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Abstract. The Wasserstein distance, originating from optimal transport
theory, is a powerful metric for comparing distributions and has been
extensively adapted for various domains such as structured data and
high-dimensional distributions. Its use in Machine Learning has advanced
applications like graph embeddings, adversarial learning, variational au-
toencoders, and generative models. However, current applications on
graphs are limited to static graphs with homogeneous attributes, re-
stricting their utility for heterogeneous or dynamic graphs. This work in
progress addresses these limitations by proposing the Attributed Fused
Gromov-Wasserstein Distance (AFGWD) for graphs with diverse attribute
spaces and the Temporal Fused Gromov-Wasserstein Distance (TFGWD)
for discrete- and continuous-time dynamic heterogeneous graphs. Effi-
cient computation strategies using existing approximation methods are
discussed to tackle the computational challenges of Wasserstein distances.
These advancements aim to broaden the applicability of Wasserstein
distances in complex and dynamic graph data scenarios, paving the way
for future research.

1 Introduction

The Wasserstein distance originates in optimal transport theory and represents a
distance metric between two distributions [32]. It has already been mathemati-
cally analyzed thoroughly and adapted for various applications. Among them
are extensions for distributions in different spaces (Gromov-Wasserstein distance
[18]), structured data (Fused Gromov-Wasserstein distance [29]), Riemannian
manifolds (Spectral Wasserstein distance [19]), high-dimensional distributions
(Sliced Gromov-Wasserstein distance [26]), or other geometric domains (Con-
volutional Wasserstein distance [22]). In addition, various Machine Learning
approaches already integrate Wasserstein distances to learn on different domains.
For example, it is used as a regularizer for embedding attributed graphs [13],
adversarial learning on knowledge graphs [7], adversarial transfer learning [3],
training variational autoencoders [27] and generative adversarial networks [1],
for determining barycenters of graphs [2] or time series [4], to reconstruct graphs
[24], generate images [15, 20], or detect drifts [30]. Real-world applications are
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diverse, from EEG signal reconstruction with a Wasserstein GAN [16] to the
planning of power systems [5] or intelligent fault diagnosis [3].

However, when applying Wasserstein distances on graphs, the extensions are
limited to static graphs with attributes from the same space. This limitation
excludes the applicability to a wide range of applications that use more complex
data types, such as heterogeneous or dynamic graphs. To address this gap, we
propose an Attributed Fused Gromov-Wasserstein distance (AFGWD)
for graphs with different attribute spaces in this work in progress. This extension
considers both the structural information and the different attribute spaces and
directly serves as a distance metric for heterogeneous graphs. Furthermore, we
introduce a Temporal Fused Gromov-Wasserstein distance (TFGWD)
for dynamic graphs that are represented either as a sequence of graph snap-
shots (discrete-time representation) or as a sequence of events (continuous-time
representation) and are potentially heterogeneous. Subsequently, we present a
brief overview of efficient calculation strategies based on existing approximation
methods, which address the high computation effort of Wasserstein distances.
Finally, we discuss potential subsequent projects for future research.

2 Preliminaries

This section introduces graphs and the Fused-Gromov-Wasserstein Distance
(FGWD). For this purpose, definitions of different types of graphs are taken from
[25], followed by the different Wasserstein distances from [28] that are important
for this work.

2.1 Graphs

Definition 2.1.01 (Graph) Let V ⊂ N be a (finite) set of nodes,
E ⊆ {{u, v} | u, v ∈ V} a set of undirected edges. An (undirected) graph is
then defined as tuple g = (V, E) of the node and edge sets.

Graphs can be attributed, i.e., there exist additional information for the nodes
and edges, respectively. These can include, e.g., vectorial, graphical, temporal, or
textual information.

Definition 2.1.02 (Attributed Graph) Let V and E be sets of nodes and
edges as above. Further, let ω : V → A and θ : E → B be mappings from
the node and edge sets to attribute spaces A ⊆ Rd1 and B ⊆ Rd2 . Then,
g = (V, E , ω, θ) determines an attributed graph.

Edge-heterogeneous graphs, sometimes called multi-relational graphs, are
defined differently in the literature. Here, node- and edge-heterogeneous graphs,
heterogeneous graphs for short, are considered and need a definition slightly
deviating from the literature to enable a straightforward adaptation of the
concepts in this work.
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Definition 2.1.03 (Heterogeneous Graph) Let g = (V, E , ω, θ) be an at-
tributed graph as above. Further, let S ⊂ N be a set of node species and R ⊂ N
the set of relation types. The node and edge attribute mappings are then ex-
tended to ω̄ : V → A× S and θ̄ : E → B ×R. Then, g = (V, E , ω̄, θ̄) is called a
heterogeneous graph.

Furthermore, graphs can change in their structure as well as their attributes
over time. Based on the static graph definition from Def. 2.1.02, a dynamic graph
can be represented in two ways.

Definition 2.1.04 (Dynamic Graph) A dynamic graph G is determined
as a sequence of temporal changes in a graph which can either be represented in
discrete or continuous fashion:
1. A dynamic graph in discrete-time representation is given as a set
G = {g1, . . . , gk} of static attributed graph snapshots gt = (Vt, Et, ωt, θt)
at time steps t = 1, . . . , k.

2. The continuous-time representation of a dynamic graph is defined as
a set G = {gt0 ,E} with initial static graph gt0 := (Vt0 , Et0 , ωt0 , θt0) at time
stamp t0 ∈ T and a set E = {et, t ∈ T } of events encoding a structural
et ∈ {add, delete} or attribute change et = attr_change at time stamp
t > t0 ∈ T .

We build on the definitions of various Wasserstein distances taken from [28]
to determine a similarity measure on attributed, heterogeneous, and dynamic
graphs. For this purpose, it is necessary to build a bridge between the definition
of graphs and the Wasserstein metric, which is defined for probability measures.
For this purpose, consider graphs in the more general setting as a structured
object over a metric space as defined in [28]:

Definition 2.1.05 (Structured Object) A structured object over a metric
space (Ω, dΩ) is a triplet (X ×Ω, dX , µ), where (X, dX) is a metric space and µ
is a probability measure over X ×Ω. The attribute space is denoted as(Ω, dΩ),
such that dΩ : Ω ×Ω → R+ is the distance in the attribute space and (X, dX)
the structure space, such that dX : X ×X → R+ is the distance in the structure
space. The structure and attribute marginals of µ are denoted µX and µΩ,
respectively.

From the perspective of graph theory, the structure space (X, dX) involves a
distance metric dX representing, e.g., the neighborhood information in form
of the shortest path. Here, the probability measure µ of a graph can then be
defined using associated node probabilities hi for all nodes i ∈ V with structural
information xi ∈ X and attributes ai ∈ Σ by

µ =
∑
i∈V

hiδ(xi,ai), with marginals µX =
∑
i∈V

hiδxi
and µΩ =

∑
i∈V

hiδai
,

and the dirac measure δ evaluated on the set V. Such node probabilities could
be, e.g., determined by the node degrees or other structural information.



4 S. Beddar-Wiesing and D. Köhler

2.2 Wasserstein Distances

Having established the formulation of probability measures on graphs, we can
proceed with the definitions of the different Wasserstein distances taken from
[28].

Definition 2.2.01 (Wasserstein Distance) Let (X, dX) be a Polish space,
µ, ν ∈ P(X) be two probability measures and p ∈ N. Then, the Wasserstein
distance is defined as

dW,p(µ, ν) =

 inf
π∈Π(µ,ν)

∫
X×X

dX(a, b)p dπ(a, b)

 1
p

.

Here, Π : X × X → X is the set of all couplings between µ and ν, i.e.,
all joint distributions over X × X whose marginals are µ and ν. For detailed
derivations and helpful illustrations we refer to [28]. For probability measures
from different spaces, the Gromov-Wasserstein distance has been established. It
additionally takes the structure of the input spaces into account.

Definition 2.2.02 (Gromov-Wasserstein distance) Let (X, dX), (Y, dY ) be
two Polish spaces, µ ∈ P(X), ν ∈ P(Y ) two probability measures and p ∈ N.
Then, the Gromov-Wasserstein distance is given by

dGW,p(µ, ν) =

 inf
π∈Π(µ,ν)

∫
(X×Y )2

L(x, y, x′, y′)p dπ(x, y)dπ(x′, y′)


1
p

with L(x, y, x′, y′) = |dX(x, x′)− dY (y, y
′)|.

The Gromov-Wasserstein distance is defined as the Wasserstein distance over all
pairwise distances computed on the two Polish spaces separately to integrate
structural information.

Combining both the Wasserstein and Gromov-Wasserstein distance, the Fused
Gromov-Wasserstein distance (FGWD) determines a similarity measure on objects
from different structured spaces with a shared attribute space as introduced in
Def. 2.1.05. The FGWD is a convex combination of the Wasserstein distance
in the attribute space and the Gromov-Wasserstein distance between the two
structured spaces.

Definition 2.2.03 (Fused Gromov-Wasserstein distance) Let α ∈ [0, 1]
and p ∈ N. For two structured objects (X ×Ω, dX , µ) and (Y ×Ω, dY , ν) with
the shared attribute space (Ω, dΩ), the Fused Gromov-Wasserstein distance
is defined as

dFGW,p,q,α(µ, ν) =

(
inf

π∈Π(µ,ν)
Ep,q,α(π)

) 1
p
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with

Ep,q,α(π) =

∫
(X×Ω×Y×Ω)2

D(α)p dπ
(
(x, a), (y, b)

)
dπ

(
(x′, ·), (y′, ·)

)
and

D(α) = (1− α)dΩ(a, b)
q + αL(x, y, x′, y′)q,

L(x, x′, y, y′) = |dX(x, x′)− dY (y, y
′)|. (1)

Here, dΩ(a, b) functions as feature and L(x, y, x′, y′) as the structure cost.

3 Attributed and Heterogeneous Fused
Gromov-Wasserstein Distance

The FGWD is constrained to two structured objects with the same attribute
space and, thus, is severely restricted in its applicability to more complex objects.
In this work, we first extend the FGWD to graphs with potentially heterogeneous
attributes and structure. Afterward, we extend the distance to dynamic graphs
in the next section.

Recapitulating Def. 2.1.03, heterogeneous graphs can be formulated as at-
tributed graphs whose attribute spaces are extended by the node species and
relation types. Consequently, we have to extend the FGWD to structured objects
with potentially different attribute spaces to obtain a similarity measure based
on the Wasserstein distance for heterogeneous graphs. For this purpose, we adapt
the ideas of the Gromov-Wasserstein distance and consider both intra-space
distances of the structure and attribute spaces, as illustrated in Fig. 1. In this
way, the presented Attributed Fused Gromov-Wasserstein distance reflects both
the characteristics of the structure and the attribute spaces.

Fig. 1. The Attributed Fused Gromov-Wasserstein Distance for structured objects on
different attribute spaces Ω, Θ with structure spaces X, Y .
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Definition 3.0.01 (Attributed Fused Gromov-Wasserstein Distance) Let
(X ×Ω, dX , µ) and (Y ×Θ, dY , ν) be two structured objects with metric attribute
spaces (Ω, dΩ), (Θ, dΘ), α ∈ [0, 1] and p, q ∈ N. Then, the Attributed Fused
Gromov-Wasserstein Distance (AFGWD) is determined by

dAFGW,p,q,α(µ, ν) :=

(
inf

π∈Π(µ,ν)
Ep,q,α(π)

) 1
p

, (2)

with

Ep,q,α(π) =

∫
(X×Ω×Y×Θ)2

Dq,α(π)
p dπ((x, a), (y, b)) dπ((x′, a′), (y′, b′)), (3)

and the convex combination of the attribute and structure costs

Dq,α(π) = (1− α)K(a, a′, b, b′)q + αL(x, y, x′, y′)q

with K(a, a′, b, b′) = |dΩ(a, a′)− dΘ(b, b
′)|,

and L as in Eq. (1).

The AFGWD considers the data structure in both attribute spaces by consid-
ering all pairwise distances of the node attributes. The attributes may be vectors,
text, images, or others, depending on the application. The distance measures on
these attribute spaces then have to fulfill the conditions of a metric to ensure
that the AFGWD remains a metric.

Remark 3.0.02 (AFGWD for Heterogeneous Graphs) Heterogeneous graphs
are defined in Def. 2.1.03 as attributed graphs whose node and edge attribute
spaces are extended by the set of node and edge types. As a result, the AFGWD
can be applied to heterogeneous graphs accordingly. For node types (or node
species), we add an attribute to the attribute space defining the node type of
each node. To integrate edge types (or relation types), we extend the attribute
space by the space of all edge attributes on the structured object.

4 Temporal Fused-Gromov Wasserstein Distance

Besides additional node attributes or heterogeneity in many applications, graphs
are often inherently dynamic. The challenges in processing dynamic graphs are
the changing attributes and evolving node and edge sets. To the best of our
knowledge, there are no approaches yet to compare such dynamic graphs with the
Wasserstein distance. We propose a FGWD for dynamic graphs of the two most
common representations to close this gap. On the one hand, many approaches
for learning on dynamic graphs utilize the graph representation in the form of
graph snapshot sequences (discrete-time representation). On the other hand, in
some cases, the compact continuous-time representation of dynamic graphs is
also used, which involves the start graph and a stream of graph events. Therefore,
we define a distance measure for each representation that acts as a similarity
measure between dynamic graphs as follows.
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4.1 Discrete-Time Dynamic Graphs

In the case of dynamic graphs in discrete-time representation, we assume the
input graphs to have the same time steps T . Then, we can utilize the AFGWD
from Def. 2 for each time step and define the Temporal Wasserstein distance for
discrete-time graphs as the mean of the AFGWD per time step.

Definition 4.1.01 (Temporal Fused Gromov-Wasserstein Distance) Let
{(Xt ×Ωt, dXt

, dΩt
, µt)}t∈T and {(Yt ×Θt, dYt

, dΘt
, νt))}t∈T be two sequences of

spaces with (possibly) changing structure (Xt, dXt
), (Yt, dYt

) and attribute spaces
(Ωt, dΩt

), (Θt, dΘt
). Let further µt, νt over the set of time steps T = {1, . . . , T}

be the corresponding probability measures, and p, q ∈ N. Then, the Temporal
Fused-Gromov Wasserstein Distance (TFGWD) of the two probability
measures µT := µ1 × . . .× µT and νT := ν1 × . . .× νT is defined as

dTFGW,α,p,q(µT , νT ) :=
1

T

∑
t∈T

dAFGWα,p,q(µt, νt),

with

dAFGWα,p,q(µt, νt) = inf
πt∈Π(µt,νt)

Ep,q,α(πt)

and the term Ep,q,α(πt) of Eq. (3) from the Attributed Fused Gromov-Wasserstein
distance.

Fig. 2. For each time step, the AFGWD is calculated for two structure and attribute
spaces each. The TFGWD then corresponds to the mean distance over all time steps.

The measure retains the properties of a metric, as the triangle inequality holds
for each metric in the sum separately. In Fig. 2, the distance of two sequences of
different structure and attribute spaces is illustrated.
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4.2 For Continuous-Time Dynamic Graphs

The definition for discrete dynamic graphs in 4.1.01 is restricted to graph sequences
and is thus tied to the potentially cost-intensive processing of dynamic graphs.
However, to have a Wasserstein distance for the more compact representation of
dynamic graphs in continuous time, we define an FGWD in the following, which
considers the start graphs and the event sequences individually. For this purpose,
we assume that no simultaneous events are happening on the graph, and the
event sequences are represented as Temporal Point Processes (TPP).

Definition 4.2.01 (Continuous-Time Fused Gromov-Wasserstein Distance)
Let (X × Ω, dX , dΩ , µ) and (Y × Θ, dY , dΘ, ν) be two structured spaces and
p, q ∈ N. Further, let ϕ = {ϕi = (ti, ei)}i≤n and ψ = {ψj = (τj , ϵj)}j≤m be
two Temporal Point Processes with time stamps ti, τj ∈ [0, T ) and structural or
attribute change events ei, ϵj of potentially different lengths n ≤ m. Then, the
Continuous-Time Fused Gromov-Wasserstein Distance (CTFGWD) is
a convex combination of the AFGWD of the start graphs and the Wasserstein
distance of the event sequences:

dCTFGWα,γ(µ, ν, ϕ, ψ) := (1− γ)dAFGW,p,q,α(µ, ν)︸ ︷︷ ︸
start graphs

+ γ dW,p(ϕ, ψ)︸ ︷︷ ︸
event sequences

.

As distance function of the event time sequences in the Wasserstein distance
dW , we utilize the distance measure of time series ∥ · ∥∗ from [34] which is defined
as:

∥ϕ− ψ∥∗ =

n∑
i=0

(|ti − τi|+ (1− δei,ϵi)) + (m− n) · T −
m∑

j=n+1

τj .

The time series distance reflects the pairwise absolute distances of time stamps
and incorporates period length differences. The convex combination of the start
graph and the event sequence distances then determines the similarity of two
dynamic graphs in continuous-time representation as illustrated in Fig. 3.

5 Computation

Computing the different Wasserstein distances is inherently cost-intensive because
determining the optimal coupling between the two inputs is hard. Therefore, in
this section, we adapt existing approximation algorithms from [28] to calculate
the proposed Wasserstein distances.
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0
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Fig. 3. The Wasserstein distance for two dynamic graphs in continuous-time is de-
termined by the AFGWD dAFGW between the two start graphs and the Wasserstein
distance dW of the Temporal Point Processes that characterize the event sequences. The
event sequence heights represent time differences, and event differences are represented
by different symbols (e.g. cross, bold point). The distance increases by 1 for each pair
of different events.

5.1 FGWD for Graphs with Different Attribute Spaces

Let µ =
∑
i∈V

hiδ(xi,ai) and ν =
∑
j∈V′

h′jδ(yi,bi) be two attributed graphs. Analogous

to [28], we set p = 1 and q = 2 so that we can rewrite the dAFGW as quadratic
optimization problem. For this purpose, let

MΩ = (dΩ(ai, ak))ai,ak∈Ω,i,k∈V , MΘ = (dΘ(bj , bl))bj ,bl∈Θ,j,l∈V′

CXb = (dX(xi, xk))xi,xk∈X,i,k∈V , CY = (dY (yj , yl))yj ,yl∈Y,j,l∈V′

be the attribute distance matrices and intra-graph structure similarities, respec-
tively. Then, dAFGW can be rewritten as

dAFGWα(µ, ν) = inf
π∈Π(µ,ν)

Eα(π)

with

Eα(π) =
∑
i,k∈V
j,l∈V′

[
(1− α) |MΩ(i, k)−MΘ(j, l)|2 + α |CX(i, k)− CY (j, l)|2

]
πi,jπk,l.

Then, the related quadratic optimization problem is given by

π∗ = arg min
π∈Π(µ,ν)

vec(π)⊤N(α)vec(π) + vec(π)⊤B(α)vec(π), (4)

where N(α) = −2αMΘ ⊗K MΩ, B(α) = (2α − 2)C2 ⊗K C1, vec() denotes
the column-wise vector-stacking operator and ⊗K is the Kronecker product of
matrices. It can then be solved with an extension of the algorithms provided in
[28] using the partial derivative of Eq. (4):

∇Eα(π) = C̃ − 4CXΠCY + M̃ − 4MΩΠMΘ
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with

C̃ = 2
[
(CX ◦ CX)vec(πX)1⊤

Y +
(
(CY ◦ CY )vec(πY )1⊤

X

)⊤]
,

M̃ = 2
[
(MΩ ◦MΩ)vec(πX)1⊤

Y +
(
(MΘ ◦MΘ)vec(πY )⊤1⊤

X

)⊤]
,

vec(πX)i =
∑
j∈Y

πi,j and vec(πY )j =
∑
i∈X

πi,j ,

Π = (πi,j)i∈X, j∈Y .

and the Hadamard product ◦ of matrices. Then, the optimal coupling can be
calculated using the conditional gradient algorithm along with the line search
given in [28].

5.2 Dynamic FGWD

The TFGWD for discrete dynamic graphs can be reformulated analogously to
apply the conditional gradient and line search described in [28] for each time
step accordingly. For this purpose, the TFGWD is rewritten for two temporal
structured spaces as in Def. 4.1.01 as

dTFGWα(µT , νT ) =
1

T

∑
t∈T

inf
πt∈Π(µt,νt)

Eα(πt),

with

Eα(πt) =
∑

i,k∈Vt

j,l∈V′
t

[
(1− α) |MΩt(i, k)−MΘt(j, l)|2 + α |CXt(i, k)− CYt(j, l)|2

]
πt,i,jπt,k,l.

Using this adapted representation, we can now calculate the TFGWD step-
wise. However, assuming that the graph changes smoothly, we use the optimal
coupling π∗

t−1 found in the previous time step t−1 as initialization for calculating
the coupling at time t in the conditional gradient approach from [28].

For continuous-time dynamic graphs, the CTFGWD consists of the AFGWD
between the start graphs and the adapted Wasserstein distance for the event
sequences. As a result, the CTFGWD can be calculated by executing the algorithm
from Sec. 5.1 on the start graphs together with minimizing the Wasserstein
distance on the event sequences ϕ, ψ.

6 Discussion and Future Work

Time Shift Adaptation. In the definition of the discrete temporal FGWD, we
assume that both sequences of attributed graphs have the same length of time
steps. There are already developed Wasserstein distances to compare time series
of different lengths, as for event sequences that adapt the ideas of Dynamic Time
Warping as in [10] and [23]. A temporal shift could be considered for dynamic
graphs by evaluating the pairwise Wasserstein distances accordingly.
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Computation and Runtime. Our current work does not yet include the implemen-
tation of distances, which will be realized in the future to show their applicability.
We proposed in Sec. 5 to use Sinkhorn distances to obtain a quadratic optimiza-
tion problem and apply a conditional gradient descent algorithm. Other Authors
have proposed greedy algorithms [9] to approximate the Wasserstein distance.
Further research is needed to determine trade-offs between the runtime and the
accuracy of the algorithms. In addition, it would be reasonable to analyze the
computational time dependent on the size of the input graphs.

Graph Generation. Distances between probability measures are widely used
for (homogenous) graph generation purposes, such as in generative adversarial
networks (GANs) [8], variational autoencoders (VAEs) [12], and diffusion models
[6, 31]. Although there exist approaches generating heterogeneous [14, 37] and
dynamic graphs [11, 36, 17], these techniques have not been fully exploited for
these domains. Future work could investigate the application of the proposed
Wasserstein distances in the context of GANs, VAEs, and diffusion models and
their impact on training stability and performance. Further, generating hetero-
geneous and dynamic graphs utilizing the corresponding Wasserstein distances
appears promising due to the explicit integration of structure, complex attributes,
and temporal evolution.

Molecular Data. Learning on molecular data is a research area in which graphs are
commonly used to represent data. Most approaches use vectors or homogeneous
graphs as molecule representations. However, there are also promising approaches
using heterogeneous graphs [21, 35], techniques for generating heterogeneous
graphs [14], that also utilize VAEs [37]. Nonetheless, the research field has yet to
exploit all the state-of-the-art techniques. Consequently, using dynamic graphs
and the proposed Wasserstein distances could provide new advances in future
work.

Graph Neural Network Architecture. The Graph Neural Network model proposed
in [33], e.g., utilizes the Fused Gromov-Wasserstein distance to incorporate
distances from the input graph to pre-defined template graphs. This approach
serves as a global pooling procedure and could be extended to heterogeneous and
dynamic graphs accordingly.

7 Conclusion

In this work in progress, we addressed the limitations of applying Wasserstein dis-
tances to graphs, particularly the constraints on static graphs with homogeneous
attributes. We introduced two novel extensions: the Attributed Fused Gromov-
Wasserstein Distance (AFGWD) for heterogeneous graphs with different attribute
spaces and the Temporal Fused Gromov-Wasserstein Distance (TFGWD) for
dynamic graphs. These extensions incorporate structural information and diverse
attribute spaces, providing a more versatile distance metric suitable for a broader
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range of graph-based applications. Furthermore, we outlined efficient computation
strategies using existing approximation methods to mitigate the high compu-
tational costs associated with Wasserstein distances. These advancements not
only enhance the applicability of Wasserstein distances in complex graph data
scenarios but also open new avenues for research in heterogeneous and dynamic
graph analysis. Future work will focus on refining these methods and exploring
their practical implications in various real-world applications.
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