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Abstract. Graph convolutions have gained popularity due to their abil-
ity to efficiently operate on data with an irregular geometric structure.
However, graph convolutions cause over-smoothing, which refers to repre-
sentations becoming more similar with increased depth. However, many
different definitions and intuitions currently coexist, leading to research
efforts focusing on incompatible directions. This paper attempts to align
these directions by showing that over-smoothing is merely a special case
of power iteration. This greatly simplifies the existing theory on over-
smoothing, making it more accessible. Based on the theory, we provide
a novel comprehensive definition of over-smoothing and show that over-
smoothing is a solvable phenomenon.

Keywords: graph neural networks · message-passing neural networks ·
graph convolutions.

1 Introduction

When operating with message-passing neural networks on graph-structured data,
over-smoothing describes a phenomenon in which node representations become
more similar when the number of convolutional layers increases. Many research
efforts provide theoretical insights on over-smoothing and methods to mitigate
its effects [24, 23, 13, 2, 17, 14, 18]. However, due to the multitude of different the-
oretical insights and their complexity, different research efforts often use distinct
definitions for over-smoothing, which are partly incompatible. In particular, some
works study normalized representations [4, 15, 9] while others consider unnormal-
ized representations [22, 20, 16]. Some define over-smoothing as the convergence
to a constant state [17, 18, 22, 16, 20], others claim different limit distributions
depending on the spectrum of the aggregation function [8, 1, 12, 25, 4, 15, 9].

To combine these strands, we show that the theory behind over-smoothing
can be greatly simplified and reduced by connecting it to the classical power
iteration method [7, 10, 11]. While our resulting insights are not novel, our novel
proofs aim to make the theory more accessible to a broader part of the com-
munity. We first recap power iteration with its in-depth proof. We show that
graph convolutions are a special case for which the dominant eigenvector takes a
special form, namely a Kronecker product. Its properties lead to over-smoothing,
for which we provide a novel theoretically founded definition.
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2 Power Iteration

As the proof for over-smoothing of graph convolutions will be a special case,
we first provide the detailed proof for the well-known power iteration [7, 10, 11].
Power iteration refers to the process where a vector, when repeatedly multiplied
by a matrix, gets dominated by an eigenvector of the matrix that corresponds
to the eigenvalue with the largest magnitude. The proof we provide mostly fol-
lows [6], but similar proofs are available in many textbooks. For any square
matrix M, its eigenvalues are denoted by λM

1 , . . . , λM
n and are sorted descending

by their magnitude, i.e., |λM
i | ≥ |λM

i+1|.
Proposition 1. (Power Iteration [6]) Let S ∈ Rp×p be a matrix with |λS

1 | > |λS
2 |

and vS
1 ∈ Rp be an eigenvector corresponding to λS

1 . Further, let x0 ∈ Rq be a
vector that has a non-zero component c1 in direction vS

1 . Then,

Skx0

∥Skx0∥
= βkv

S
1 + rk (1)

for some rk ∈ Rp with limk→∞ ∥rk∥ = 0 and βk = c1
|c1|

(
λS
1

|λS
1 |

)k
1

∥vS
1 ∥

∈ R.

Proof. Let S = VJV−1 be its Jordan decomposition, where J ∈ Cp×p is a
block diagonal matrix containing the eigenvalues on its diagonal and V ∈ Cn×n

contains the generalized eigenvectors as columns. As the generalized eigenvectors
form a basis of Rn, x0 can be decomposed as x0 = c1v

S
1 + · · · + cnv

S
n into a

linear combination. This allows the following equalities:

Skx0

∥Skx0∥
=

(VJV−1)k(c1v
S
1 + . . . cnv

S
n)

∥(VJV−1)k(c1vS
1 + . . . cnvS

n)∥

=
VJk(c1e1 + . . . cnen)

∥VJk(c1e1 + . . . cnen)∥

=
c1
|c1|

(
λS
1

|λS
1 |

)k V( 1
λS
1
J)k 1

c1
(c1e1 + . . . cnen)

∥V( 1
λS
1
J)k 1

c1
(c1e1 + . . . cnen)∥

(2)

The second equation uses the fact V−1vS
k = ek, i.e., the natural basis vector

pointing in direction k. As J is normalized by its unique largest entry λS
1 , it

converges to

lim
k→∞

(
1

λS
1

J

)k

=


1
0

. . .
0

 . (3)

Equation 2 then simplifies to

c1
|c1|

(
λ1

|λ1|

)k V( 1
λ1
J)k 1

c1
(c1e1 + . . . cnen)

∥V( 1
λ1
J)k 1

c1
(c1e1 + . . . cnen)∥

=
c1
|c1|

(
λS
1

|λS
1 |

)k
vS
1

∥vS
1 ∥

+ rk (4)

with limk→∞ ∥rk∥ = 0. It converges to vS
1

∥vS
1 ∥

iff λS
1 > 0. ⊓⊔
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3 Graph Convolutions as Power Iteration

This proof applies to many graph convolutions as they can be expressed as
a matrix S that takes a particular form. Given a state X ∈ Rn×d, its rows
indicate data samples or nodes, and its columns describe features. Most graph
convolutions apply a node mixing function A ∈ Rn×n that represents the graph
structure and its edge weights, and a feature transformation W ∈ Rd×d. Let
vec(·) describe the operation that stacks the columns of a matrix into a vector.
A graph convolution be expressed in vector notation

vec(AXW) = (WT ⊗A)vec(X) = Sx0 (5)

using the Kronecker product ⊗ that is defined as A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

.

This formulation is commonly used to study over-smoothing [4, 9, 15] and other
properties of graph convolutions [5, 14, 3]. The Kronecker product has a key
spectral property affecting power iteration: All eigenvectors vS

ij = v
(WT)
i ⊗ vA

j

of WT ⊗ A are Kronecker products of the eigenvectors of A and WT with
corresponding eigenvalue λA

i λW
j [19]. This lets us state the reason behind over-

smoothing in a clearer way than in previous works by substituting vS
1 :

Proposition 2. (Power Iteration with a Kronecker Product) Let S = W⊗A ∈
R(n·d)×(n·d) for any W ∈ Rd×d and A ∈ Rd×d with |λS

1 | > |λS
2 |. Let vA

1 ,vW
1 be

two eigenvectors corresponding to λA
1 and λW

1 , respectively. Further, let x0 ∈
Rn·d be a vector that has a non-zero component c1 in direction vS

1 = vW
1 ⊗ vA

1 .
Then,

(W ⊗A)kx0

∥(W ⊗A)kx0∥
= βk · vW

1 ⊗ vA
1 + rk (6)

for some rk ∈ Rn·d with limk→∞ ∥rk∥ = 0 and βk = c1
|c1|

(
λA
1 λW

1
|λA

1 λW
1 |

)k

∥vW
1 ⊗vA

1 ∥ ∈ R.

Proof. Given that |λS
1 | > |λS

2 |, and λS
i·j = λA

i · λW
j for all 0 < i < n and

0 < j < d, we have |λA
1 | > |λA

2 | and |λW
1 | > |λW

2 |. The corresponding eigenvector
vS
1 = vA

1 ⊗vW
1 is the Kronecker product of the corresponding eigenvectors of A

and W. Substituting these in Proposition 1 results in our statement. ⊓⊔

The statement for any W and possibly repeated λW
1 is similar, as all gener-

alized eigenvectors of W ⊗ A corresponding to λS
1 are of the form u ⊗ vA

1 for
different u. To simplify this work, we provide the statement in Appendix A. The
implications of this statement become clearer when looking into its matrix form:

Remark 1. (Power Iteration with a Kronecker Product in Matrix Notation) Stat-
ing Proposition 3 in matrix notation leads to

AkXWk

∥AkXWk∥
= βkv

A
1

(
vW
1

)T
+Rk (7)
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for vec(X) = x0 and some Rk with limk→∞ ∥Rk∥ = 0

Any graph convolution of this form amplifies the same signal across all fea-
ture columns, and the state gets closer to a rank one matrix, with each column
becoming a multiple of vA

1 . This phenomenon has also been termed rank col-
lapse [15]. It is commonly referred to as over-smoothing as the eigenvector vA

1

is a smooth vector for typical choices of A, e.g., it is vA
1 = 1 for the (weighted)

mean aggregation, and vA
1 = D

1
2 1 for the symmetrically normalized adjacency

matrix [21]. The Dirichlet energy

E

(
AkXWk

∥AkXWk∥

)
= tr

(
AkXWk

∥AkXWk∥
∆

AkXWk

∥AkXWk∥

)
(8)

is frequently used to quantify over-smoothing, as v1 is in the nullspace of ∆, i.e.,
∆v1 = 0. However, this requires different ∆ for different aggregation functions,
as vA

1 may be different. We propose a more general definition as a consequence
of the theory:

Definition 1. (Over-Smoothing) A sequence of matrices X(1), . . . ,X(k) ∈ Rn×d

over-smoothes if there exists a sequence of rank-one matrices Y(k), . . . ,Y(k) such
that

lim
k→∞

∥∥∥∥ X(k)

∥X(k)∥
−Y(k)

∥∥∥∥ = 0 (9)

4 Conclusion

We have shown that over-smoothing is a special case of power iteration, with the
dominant eigenvector of graph convolutions W ⊗A taking the form vW

1 ⊗ vA
1 .

As given in power iteration, normalization is required, and the limit distribution
is not always the constant vector, as it depends on the dominant eigenvector of
A. To solve the underlying problem, it needs to be ensured that the dominant
eigenvector vS

1 is not a simple Kronecker product so that it can amplify differ-
ent signals across feature columns. As pointed out before [15], one direction is
to operate on multiple computational graphs A1, . . . ,Al with distinct feature
transformations W1, . . . ,Wl:

Svec(X) = (W1 ⊗A1 + · · ·+Wl ⊗Al)vec(X)

= vec(A1XWT
1 + · · ·+AlXWT

l ) .
(10)
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A Appendix

Proposition 3. (Power Iteration with a Kronecker Product) Let S = W ⊗ A
for W ∈ Rd×d and A ∈ Rn×n with |λA

1 | > |λA
2 |. Let vA

1 be an eigenvector
corresponding to λA

1 . Further, let x0 ∈ Rn·d be any vector that has a non-zero
component in the direction of a generalized eigenvector vS

1 corresponding to λS
1 .

Then,

(W ⊗A)kx0

∥(W ⊗A)kx0∥
= βk · u⊗ vA

1 + rk (11)

for some rk ∈ Rn·d with limk→∞ ∥rk∥ = 0, bounded βk, and some u ∈ Rd.

Proof. This proof is similar to the proof of Proposition 1. However, ±λS
1 may oc-

cur multiple times, so there can be multiple Jordan blocks corresponding to ±λS
1 ,

and they can have a size larger than one. Let p be the size of the largest Jordan
block corresponding to λS

1 . Then, Jk will be dominated by qk =
(

k
p−1

)
λSk−(p−1)

1 :

lim
k→∞

(
1

qk
J

)k

=



0 . . . 0 1
. . . 0

...
...

0 . . . 0
. . .

0 . . . 0 1
. . . 0

...
...

0 . . . 0
0

. . .
0



. (12)

The number of blocks containing a 1 is determined by the number of Jordan
blocks corresponding to ±λS

1 with size p. Let there be i such blocks. We further
know that all corresponding generalized eigenvectors are of the form vS

i·p =

vW
i·p ⊗ vW

1 . For eigenvalues constructed with λA
2 it holds that λA

2 λi·p < λA
1 λi·p.

This lets us simplify the statement:(
qk
|qk|

)k V( 1
qk
J)k(c1e1 + . . . cnen)

∥V( 1
qk
J)k(c1e1 + . . . cnen)∥

=

(
qk
|qk|

)k c1·pv
S
1·p + · · ·+ ci·pv

S
i·p

∥c1·pvS
1·p + · · ·+ ci·pvS

i·p∥
+ rk

=

(
qk
|qk|

)k
bu⊗ v1

A

∥bu⊗ v1
A∥

+ rk

(13)
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for b = c1·p · · · · · ci·p, u = v1·p+ · · ·+vi·p, and limk→∞ ∥rk∥ = 0 which converges

to v1

∥v1∥ iff λ1 > 0. Setting βk =
(

qk
|qk|

)k
1

∥bu⊗v1
A∥ leads to the desired statement.

⊓⊔


