first column shows the graphs
and the colors of the nodes represent the different node labels. The other columns
show the learned weights and biases for the respective rule based layer. The
message passing weights are visualized by arrows (thicker for higher absolute
values) and the biases are visualized by the size of the node (red for positive and
blue for negative weights).

5 Concluding Remarks and Outlook

We have introduced rule based layers that dynamically arrange the learnable
parameters in the weight matrices and bias vectors according to a formal rule.
Using rule based layers for graph classification we are able to overcome some of
the limitations of classical graph neural networks such as long range dependencies,
varying graph sizes, restricted expressive power and lack of interpretability. The
flexibility of our approach using arbitrary rules to adapt the architecture to the
specific problem at hand leads to many interesting research questions. As each
learnable parameter can be related to specific nodes in a graph, the question
is if learned knowledge from one graph dataset can be transferred to another
dataset. In the experiments we tested only a few possible rules, but in fact there
are many more rules that can be used to improve the performance of RuleGNNs.
One question is how to find the best rule for a given graph dataset and if it is
possible to directly learn the rules from the data. Our proposed method is not
limited to graph classification but can be used for other tasks as well. Thus, it
would be interesting to see how rule based layers perform on other tasks such as
node classification or different data structures such as text or images.

RuleGNNs 13

References

1. Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina
Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-
order graph convolutional architectures via sparsified neighborhood mixing. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 21–29. PMLR, 2019.

2. Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F.
Montúfar, and Michael M. Bronstein. Weisfeiler and lehman go cellular: CW net-
works. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 2625–2640, 2021.

3. Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F. Montúfar,
Pietro Lió, and Michael M. Bronstein. Weisfeiler and lehman go topological: Message
passing simplicial networks. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pages 1026–1037. PMLR, 2021.

4. Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein.
Improving graph neural network expressivity via subgraph isomorphism counting.
IEEE Trans. Pattern Anal. Mach. Intell., 45(1):657–668, 2023.

5. Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the
number of variables for graph identification. Comb., 12(4):389–410, 1992.

6. Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A.
Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights,
Ohio, USA, pages 151–158. ACM, 1971.

7. Zdenek Dvorák. On recognizing graphs by numbers of homomorphisms. J. Graph
Theory, 64(4):330–342, 2010.

8. Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. J.
Mach. Learn. Res., 24:43:1–43:48, 2023.

9. Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair com-
parison of graph neural networks for graph classification. ArXiv, abs/1912.09893,
2019.

10. Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 1263–1272. PMLR, 2017.

11. William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Neural Information Processing Systems, 2017.

12. Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.
Dynamic neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell.,
44(11):7436–7456, 2022.

13. Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning

14 F. Seiffarth

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

14. Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

15. Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolu-
tional networks for semi-supervised learning. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages
3538–3545. AAAI Press, 2018.

16. Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. Tudataset: A collection of benchmark datasets for learning
with graphs. In ICML 2020 Workshop on Graph Representation Learning and
Beyond (GRL+ 2020), 2020.

17. Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-
order graph neural networks. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, pages 4602–4609. AAAI Press, 2019.

18. Harish G. Naik, Jan Polster, Raj Shekhar, Tamás Horváth, and György Turán.
Iterative graph neural network enhancement via frequent subgraph mining of
explanations, 2024.

19. Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph
neural networks. Neural Networks, 130:195–205, 2020.

20. Pablo Sánchez-Mart́ın, Kinaan Aamir Khan, and Isabel Valera. Improving the
interpretability of GNN predictions through conformal-based graph sparsification.
CoRR, abs/2404.12356, 2024.

21. Till Hendrik Schulz and Pascal Welke. On the necessity of graph kernel baselines.
2019.

22. Florian Seiffarth. Rule based learning with dynamic (graph) neural networks.
https://www.mlai.cs.uni-bonn.de/en/paper/seiffarth/rulenn.pdf 2024.

23. Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res.,
12:2539–2561, 2011.

24. Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pages 29–38. IEEE Computer Society, 2017.

25. Quang Truong and Peter Chin. Weisfeiler and lehman go paths: Learning topo-
logical features via path complexes. In Michael J. Wooldridge, Jennifer G. Dy,
and Sriraam Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
pages 15382–15391. AAAI Press, 2024.

https://www.mlai.cs.uni-bonn.de/en/paper/seiffarth/rulenn.pdf

RuleGNNs 15

26. Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio’, and Yoshua Bengio. Graph attention networks. ArXiv, abs/1710.10903, 2017.

27. Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

28. Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
Gnnexplainer: Generating explanations for graph neural networks. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 9240–9251, 2019.

29. Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end
deep learning architecture for graph classification. In Sheila A. McIlraith and
Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pages 4438–4445. AAAI Press, 2018.

30. Zhenpeng Zhou and Xiaocheng Li. Graph convolution: A high-order and adaptive
approach. arXiv: Learning, 2017.

16 F. Seiffarth

A Proofs

Proof (Proposition 1). Using the definition of rule based layers (1) we have that

π(f(x,Θ,R)) = π(σ(WRW (x) · x+ bRb(x))) .

The entries of the weight matrix and the bias term are given by the rule functions
RW and Rb, see (2), which depend on the input signal x, i.e., the node order of
the graph. Thus, by definition the permutation of the input signal π(x) permutes
the entries of the corresponding weight matrix and the bias term in the same way
compared to the original input signal x. Therefore, the result of the multiplication
of the permuted weight matrix with the permuted input signal is the same as
the permutation of the result of the multiplication of the original weight matrix
with the original input signal and it follows

π(σ(WRW (x) · x+ bRb(x))) = σ(WRW (π(x)) · π(x) + bRb(π(x))) = f(π(x), Θ,R)

which completes the proof.

Proof (Proposition 2). Using the definitions of the aggregation rule, (3) and (4)
it follows that node permutations permute the rows of the weight matrix and
thus have no effect on the bias vector. In fact, permutations of the rows of the
weight matrix do not change the result of the multiplication of the weight matrix
with the input signal. Thus, the result of the aggregation layer is invariant under
permutations of the nodes of the graph.

Proof (Theorem 1). The expressive power of the RuleGNNs is based on the
expressive power of the underlying labeling function l. Indeed, we will show that
a RuleGNN is at least as powerful as the labeling function l. Let l be a labeling
function that can distinguish G and G′ by counting the occurrences of the labels,
e.g., the (k + 1)-WL labels where k is the maximum of the treewidths of G and
G′ [7]. Now, consider the RuleGNN that consists only of the aggregation layer
fRM

Aggr
with M = 1 based on the labeling function l. Without loss of generality

we assume that each entry of the input signals x resp. y corresponding to G
resp. G′ is equal to 1. Then fRM

Aggr
(x) resp. fRM

Aggr
(y) is equal to the sum of the

learnable parameters corresponding to the labels of the nodes of G resp. G′. By
assumption l can distinguish G and G′ by counting the occurrences of the labels
and hence also the above defined RuleGNN can distinguish G and G′.

B Example: RuleGNNs for Molecule Graphs

Assume the task is to learn a property of a molecule based on its graph structure.
In this example we present a RuleGNN that is a concatenation of two very
simple rule based layers. The advantage of rule based layers and hence also
RuleGNNs is that they encode the graph structure (in this example the structure
of two molecules) directly into the neural network. Moreover, the input data

RuleGNNs 17

H

H

H

H

C

C

H

H

H

H

C

C

H

H

C

C

C

H

H

C

C

C

Fig. 3: Information propagation in a simple two layer RuleGNN based on the
molecule graphs of ethylene (left) and cyclopropenylidene (right) and the rules
RMol (5) and Rk

Aggr (6). The input signal is propagated from left to right. The
graph nodes represent the neurons of the neural network. Edges of the same color
denote shared weights in a layer.

C6 C5

H1

H2H3

H4

C3

H1

C5

C4

H2

Fig. 4: Molecule graphs of ethylene (left) and cyclopropenylidene (right). The
indices denote the order of the nodes.

can be arbitrary molecule graphs and the output is a vector of fixed size k =
2 that encodes the property of the molecule or some intermediate vectorial
representation. In this example we consider the molecule graphs of ethylene and
cyclopropenylidene given in Figure 4 together with their corresponding input
signals x ∈ R6 and y ∈ R5. The atoms of the molecules (hydrogen H and carbon
C) correspond to the nodes of a graph and the bonds to the edges. The atom labels
and the bond types (single and double) can be seen as additional information I
that is known about the input samples. The graph nodes are indexed via integers
in some arbitrary but fixed order and the atoms corresponding to the graph
nodes are given by the labeling function l : V → {H,C}.

The RuleGNN consists of two rule based layers named f1(−, Θ1,RMol)
and f2(−, Θ2,R

2
Aggr) with learnable parameters Θ1 = {w1, . . . , w6} and Θ2 =

{w′
1, . . . , w

′
4} and the following rule functions RMol and R2

Aggr. For some graph

18 F. Seiffarth

G = (V,E) and its corresponding input signal z we define RMol as follows:

RMol(z) : [|V |]× [|V |] −→ {0} ∪ [6]

(i, j) 7→



1 if i = j and l(i) = H

2 if i = j and l(i) = C

3 if (i, j) is an edge (-), l(i) = H, l(j) = C

4 if (i, j) is an edge (-),l(i) = C, l(j) = H

5 if (i, j) is an edge (-),l(i) = l(j) = C

6 if (i, j) is an edge (=),l(i) = l(j) = C

0 o.w.

(5)

For some graph G = (V,E) and its corresponding input signal z we define
RAggr as follows:

R2
Aggr(z) : [2]× [|V |] −→ {0} ∪ [4]

(i, j) 7→


i l(j) = H

i+ 2 l(j) = C

0 o.w.

(6)

Note that RMol and R2
Aggr are not restricted to the two molecules from

above but can be applied to arbitrary molecule graphs. Indeed, applying it to
molecules with atom labels different from H or C makes the rules less powerful,
i.e., it should be adapted to the type of molecules. Using the definition (3) of
weight distribution defined by the rule function we can construct the weight
matrices WRMol(x),WR2

Aggr(x)
for the ethylene graph and WRMol(y),WRAggr(y) for

the cyclopropenylidene graph as follows:

WRMol(x) =


w1 0 0 0 w3 0
0 w1 0 0 w3 0
0 0 w1 0 0 w3
0 0 0 w1 0 w3
w4 w4 0 0 w2 w5
0 0 w4 w4 w5 w2

 WR2
Aggr(x)

=
(

w′
1 w′

1 w′
1 w′

1 w′
3 w′

3

w′
2 w′

2 w′
2 w′

2 w′
4 w′

4

)

WRMol(y) =

w1 0 w3 0 0
0 w1 0 w3 0
w4 0 w2 w6 w5
0 w3 w6 w2 w5
0 0 w5 w5 w2

 WR2
Aggr(y)

=
(

w′
1 w′

1 w′
3 w′

3 w′
3

w′
2 w′

2 w′
4 w′

4 w′
4

)

Combining the two rule based layers we obtain the RuleGNN and the forward
propagation is given by σ(WRAggr(x) · σ(WRMol(x) · x)) for the ethylene graph and
σ(WRAggr(y) · σ(WRMol(y) · y)) for the cyclopropenylidene graph.

Note that the forward propagation of the layer corresponding to the rule
RMol is kind of a multiplication with a weighted adjacency matrix of the graph
where the weights of the adjacency matrix are given by the learnable parameters,

RuleGNNs 19

Dataset #Graphs #Nodes #Edges Diameter #Node Labels #Classes
max avg min max avg min max avg min

NCI1 4 110 111 29.9 3 119 32.3 2 45 11.5 0 37 2
NCI109 4 127 111 29.7 4 119 32.1 3 61 11.3 0 38 2
Mutagenicity 4 337 417 30.3 4 112 30.8 3 41 6.3 0 14 2
DHFR 756 71 42.4 20 73 44.5 21 22 14.6 8 9 2
IMDB-BINARY 1 000 136 19.8 12 1249 96.5 26 2 1.9 1 1 2
IMDB-MULTI 1 500 89 13.0 7 1467 65.9 12 2 1.5 1 1 3

Table 3: Details of the real-world datasets [16] used in the experiments.

Dataset #Graphs #Nodes #Edges Diameter #Node Labels #Classes
max avg min max avg min max avg min

LongRings 1 200 100 100.0 100 100 100.0 100 50 50.0 50 5 3
EvenOddRings 1 200 16 16.0 16 16 16.0 16 8 8.0 8 16 4
EvenOddRingsCount 1 200 16 16.0 16 16 16.0 16 8 8.0 8 16 2
CSL [5] 150 41 41.0 41 82 82.0 82 10 6.0 4 1 10
Snowflakes 1 000 180 112.5 45 300 187.5 75 18 15.5 13 2 4

Table 4: Details of the synthetic datasets used in the experiments.

see also Figure 3. In contrast to adjacency matrices the weight matrix is not
necessary symmetric. The computation graph induced by the weight matrices
exactly represent the graph structure while the edge weights are shared across the
network using the rule, see Figure 3. Note that also edge labels (e.g., atomic bonds)
can be taken into account by increasing the size of the weight set. Moreover, it is
possible to include bigger neighborhoods, i.e., all nodes reachable by k-hops. Of
course using other information of the graph (e.g., substructures (such as circles
or cliques), node degrees, connections not depicted by edges) more complicated
rules such as the Weisfeiler-Leman rule and Pattern Counting rules can be used.

C Evaluation Details

In this section we provide some additional details on the benchmark datasets
and the evaluation of the RuleGNNs.

C.1 Dataset Details

In this section we provide additional details on the datasets used in the experi-
ments. Tables 3 and 4 provide an overview of the real-world and synthetic datasets
including the number of graphs, the number of nodes, the number of edges, the
diameter, the number of node labels and the number of classes. Figure 5 shows
an example of the Snowflakes dataset and Figure 6 shows the graphs M0,M1,M2

and M3 that are part of the snowflakes dataset and not distinguishable by the
1-WL test.

C.2 Preprocessing and Training Details

Table 5 shows more details of training of RuleGNNs on the different datasets.
In particular, we see that except for the DHFR dataset we need less than 12

20 F. Seiffarth

Graph Label: 2 Graph Label: 3 Graph Label: 0 Graph Label: 3

1

Fig. 5: Example graphs from the Snowflakes dataset. The brown node in the circle
is labeled by 1 and the other nodes by 0. The label of the graph is determined
by the subgraph attached to the brown node.

M0 M1 M2 M3

1

Fig. 6: The graphs M0,M1,M2 and M3 [18] that are not distinguishable by the
1-WL test.

epochs on average to reach the best result. This shows that our approach is very
efficient and converges quickly. At the first glance the average time per epoch
seems to be very high which has two reasons. One is also mentioned in [12] that
there is a gap between the theoretical and practical runtime of dynamic neural
networks because the implementation in PyTorch is not optimized for dynamic
neural networks. The other reason is that our computations run in parallel, i.e.,
we are able to run all the three runs and 10 folds in parallel on the same machine
which produces some overhead but is more efficient than running the experiments
sequentially. As stated above the preprocessing times (Table 5) are not relevant
for the experiments as they are only needed once. The third column shows the
time needed to compute all the pairwise distances between the nodes of the graph.
The fourth column shows the time needed to compute the node labels used for
the best model. The most preprocessing time is needed for IMDB-BINARY and
IMDB-MULTI because the graphs are much denser than the other datasets. For
the synthetic datasets except for CSL and Snowflakes we do not need any label
preprocessing time as the original node labels are used.

C.3 Architecture Details

Table 6 provides an overview of the different architectures used in the experiments
that achieved the best results on the validation set. One advantage of our

RuleGNNs 21

Dataset Best Epoch Avg. Epoch (s) Preproc. Distances (s) Preproc. Labels (s) #Graphs

NCI1 8.3 ± 5.3 377.1 ± 20.7 2.0 11.9 4 110
NCI109 6.4 ± 2.9 386.7 ± 1.9 2.4 13.2 4 127
Mutagenicity 10.1 ± 4.1 575.8 ± 66.4 2.2 15.2 4 337
DHFR 24.1 ± 14.6 44.4 ± 9.0 0.7 3.1 756
IMDB-BINARY 12.3 ± 4.6 24.3 ± 0.9 0.2 206.5 1 000
IMDB-MULTI 7.7 ± 3.5 19.6 ± 1.3 0.2 195.0 1 500

LongRings 195.2 ± 15.1 0.7 ± 0.2 6.6 - 1 200
EvenOddRings 177.1 ± 15.2 1.2 ± 0.3 0.2 - 1 200
EvenOddRingsCount 200.0 ± 0.0 0.5 ± 0.1 0.1 - 1 200
CSL 50.0 ± 0.0 1.6 ± 0.0 0.1 11.8 150
Snowflakes 192.7 ± 18.9 0.5 ± 0.1 7.1 116.8 1 000

Table 5: Runtimes and preprocessing times of the different datasets used in the
experiments. All values are averaged over the best runs. The first column shows
the best epoch (highest validation accuracy), the second the average time per
epoch, the third the time needed to compute all the pairwise distances between
the nodes of the graph, the fourth the time needed to compute the node labels
used for the best model and the last the number of graphs in the dataset.

approach is that messages can be passed over long distances. Hence, except
for the EvenOddRings dataset we used only one layer and the output layer.
In case of NCI1, NCI109, Mutagenicity it turns out that the best model uses
the Weisfeiler-Leman rule with k = 2 iterations. We restricted the number of
maximum labels considered to 500 which results in 250000 learnable parameters
for the weight matrix and 500 for the bias vector. For the output layer we used
the bound of 50000 learnable parameters which was larger than the number of
different Weisfeiler-Leman labels in the second iteration. Interestingly, for NCI1
and NCI109 the best validation accuracy was achieved if considering node pairs
with distances from 1 to 10, while in case of Mutagenicity the best model uses
node pairs with distances from 1 to 3. We also tested different small patterns, e.g.,
simple cycles, but they did not improve the results. For DHFR the best model
uses simple cycles with length at most 10 as patterns for the output layer. We
also tested the Weisfeiler-Leman rule in this case but the validation accuracy was
lower. For IMDB-BINARY and IMDB-MULTI the best model uses the patterns
simple cycles with length at most 10, the triangle and a single edge. Note that
counting the embedding of a single edge as pattern is equivalent to the degree of
the node. We also tested the Weisfeiler-Leman rule but the validation accuracy
was lower4. As a next step it would be interesting to consider more rules, rules
that come from expert knowledge or also deeper architectures with more rule
based layers concatenated. Regarding the number of learnable parameters we
would like to mention that the number is relatively high but lots of parameters
are not used in the weight matrix. Hence, it might be possible to prune the set
of learnable parameters by removing those that are not used or those that have
a small absolute value.

For the synthetic datasets we use “expert knowledge” to define the rules.
Hence we did not tested other rules than those in Table 6. For LongRings,

4 See https://github.com/fseiffarth/RuleGNNCode for a full list of tested hyperparam-
eters.

https://github.com/fseiffarth/RuleGNNCode

22 F. Seiffarth

EvenOddRings and EvenOddRingsCount we used the original node labels for
the rule based layers. In case of EvenOddRings we used two layers. The first
layer considers only node pairs with distance 8 and collects all the necessary
information of opposite nodes. The second layer that considers only node pairs
with distance 4 and collects the information of the nodes that are 4 hops away
from the nodes with label 0, see also Figure 2. For CSL we used as patterns
all simple cycles with length at most 10. For the Snowflakes dataset we used
the patterns, cycle of length 4 and 5 and collect the information of all nodes
that have pairwise distance 3. In this way the RuleGNN is able to distinguish
the graphs M0,M1,M2 and M3 that are not distinguishable by the 1-WL test.
For the output layer we used the Weisfeiler-Leman rule with k = 2 iterations to
collect the relevant information.

Dataset Rules Hyperparameters #Learnable Parameters
k D L per Layer

NCI1 wl 2 {1,. . . ,10} 500 2 500 500
wl 2 - 50000 4 220

NCI109 wl 2 {1,. . . ,10} 500 2 500 500
wl 2 - 50000 4 336

Mutagenicity wl 2 {1,. . . ,3} 500 750 500
wl 2 - 50000 4 972

DHFR wl 2 {1,. . . ,6} 500 1 382 880
pattern: (simple cycles≤ 10) - - - 112

IMDB-BINARY pattern: (triangle, edge) - {1,2} - 963 966
pattern: (induced cycles≤ 5) - - - 990

IMDB-MULTI pattern: (triangle, edge) - {1,2} - 551 775
pattern: (triangle, edge) 10 - - 1 578

LongRings labels - {25} - 30
labels - - - 18

EvenOddRings labels - {8} - 272
labels - {4} - 272
labels - - - 68

EvenOddRingsCount labels - {8} - 272
labels - - - 34

CSL pattern: (simple cycles≤ 10) - {1} - 8930
pattern: (simple cycles≤ 10) - - - 950

Snowflakes pattern: (cycle 4, cycle 5) - {3} - 90
wl 2 - - 20

Table 6: Best architectures per dataset. The column Rule shows the type of
rule used in the model, wl stands for the Weisfeiler-Leman labeling, pattern for
the pattern based labeling and labels for the original node labels. The last layer
is always an aggregation layer. While the others are Weisfeiler-Leman layers
or Pattern Counting layers based on the labeling of the nodes. The column
Hyperparameters shows the hyperparameters used in the model, k is the number
of iterations of the Weisfeiler-Leman rule, D is the set of valid pairwise distances
considered and L is the bound for the number of different node labels considered.
The column #Learnable Parameters shows the number of learnable parameters
in the model.

	RuleGNNs: A Rule Based Approach for Learning on Graphs

