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Abstract. The treatment of complex diseases often involves the use of
multiple drugs, a practice known as polypharmacy. However, this ap-
proach comes with the risk of drug-drug interactions (DDIs), which can
lead to unanticipated adverse effects and even toxicity. Therefore, ensur-
ing the safety of polypharmacy requires identifying DDIs and exploring
their underlying mechanisms. Traditional wet lab methods for detecting
DDIs are expensive and time-consuming, while computational methods
have been developed to predict DDIs. Many of these methods have limi-
tations, and they often struggle to predict potential DDIs between known
drugs in the DDI network and drugs from outside that network without
any connections to other drugs. Moreover, they may lack the capability
to delve into the underlying mechanisms of DDIs and provide meaning-
ful interpretations. In response to these challenges, we introduce a novel
machine learning-based method called NGMG, which leverages a knowl-
edge graph to identify feature representations for each drug based on its
chemical and topological properties in the DDI network. Then, it com-
bines these features for each drug pair and feeds them into a predictor
to obtain a final DDI prediction score. Our experimental results demon-
strate the effectiveness of NGMG in two crucial DDI prediction scenarios:
identifying potential DDIs among known drugs within the DDI network
and predicting interactions between drugs within the DDI network and
some drugs from outside the network without any connections to other
drugs.

Keywords: Drug Drug Interaction · feature representation · Machine
Learning · knowledge graph.

1 Introduction

In recent years, polypharmacy, also referred to as combination drug therapy,
has emerged as a promising strategy for treating complex diseases such as can-
cer and diabetes [1]. This approach involves combining different medications



2 G. Taheri et al.

to enhance therapeutic outcomes. For example, in the treatment of metastatic
hepatocellular carcinoma, Pembrolizumab has been effectively combined with
Sorafenib, and in the management of Parkinson’s disease, Entacapone has been
used to increase the plasma concentration of Levodopa, resulting in improved
therapeutic effects [2, 3]. However, it’s essential to recognize that concurrently
using two or more drugs can lead to Drug-Drug interactions (DDIs), which may
induce pharmacological changes with potential consequences, including side ef-
fects, adverse reactions, and severe toxicity [4]. As the demand for polypharmacy
treatments continues to grow, there is an urgent need to identify DDIs. Never-
theless, the traditional methods of detecting these interactions on a large scale,
both in vitro and in vivo, can be expensive and time-consuming. To address this
challenge, computational approaches have been developed, particularly machine
learning-based methods, to predict and screen potential drug-drug interactions
efficiently.

As cost-effective and efficient, various machine learning techniques have demon-
strated their potential in offering an initial screening of DDIs for subsequent
experimental confirmation [5, 6]. Typically, these models are trained using es-
tablished DDIs to predict potential interactions among many unlabeled drug
pairs. Training incorporates a variety of drug-related characteristics, encompass-
ing factors like chemical structure [7–9], targets [7, 10, 11], anatomical taxonomy
[11, 12], and phenotypic observations [10, 11]. These models reframe the task of
predicting DDIs from a simple ’yes or no’ interaction into a binary classification
challenge. These methods are commonly executed using established classifiers
such as SVM [8], logistic regression [12], decision trees, and naive Bayes [13]. Al-
ternatively, they may utilize network propagation to reason through drug-drug
network structures [14], employ label propagation [15], apply random walk tech-
niques [7] or matrix factorization methods [9, 10]. Graph network methods [17]
also offer promising avenues in drug development and discovery. These methods
are particularly valuable for tasks like molecular activity prediction, drug side
effect prediction [9], drug target interactions prediction [17], and drug response
[19–21]. These methods play a crucial role in drug-drug interaction prediction,
which enhances traditional binary DDI prediction. For instance, in the case of
NDD [22], they computed a drug similarity matrix from multiple drug properties
and utilized a multilayer deep learning classifier to predict binary DDIs. Sim-
ilarly, Wang et al. [23] employed GCN to extract drug representation features
from DDI networks, which were then fed into a three-layer multilayer perception
for binary DDI prediction. While these approaches delivered promising results,
they exhibited certain limitations. First, these methods relying on the DDI net-
work’s topological information for feature extraction may overlook new drugs
with no existing links in the DDI network. Second, current deep-learning tech-
niques cannot interpret drug interactions, making it challenging to understand
the underlying mechanisms of these interactions. Third, these models primarily
emphasize the connections between nodes while overlooking node attributes and
edge types [24]. To address the knowledge gaps created by graph embedding
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algorithms, there is a growing emphasis on knowledge graph-based methods [25]
at present.

We introduce a novel approach, NGMG, to predict DDIs. NGMG constructs
a knowledge graph representation for each drug based on its chemical and topo-
logical features. We then focus on the learned features for each drug pair, using
them as predictors to derive DDI prediction scores for pairs of drugs, even when
they are not directly linked to other drugs. NGMG employs multi-step operations
to capture different substructure groups of drugs within the constructed graph,
generating effective feature representations. Our experimental results demon-
strate that NGMG excels at predicting potential DDIs among drugs within the
DDI network, as well as new drugs outside the network. NGMG enhances in-
terpretability and uncovers the underlying mechanisms of interactions between
drug pairs.

2 Materials and methods

2.1 Datasets

We first built the DDI dataset that contains 4,349 drugs and 179,347 drug-
drug interactions from DrugBank 5.0 [22]. We downloaded the completed XML
formatted database (including the comprehensive profiles of 16,558 drugs) and
parsed all approved small-molecule drugs and their DDI entries. We extracted
the drugs’ chemical structure information using Simplified Molecular Input Line
Entry System (SMILES) strings from the XML file provided by DrugBank and
extracted chemical features from their SMILES. These drug molecules were taken
as the input nodes for the knowledge graph to obtain the drug feature vectors. In
this graph, the edges represent the connection between drugs. NGMG learns the
drug representation features directly from their chemical molecular and topolog-
ical structures.

2.2 Problem Formulation

Consider the graph G, denoted as G =< V,E >, which represents the DDI
network. In this context, the set V corresponds to the drugs involved, while
the set E indicates the interactions between these drugs. The network size is
represented by |V | = n, indicating the number of nodes, and |E| = m, indicating
the number of edges. If an edge uv is present in the set E, nodes u and v are
referred to as neighbors. The set N(u) represents all the neighbors of a given
node u. The Jaccard similarity between two vertices, u and v, is defined as
follows:

Jsim(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

(1)

Chemical matching coefficient: Let G =< V, E , ψ > is a DDI networks such
that:
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ψ : V → Rk

ψ(v) =< ψ1
v , ..., ψ

k
v >

,

where and ψi
v represents the i-th chemical characteristic of drug v. The chemical

matching coefficient between two drugs u and v is defined as follows:

CMC(u, v) =
1

n

k∑
n=1

σn(u, v), (2)

where σn(u, v) is equal to 1 if |ψn
u − ψn

v | < ϵn and it is equal to 0 otherwise. To
find the appropriate threshold, we proceed as follows: Suppose

Y n = {|ψn
u − ψn

v | for all u, v ∈ V}

be a distribution of scalar difference of nodes in m feature. The cumulative
distribution of this feature is defined as follows:

FY n(y) = {yi ∈ Y n | yi ≤ y}

Now we calculate the quantile values of each distribution as follows:

QY n(τ) = inf{y ∈ Y n | FY n (y) ≥ τ}

In this study, ϵn = QY n(0.1) is considered. In other words, a part of the nodes
corresponding to each feature is assumed to be similar when we assume that 0.1
communities are similar to each other.

Knowledge graph: To define the weighted graph G =< V ,E ,W > of a DDI
network, we use the combination of 2 similarity of chemical matching coefficient
and Jaccard similarity between two drugs. The weight of each edge in the DDI
network is calculated as follows:

W (u, v) = α ∗ Jsim(u, v) + (1− α) ∗ CMC(u, v) (3)

The scalar nature of this measure provides a quantitative assessment of
the similarity between two drugs. In other words, the accuracy of the edge
weight plays a crucial role in detecting drug similarity, particularly concerning
graph topological similarity (Jaccard) and chemical structure similarity (chemi-
cal matching coefficient). These two types of similarity, topological and chemical,
address distinct facets of drug similarity. The primary challenge lies in effectively
combining these forms of similarity to enhance results when the similarity be-
tween two drugs aligns with their similarity weight. In equation (3), the hyper-
parameter α ∈ [0, 1] is employed to strike a balance between structural and
chemical similarity.
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2.3 NGMG method

Each of the chemical features on their own provides quantitative insights into the
relationships between drugs. We aim to introduce an algorithm that enhances the
DDI network by combining these chemical features with the network’s inherent
topological characteristics. To achieve this, we initially partition the network
into k clusters, each illustrating the connections among the drugs within that
specific cluster. Suppose G =< V ,E ,W > is a weighted network, also suppose
wi =< wi1, . . . , win > is a vector in Rn space such that:

wij =

{
W (i, j) if eij ∈ E

0 otherwise
(4)

Now we define an affinity matrix A = [aij ](n×n) as follows:

aij =

{
e−

−|wi−wj |2

2σ if eij ∈ E

0 otherwise
(5)

Suppose L = D− 1
2AD

1
2 is an n × n matrix so that D = [di](n×n) is a diag-

onal matrix where di =

n∑
j=1

aij . Now suppose that λ1, ..., λk, are the k largest

eigenvalue of matrix L, and x1, ..., xk, are the k eigenvectors corresponding to
the eigenvalues (k is the number of desired clusters). In this case, we define the
n× k matrix corresponding to this k eigenvector as X = [x1, ..., xk](n×k) so that
the j-th column of this matrix corresponds to the eigenvalue xj with n elements.
The normalized matrix of the X matrix is called Y and each row of the matrix

Y(n×k) =

y
1

...
yn

 can be considered as a point in Rk and we cluster n points

y1, ..., yn into k clusters C = {C1, ..., Ck} by k-means algorithm. Finally, if the
point yi is assigned to the cluster Cj , we assign the i-th node to the cluster Cj .

2.4 Feature extraction

We extracted the drugs’ chemical structure information using SMILES strings
from the XML file provided by DrugBank and extracted chemical features from
their SMILES as follows:

– Chirality: A chiral center, often found in carbon atoms with four dis-
tinct atom groups arranged tetrahedrally, is a type of stereo center. Chiral
molecules possess non-superimposable mirror images. Enantiomers, known
as R (right-handed) or S (left-handed), are two stereo-isomers of a chiral
molecule. When chiral centers are larger, they contribute to the molecule’s
increased three-dimensionality, resulting in a reduction of off-target effects
and drug-drug interactions [27].
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– Number of C=C and C=N bonds: The count of carbon-carbon and
carbon-nitrogen double bonds indicates the degree of saturation within the
molecule. Saturation pertains to the quantity of single bonds present in the
molecule. Elevating the number of carbon-carbon and carbon-nitrogen dou-
ble bonds would, in turn, raise the likelihood of experiencing off-target effects
[27].

– Number of sp3 : It denotes the count of carbon atoms with four single
bonds, a descriptor quantifying the degree of saturation within the molecule.
A higher presence of sp3 carbon atoms indicates increased saturation, which,
in turn, correlates with a reduced likelihood of drug-drug interactions and
off-target effects [28].

– LogS: Solubility in the context of a drug refers to the maximum quantity of
that drug that can dissolve in a given volume of water, typically measured
in mol/L. The drug’s solubility is positively associated with its potency,
as drugs with higher solubility tend to exhibit fewer drug-drug interaction
effects [28].

A higher count of chiral centers, a reduced number of double carbon-carbon
and carbon-nitrogen bonds, and an elevated presence of sp3 carbon atoms within
a molecule contribute to more favorable ligand positioning within a protein’s ac-
tive site. This results in stronger ligand-protein interactions, ultimately leading
to a reduction in off-target effects and drug-drug interactions. In summary, multi-
ple stereo groups, aliphatic rings, and single bonds enhance the molecule’s three-
dimensionality, amplifying ligand-protein interactions and decreasing drug-drug
interactions. Additionally, an increase in the molecule’s sp3 character, signifying
a more significant proportion of spatial carbon atoms with single bonds, corre-
lates with ligand solubility. We extracted and used these informative features to
build our knowledge graph.

3 Experimental results

In this section, we begin by presenting the NGMG hyperparameters. Subse-
quently, we perform a comparative analysis of NGMG against other established
methods in DDI prediction. Finally, we conduct a case study to explore the
specific drug pairs that contribute to potential DDIs. All the materials and im-
plementations are available at: https://github.com/MahnazHabibi/DDI cluster.

3.1 DDI network properties

Here, we present a summary of key statistics related to the DDI network G.
The network exhibits an average node degree of 147.08. Figure 1 illustrates the
frequency distribution of DDI network degrees across specific intervals. Our anal-
ysis reveals that over 1320 nodes in the network exhibit degrees ranging between
1 and 67. Nodes within the degree range of 67 to 133 are the most prevalent
among all nodes. Of the 4375 nodes, 1747 fall within the 67-133 interaction
degree range, accounting for 40 % of all drug interactions within this network.
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Fig. 1. The frequency distribution of DDI network degrees across specific intervals.

The highest degree of node is related to the drug ”Thalidomide”, which in-
teracts with 1062 other drugs, and the lowest level of interaction is related to the
drug ”L-Glutamine”, which has only one reported interaction with ’Lactulose’.

3.2 Parameter Setting

One of the evaluation methods for determining the optimal number of clusters
in clustering algorithms is the Silhouette score. This score relies on distance
measures between objects within clusters. However, in our network, we deal
with drug similarity rather than distance. To address this, we have defined a
score for assessing our clustering method, which is analogous to the Silhouette
evaluation score.

Let C = {c1, c2, ..., ck} represent a cluster within our drug dataset, and S =
[sij] denote the similarity matrix between drugs, with sij = w(i, j) for each drug
i and j. For each drug i ∈ ci in cluster CI , we define the average similarity of
this drug with other drugs as follows:

A(i) =
1

(|ci| − 1)

∑
k∈ci

sik (6)

Similarly, the most similarity of this node with other clusters is defined as
follows.

B(i) = max{ 1

(|cj |)
∑
k∈cj

sik ; cj ̸= ci} (7)
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Finally, the score of each drug i corresponding to clustering C is defined as
follows:

s(i) =
A(i)−B(i)

max(A(i), B(i))
(8)

The value of this score is between -1 and 1 for each drug, and the closeness
of this number to 1 indicates that this drug is more similar to the drugs that are
placed together in one cluster than to drugs in other clusters.

The average score of all drugs in each cluster ci is shown with the symbol
s(ci) and is defined as follows:

s(ci) =
1

(|ci|)
∑
j∈ci

sj (9)

Now, we define the score for a clustering C as a the percentage of clusters
whose value of s(ci) in them is greater than 0 in other words:

Score(C) =
|{ci ∈ C| ; s(ci) > 0}|

|C|
(10)

Finally, The clustering algorithm was executed for values of k ranging from
1 to 100. We identified the optimal number of clusters as k = 44, where the
clustering score, Score(C), exceeded 0.8, specifically reaching 0.83. This means
that over 83% of the clusters within this clustering have an average score greater
than zero.

3.3 Evaluation of NGMG based on random sets

To assess the NGMG algorithm, we utilize two distinct methodologies. Initially,
we apply our algorithm to a network containing 20% false positives and 20%
false negatives. Due to the prevalence of false positives and negatives in biolog-
ical data, we evaluate our algorithm’s sensitivity by randomly introducing and
eliminating 20% of edges. This process results in clusters C = c1, ...ck derived
from the knowledge graph. Additionally, by introducing (or removing) 20% ran-
domness in the edges of the DDI network, a new knowledge graph is formed.
Subsequently, clusters S = s1, ...sk are derived from this altered, random knowl-
edge graph. To compare clusters obtained from each of these modified graphs, we
employ a metric based on the proportion of nodes within a cluster that coincide
with clusters from the original DDI network. If S represents a cluster from the
random network and C denotes a cluster from the original network, with sizes
|S| and |C|, the matching score for this cluster is defined as follows:

Jsim(u, v) =
|S ∩ C|2

|S||C|
(11)

If the intersection of S and C meets or exceeds the threshold θ, we consider
the two clusters to be matched. In this study, we have adjusted the thresholds
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from 0.2 to 0.8. In Table 1, we iterated the process of adding or removing 20%
of the edges 10 times and presented an average of the percentage of matched
clusters for each of the random graph with the initial knowledge graph. The
subsequent table illustrates that, on average, when removing 20% of the edges
from the primary graph, 50% of the resulting clusters exhibit an overlap greater
than 0.5(θ > 0.5) with the primary graph clusters. Similarly, by introducing
20% of the edges to the primary graph, on average, 50% of the derived clusters
have an overlap of more than 0.7(θ > 0.7) with the primary graph clusters.
This observation indicates that our algorithm is robust and it can refines false
positives and false negatives with the help of chemical properties.

Table 1. The percentage of clusters with an overlap of more than θ with the clusters
of the original knowledge graph.

Threshold(θ) Add Remove

0.2 0.84 0.77

0.3 0.79 0.75

0.4 0.68 0.63

0.5 0.61 0.5

0.6 0.56 0.40

0.7 0.5 0.38

0.8 0.35 0.31

3.4 Evaluation of NGMG clusters

To enhance the assessment of the NGMG algorithm’s outcomes, we evaluate the
clusters obtained by our algorithm based on the interactions collected by the
BioSNAP group as a new DDI network [29]. This collection comprises 48514
interactions among 1514 drugs approved by the U.S. Food and Drug Adminis-
tration. Among the 1514 drugs in this network, 1008 drugs are encompassed in
the DDI network under our investigation, denoted as the set of drugs V . Out of
the 44 obtained drug clusters, 35 clusters include at least one drug from the total
of 1008 common drugs present in both datasets. Subsequently, if E represents a
set of presumed interactions within the set of drugs V , the count of edges with
both ends in the one of the resulted clusters of our methods is termed the sum of
internal edges, called as In Edges. Set E1 is a set of edges of the primary DDI
network, the ends of which are in the set V and set E2 shows the set of edges
of the second DDI network (BioSANP), the two ends of which are in the set V .
Table 2 displays the count of internal cluster edges for each of the mentioned
sets.

As observed in the Table 2, the clusters generated by our algorithm retain
a significant portion of intra-cluster connections among the drugs within each
cluster, even when exposed to a new DDI network. Despite the distinct topo-
logical characteristics, the overlap of edges within a cluster for the primary DDI
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Table 2. Comparison between edge placement in our clusters for the initial DDI and
SNAP DDI.

Set No. Edges No. In Edges No. Out Edges

E1 58393 39124 (%67) 19270 (%33)

E2 25881 16305 (%63) 9576 (%37)

E1 ∩ E2 11337 8274 (%73) 3063 (%27)

E1 ∪ E2 72937 43032 (%59) 29905 (%41)

network and the secondary DDI network remains notably high. As depicted in
the table, 73% of the edges within the primary DDI network’s clusters persist
as shared within these two sets.

4 Conclusions

We introduced a novel method called NGMG to forecast potential Drug-Drug
Interactions. NGMG constructs a knowledge graph, learning the chemical and
topological features of each drug from its SMILE and interaction properties. The
acquired features of each drug pair were concatenated to create the final DDI
prediction score. Our experimental findings indicate that NGMG outperformed
in both scenarios: predicting potential DDIs among known drugs and between
known drugs and new drugs. Additionally, the performance of drug features di-
rectly learned by NGMG, derived from chemical properties, effectively identified
false positive and false negative interactions among drugs in different scenarios.
This study aimed to identify informative clusters of drugs with similar chemical
and topological properties, rather than predicting direct connections between
drugs. In our forthcoming research, we aim to utilize the insights gained from
this study and we plan to incorporate other similarity measures to predict edges
between drugs, refining our DDI network’s accuracy in understanding drug in-
teractions.
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