
Data Augmentation in Graph Neural Networks:
The Role of Generated Synthetic Graphs

Sümeyye Baş1,3, Kıymet Kaya2,3,4, Resul Tugay5, and
Şule Gündüz Öğüdücü1,3

1 Istanbul Technical University, Department of Artificial Intelligence and Data
Engineering, Istanbul, Turkey

2 ITU, Department of Computer Engineering, Istanbul, Turkey
3 ITU, AI Research and Application Center, Istanbul, Turkey

4 BTS Group, Istanbul, Turkey
5 Gazi University, Department of Computer Engineering, Ankara, Turkey
bass20@itu.edu.tr, kayak16@itu.edu.tr, resultugay@gazi.edu.tr,

sgunduz@itu.edu.tr

Abstract. Graphs are crucial for representing interrelated data and aid-
ing predictive modeling by capturing complex relationships. Achieving
high-quality graph representation is important for identifying linked pat-
terns, leading to improvements in Graph Neural Networks (GNNs) to
better capture data structures. However, challenges such as data scarcity,
high collection costs, and ethical concerns limit progress. As a result,
generative models and data augmentation have become more and more
popular. This study explores using generated graphs for data augmen-
tation, comparing the performance of combining generated graphs with
real graphs, and examining the effect of different quantities of generated
graphs on graph classification tasks. The experiments show that balanc-
ing scalability and quality requires different generators based on graph
size. Our results introduce a new approach to graph data augmentation,
ensuring consistent labels and enhancing classification performance.

Keywords: generative models · graph neural networks · data augmen-
tation · graph sequentialization

1 Introduction

Graphs serve as important representations of interrelated data in various fields,
including social networks and chemical sciences, due to their ability to encap-
sulate complex relationships and facilitate critical tasks such as predictive mod-
eling. Obtaining high-quality graph representations is vital for revealing under-
lying interrelated patterns and phenomena in fields that rely on graph-related
data [1].

However, the progress in this area is being hampered by the lack of useful
big datasets and consistent evaluation processes. Despite significant progress in
data availability in recent years, this development remains limited in various

2 Sümeyye Baş, Kıymet Kaya, Resul Tugay, and Şule Gündüz Öğüdücü

application domains for privacy and security reasons [2, 3]. This indicates that
future models may intentionally or unintentionally resort to generated synthetic
data.

Adjacency Matrix

𝐿𝑏𝑡
𝜋

2

1

4

3
6

5

2

1

4

3
6

5

2

1

4

3

2

1

sampling

2

1

4

3
6

5
Graph

Recurrent

Attention

Network

Adjacency Matrix

1

2

3

4

5

6

1

2

3

4

𝐿𝑏𝑡−2
𝜋

𝐿𝑏𝑡−1
𝜋

𝐿𝑏𝑡−2
𝜋

𝐿𝑏𝑡−1
𝜋

…

𝐿𝑏𝑡−2
𝜋

2

1 3

2

1
…

Step-2.a: large graphs generation

2

1

4

3

2

1

4

3

5

2

1

4

3 6

5

1

1

0

1

𝑆5
𝜋

𝑆6
𝜋

𝑆4
𝜋𝑆3

𝜋

Step-1 : raw data collection

Step-2.b: small graphs generation

Step-2 : graph data generation Step-3 : graph classification

…

…

…

…

𝑮𝒄𝟏

… …

𝑮𝒄𝒌−𝟐

𝑮𝒄𝒌−𝟏

𝑮𝒄𝒌

…

…

…

…

…

… … …

𝐶1

𝐶𝑘−2

𝐶𝑘−1

𝐶𝑘
0

0

0

0

1

∀ 𝑮𝒄𝒊 𝐢𝐧 𝑮 𝒓𝒖𝒏 𝑪𝒄𝒊 𝒕𝒊𝒎𝒆𝒔

node-level update

sample + edge-level update

0

1

0

0

1

raw

+

generated

ℎ3 ℎ4 ℎ5 ℎ6 ℎ7

Fig. 1: Graph Classification with Graph Size-Aware Data Augmentation.

The generation of synthetic data is becoming more and more popular for a
variety of reasons such as improving data diversity, and enhancing privacy and
security [4]. In many domains, it is often difficult to gather sufficient data tailored
to specific tasks. Data augmentation emerges as a crucial solution to this chal-
lenge. In research areas, involving graph-related data, leveraging proper synthetic
graphs proves to be more efficient, cost-effective, and straightforward compared
to acquiring additional real-world datasets. Moreover, it offers enhanced privacy
protections, particularly in sensitive industries such as healthcare and finance [5].

The Graph Classification with Graph Size-Aware Data Augmentation frame-
work we propose in this study is presented in Fig. 1. It’s important to clarify that
our approach involves data augmentation, encompassing both synthetic and real-
world data, such that, the amount of the training set is increased, rather than
relying solely on synthetic data. The proposed approach emerges from extensive
literature research, revealing the diverse capabilities of different graph genera-
tors [6, 7]. Recognizing that raw datasets possess varying characteristics, which
can influence generator performance, we examined these generators especially
for graph size sensitivity which led us to introduce a novel framework aimed
at enhancing graph classification. The framework operates by splitting datasets
according to graph labels, training individual generator models for each class,
and leveraging both original and generated graphs in the graph classification
process. Experimental results demonstrate that this tailored approach signifi-
cantly boosts classification performance, particularly for datasets with a limited
number of graphs.

Data Augmentation in GNNs: The Role of Generated Synthetic Graphs 3

The main contributions of this study can be summarized as follows:

– Examining the usability of generated synthetic data to improve graph clas-
sification model performances.

– Investigating how the ratio of generated data affects the prediction capa-
bilities of the models by training the models with different proportions of
synthetic data.

– Addressing graph labeling issue in graph data augmentation.
– Questioning whether it is worth spending time and resources to collect ad-

ditional real data, comparing the improvements provided by real-world and
synthetic data for data augmentation.

The rest of the paper is organized as follows. Section 2 presents related works
and Section 3 gives details of the methodology. Section 4 presents the experi-
mental results of the study. Lastly, Section 5 concludes the paper.

2 Literature Review

Data augmentation has recently drawn significant attention in the field of ma-
chine learning, especially for deep learning models, [8–10], thanks to its ability
to enhance model performance and generalization by incorporating additional
training data. Data augmentation is commonly used in computer vision and text
applications. Data augmentation with images is relatively simpler due to the Eu-
clidean nature and well-organized structure of image instances. Pixel matrices
can be easily transformed using common rule-based techniques like rotation,
scaling, and flipping preserving the labels [11]. Similarly, for text-level data aug-
mentation rule-based data augmentation approaches including random insertion,
random deletion, and synonym substitution are quite effective [12]. AugGPT
rephrases sentences in the training data through rule-based approaches to in-
crease the training data size and ensure accurate labeling in the generated text
data [13].

However, compared to text and image data types graphs are irregular and
non-Euclidean. Therefore, even small changes in the structure may result in a loss
of inter-related information, making the augmentation process more complex for
graph data. Graph Data Augmentation methods can be broadly examined un-
der two headings: rule-based and learned (AI-based) approaches. Among these,
rule-based methods apply predefined rules to modify graph data, such as random
edge removal and graph clipping while learned methods, such as graph struc-
ture learning and graph rationalization, exploit learnable parameters for data
augmentation that can be trained independently or with downstream tasks.

The conventional rule-based graph augmentation techniques widely applied
in the literature, such as arbitrary node removal, edge modification, or the oc-
clusion of node characteristics, rely on random alterations of network structures
or attributes. However, these arbitrary changes often compromise label invari-
ance by inadvertently damaging significant label-related information, thus fail-
ing to generate appropriate graph data and improve graph prediction models’

4 Sümeyye Baş, Kıymet Kaya, Resul Tugay, and Şule Gündüz Öğüdücü

performance in practical applications. To address these limitations, GraphAug is
offered as a solution by computing label-invariant augmentations through an au-
tomated approach, thereby safeguarding crucial label-related data within graph
datasets [14]. Furthermore, Sui et al. proposed Adversarial Invariant Augmenta-
tion (AIA), a strategy aimed at mitigating covariate shifts in graph representa-
tion learning [15]. Yue et al. advanced a label-invariant augmentation method for
graph-structured data in graph contrastive learning, generating augmented sam-
ples in challenging directions within the representation space while maintaining
the original sample labels [16].

Despite advances in data augmentation, studies on using generated data for
prediction in graph neural networks are limited in the literature [17]. Zero-shot
image classification was performed using data generated with models that had
been extensively trained. The performance of prediction models using synthetic
data and real data for image classification is compared and similar accuracy
values are observed [18]. The effect of synthetic graphs on the model perfor-
mance of node classification algorithms was examined, and small improvements
in performance were obtained through pre-training using graphs with similar
characteristics. Sun et al. presented the MoCL framework for learning molec-
ular representations, utilizing both local and global domain expertise to guide
the augmentation procedure and guarantee variation without changing graph se-
mantics, as shown on several molecular datasets [19]. Using social network graph
datasets, Tang et al. performed cosine similarity-based cross-operation on the ini-
tial characteristics to produce additional graph features for node classification
tasks [20]. In this study, we investigate the impact of graph data augmentation
on the graph classification task. Generator methods proposed in the literature for
data augmentation offer different advantages. Our work differs from its contem-
poraries in that it appropriately combines two state-of-the-art generator models,
according to their advantages in terms of graph size.

3 Methodology

The overall structure of our proposed method is depicted in Fig. 1. First, for the
graph classification task, the data G = G1, ..., Gs with E edges and V nodes, is
grouped as small or large according to the average number of nodes and edges
of the graphs it contains. In this study, the average number of nodes is fifty and
above, or an edge number of thousand two hundred twenty-five (edge numbers
for a fully connected simple graph with fifty nodes), and above is determined as
large, otherwise small. In Step 2 of Fig. 1, the appropriate generation model is
selected according to whether the graphs in the data are small or large, and for
each graph class Ci, the desired number of synthetic graphs for that class CCi is
generated for data augmentation. Here we recommend GRAN for data consisting
of large graphs and GraphRNN for small ones. GRAN, with its focus on balanc-
ing efficiency and quality—particularly through its stride parameter—may ex-
perience a reduction in generation quality for smaller graphs when compared to
GraphRNN. On the other hand, GRAN’s methodology is optimized for handling

Data Augmentation in GNNs: The Role of Generated Synthetic Graphs 5

larger graphs, whereas GraphRNN’s architecture and training process are better
suited for generating smaller-scale graphs [6] and mostly give out of memory
error for larger graphs despite efforts to enhance scalability through techniques
like bread-first-search (BFS) node ordering scheme. Graph generation methods
GraphRNN, GRAN, and all the classification methods used during the experi-
ments are detailed in the subheadings, and the code repository is also available
here6.

3.1 Graph Data Generation

Learning a distribution pmodel(G) over graphs is the aim of generative model
learning. This is achieved by sampling a collection of observed graphs G =
G1, ..., Gs from the data distribution p(G), where each graph in G may vary
in the number of nodes and edges [7]. Instead of directly acquiring knowledge
about the probability distribution p(G), which is difficult to define precisely the
representation of the sample space, an auxiliary random variable π is sampled
to represent node ordering as sequences. This transforms the graph generation
process into the generation of node and edge sequences, where nodes and edges
are generated autoregressively. An adjacency matrix with a node ordering π
maps nodes to rows and columns of the matrix enabling each graph in G

to be depicted by the adjacency matrix Aπ ∈ Rn×n 1.

Aπ
i,j = 1 [(π (vi) , π (vj)) ∈ E] . (1)

The aforementioned generator models were designed to work with simple
graphs G = (V,E). Initially, graph nodes and edges are represented as sequences
and sequences of sequences using a mapping fS , respectively. For a graph G
sampled from p(G) with n nodes under a node ordering π, the sequence Sπ is
obtained as in Equation 2, where Sπ

i is an adjacency vector representing the
edges between node π(vi) and the preceding nodes π(vj), j ∈ {1, ..., i − 1},
already present in the graph 3.

fS(G, π) = (Sπ
1 , ..., S

π
n) (2)

Sπ
i =

(
Aπ

1,i, . . . , A
π
i−1,i

)T
,∀i ∈ {2, . . . , n} (3)

p(G) =
∑
Sπ

p (Sπ)1 [fG (Sπ) = G] (4)

In the case of undirected graphs, Sπ uniquely determines a graph G, denoted
by the mapping fG(·), where fG(S

π) = G. This sequentialization process allows
generators to observe Sπ and learn about its probability distribution, p(Sπ),
which can be analyzed sequentially as Sπ exhibits a sequential nature. During
inference time, generators can derive samples of G without explicitly calculating
p(G) by sampling Sπ, which corresponds to G through the function fG. With
these concepts, p(G) can be expressed as a marginal probability distribution of
the joint distribution p(G,Sπ) in Equation 4, where p(Sπ) is the distribution
that the generator aims to learn.
6 https://github.com/sumeyyebas/AIGraphAugmentation

6 Sümeyye Baş, Kıymet Kaya, Resul Tugay, and Şule Gündüz Öğüdücü

Large Graphs Generation: GRAN [21] The overall procedure of a gener-
ation phase with GRAN is illustrated in Step-2.a of Fig. 1. GRAN promises to
provide a strong autoregressive conditioning between the graph’s generated and
to-be-generated portions as attention-based GNN helps better distinguish multi-
ple newly added nodes. While expressing networks as adjacency matrices, some
matrices remain unchanged under certain permutations, resulting in symmetry.
To solve this, GRAN constructs a set of symmetric permutations as in Equation
5 and develops a surjective function u that maps permutations to symmetric
permutations. Thus, for a graph G, different adjacency matrices for all permuta-
tions are modeled. However, for undirected graphs, it is enough to just model the
lower triangular portion of the adjacency matrix Lπ. GRAN generates the lower
triangular component Lπ block by block, adding one block of nodes and asso-
ciated edges at a time t. This procedure considerably decreases auto-regressive
graph creation decisions by a factor of O(N), where N = |V |.

∆(Aπ) =
{
π̃ | Aπ̃ = Aπ

}
(5)

bt = {B(t− 1) + 1, ..., Bt}. (6)

p(Lπ) = ΠT
t=1p(L

π
bt
|Lπ

b1
, ·, Lπ

bt−1
) (7)

GRAN creates one block of B rows of Lπ at a time. The t-th block consists
of rows with indices as in Equation 6. The number of steps required to create a
graph is therefore T = O(N/B). The conditional probability in Equation 7 de-
termines the likelihood of producing the current block. The probability function
it needs to learn becomes a long conditional probability as it uses previous blocks
to infer the next block. To avoid long-term bottlenecks and use the structural
features of graphs, GRAN prefers GNNs over RNNs.

Small Graphs Generation: GraphRNN [7] In GraphRNN, the graph se-
quentialization is followed by constructing a scalable auto-regressive model that
is suitable for small-medium size of graphs and can benefit from graph struc-
ture. Its generation process is shown in the Step-2.b of Fig. 1. GraphRNN can be
viewed as a hierarchical model where new nodes are constructed by a graph-level
RNN and the edges of each newly formed node are generated by an edge-level
RNN, all while maintaining the state of the graph.

hi = ftrans(hi−1, S
π
i−1) (8)

θi = fout(hi) (9)

Sπ = fS(G,BFS(G, π)) (10)

The probability distribution p(Siπ|S<iπ) for each i is intricate, requiring
an understanding of how node π(vi) connects to preceding nodes based on the
previously added nodes. GraphRNN suggests parameterizing p(Siπ|S<iπ) with
a neural networks model ensuring scalability with share weights across all time

Data Augmentation in GNNs: The Role of Generated Synthetic Graphs 7

steps. GraphRNN employs an RNN comprising a state-transition function ftrans
and an output function fout as in Equations 8 and 9, where hi in Rd represents
the state encoding of the generated graph up to this point, Si−1 is the adjacency
vector for the most recently generated node i−1, and i denotes the distribution of
the adjacency vector for the next node (i.e., Si follows distribution Po). Generally,
ftrans and fout can be any neural network, and Po can be any distribution over
binary vectors.

A key finding of the GraphRNN technique is that, without sacrificing gener-
ality, it learns to produce graphs using breadth-first-search (BFS) node orderings
instead of learning to generate graphs under any conceivable node permutation.
BFS also provide a unique representation of graphs. Therewith, Equation 2 is
changed to Equation 10, with the deterministic BFS function represented by
BFS(·). Specifically, this BFS function takes a random permutation i as its in-
put, selects node v1 as the starting point, and appends each node’s neighbors to
the BFS queue following the order given by the permutation. It should be noted
that the BFS function is many-to-one, meaning that multiple permutations can
result in the same ordering once the BFS function is executed.

3.2 Graph Classification

GraphSAGE (Graph Sample and Aggregation) [22] creates node embed-
dings by sampling and aggregating data from each node’s neighborhood. Graph-
SAGE generates robust graph categorization representations by combining in-
formation from several layers of the graph.

GIN0: GIN (Graph Isomorphism Network) generates node embeddings by
using message-passing procedures and a learnable set function through a multi-
layer perceptron network. GIN is suitable for graph classification applications
since it can capture higher-order graph structures. GIN0 sets the learnable ε
parameter as 0 and depends rather on a set aggregation algorithm for updating
node features. Therefore, it is computationally cheaper but less flexible [23].

GINWithJK [23] adds the concept of jumping knowledge (JK) concept to
the GIN model. This concept combines representations from several layers to
improve the final node embeddings. Therefore, better information flow between
layers can be achieved.

GCNWithJK [24] Graph Convolutional Networks (GCN) iteratively ag-
gregate information from neighboring nodes. GCN with Jumping Knowledge
(GCNWithJK) directly merges node representations from several GCN layers.
So, capturing both local and global graph structures becomes easier.

EdgePool [25] is an edge-level graph pooling technique utilized in Graph
Neural Networks (GNNs). It efficiently reduces the size of the graph while main-
taining important structural information by selectively aggregating edges. Along
with this, every EdgePool layer outputs the mapping between every node in the
old graph and every node in the newly-pooled graph. An inverse mapping from
pooled nodes to unpooled nodes is produced during unpooling. It is possible
to link this mapping via many pooling layers because each node is assigned to
exactly one merged node.

8 Sümeyye Baş, Kıymet Kaya, Resul Tugay, and Şule Gündüz Öğüdücü

4 Experimental Results

We observed the effect of synthetic graph data by GNNs on graph classification
on six public datasets from TU7 - three chemical compounds (MUTAGENICITY,
ENZYMES, MUTAG), two social networks (COLLAB, TWITCH EGOS), and
one protein interactions (DD). The descriptive statistics of these benchmark
datasets are given in Table 1.

Table 1: Benchmark Graph Datasets Statistics

name #graphs
avg.

nodes
avg.
edges

avg.
degree

avg.
density

avg.
diameter

#classes
class

distributions
(%)

DD 518 258.74 650.23 4.99 0.0232 19.75 2 63-36
COLLAB 4001 73.40 2357.18 36.97 0.5076 1.87 3 51-32-15
TWITCH EGOS 101894 29.69 86.51 5.39 0.2020 2.00 2 53-46
MUTAGENICITY 3467 29.52 30.51 2.05 0.0921 9.92 2 55-44
ENZYMES 360 32.28 61.04 3.83 0.1592 11.30 6 16-16-16-16-16-16
MUTAG 152 17.95 19.79 2.19 0.1383 8.24 2 66-33

To investigate the impact of generated graphs on the graph classification
task, we partitioned each dataset into three, ensuring the class distributions re-
mained consistent: raw-data (80%), sub-real data (10%), and test data (10%).
The raw-data serves as the baseline for comparison, representing the initial data
available to researchers. In comparison, the sub-real data (R) imitates the sup-
plementary data that researchers might acquire through additional time and
resource investment in real-world scenarios. Lastly, the test data is designated
to evaluate the performance of graph classification. Created with real-world ap-
plication in mind, this strategic data partitioning enables the analysis of how
generated graphs affect the accuracy of graph classification models.

Leveraging the initial raw-data available to researchers, we generated datasets
comparable in size to the R, ensuring class distributions remained consistent
across all generated sets as in all other sets. This approach allowed us to assess
the impact of the real and generated data of the same size on graph classifi-
cation performance. We further extended these experiments by generating data
sets twice and three times the size of the R, to examine how change in the
volume of generated graphs affects the model performance. Given the diversity
in graph sizes within our datasets (see. varying sizes of avg. nodes, avg. edges
in Table 1), we employed GRAN, known for its adaptability to large graphs,
as our preliminary study indicated that GraphRNN encountered Out of Mem-
ory (OOM) errors with bigger graphs. Table 2 presents the prediction results
of graph classifier models from various backgrounds for raw-data, with R added
to the raw-data (w/ Real), and with the aforementioned generated data sets
added to the raw-data namely w/Gen.1, w/Gen.2, w/Gen.3. According to the
7 https://chrsmrrs.github.io/datasets/docs/datasets/

Data Augmentation in GNNs: The Role of Generated Synthetic Graphs 9

Table 2: Graph Classification Results - I
GraphSAGE GIN0 GINWithJK GCNWithJK EdgePool
Acc. Epoch Acc. Epoch Acc. Epoch Acc. Epoch Acc. Epoch

raw-data 0.630 6 0.605 6 0.545 27 0.630 5 0.660 4
w/ Real = |R| 0.630 12 0.665 40 0.630 12 0.630 4 0.630 5
w/ Gen.1 = |R| 0.635 10 0.650 14 0.665 20 0.630 4 0.630 5
w/ Gen.2 = |R| ∗ 2 0.695 31 0.665 13 0.665 23 0.630 4 0.630 4

DD

w/ Gen.3 = |R| ∗ 3 0.630 14 0.665 15 0.685 12 0.630 5 0.630 5
raw-data 0.576 7 0.718 40 0.707 11 0.534 8 0.650 5
w/ Real 0.572 10 0.736 28 0.736 10 0.693 13 0.656 16
w/ Gen.1 0.578 8 0.705 9 0.718 11 0.534 6 0.666 14
w/ Gen.2 0.572 14 0.730 10 0.734 11 0.650 24 0.701 19

COLLAB

w/ Gen.3 0.569 13 0.738 33 0.716 8 0.631 13 0.627 23
raw-data 0.576 16 0.681 20 0.701 39 0.689 30 0.682 45
w/ Real 0.576 7 0.694 31 0.700 30 0.684 13 OOM
w/ Gen.1 0.578 10 0.700 24 0.702 23 0.695 21 OOM
w/ Gen.2 0.579 12 0.699 12 0.702 28 0.696 19 OOM

TWITCH EGOS

w/ Gen.3 0.575 9 0.699 13 0.690 42 0.700 35 OOM
raw-data 0.597 20 0.703 15 0.740 28 0.551 4 0.701 28
w/ Real 0.590 14 0.726 16 0.719 12 0.551 4 0.719 44
w/ Gen.1 0.593 29 0.698 10 0.726 22 0.551 4 0.717 30
w/ Gen.2 0.609 18 0.708 11 0.728 14 0.551 4 0.701 32

MUTAGENICITY

w/ Gen.3 0.586 12 0.744 32 0.712 31 0.551 4 0.685 22
raw-data 0.141 9 0.166 7 0.191 46 0.166 13 0.166 10
w/ Real 0.166 8 0.158 15 0.166 96 0.166 8 0.166 17
w/ Gen.1 0.233 14 0.200 13 0.266 41 0.166 10 0.175 15
w/ Gen.2 0.191 7 0.233 27 0.266 35 0.166 12 0.175 15

ENZYMES

w/ Gen.3 0.175 11 0.208 18 0.158 22 0.166 11 0.166 15
raw-data 0.666 22 0.944 25 0.944 26 0.666 10 0.666 11
w/ Real 0.666 32 0.833 54 0.833 15 0.666 11 0.666 10
w/ Gen.1 0.666 12 0.944 42 0.833 14 0.666 11 0.666 11
w/ Gen.2 0.666 11 0.944 51 0.944 24 0.666 11 0.666 10

MUTAG

w/ Gen.3 0.666 40 0.833 25 0.944 36 0.666 13 0.666 11

results in Table 2, the most accurate predictions for each dataset, as highlighted
in the table, were achieved by incorporating the generated graphs and mostly
with w/Gen.2.

In the second part of the experiments, we generated one thousand twenty-four
graphs from each class in the datasets and drastically increased the proportion
of the generated data size. Here, we aim to explore the feasibility of obtain-
ing a more balanced dataset with a large number of samples with the proposed
graph data generation method, avoiding the imbalanced data and data scarcity
problems that affect the prediction performance of many learning algorithms.
The results of these experiments, which we obtained by data generation with
GraphRNN and GRAN on datasets MUTAGENICITY, ENZYMES, and MU-
TAG, which consist of small graphs and contain a small number of samples,
are presented in Table 3. According to the results in Table 3, the most accu-
rate predictions for each dataset, as highlighted in the table, were achieved with
w/Gen.(GraphRNN).

The overall summary of the results we obtained with the proposed textit-
Graph classification with graph size-aware data augmentation framework is pre-

10 Sümeyye Baş, Kıymet Kaya, Resul Tugay, and Şule Gündüz Öğüdücü

Table 3: Graph Classification Results - II
GraphSAGE GIN0 GINWithJK GCNWithJK EdgePool
Acc. Epoch Acc. Epoch Acc. Epoch Acc. Epoch Acc. Epoch

raw-data 0.597 20 0.703 15 0.740 28 0.551 4 0.701 28
w/ Real 0.590 14 0.726 16 0.719 12 0.551 4 0.719 44
w/ Gen. (GraphRNN) 0,611 20 0,710 14 0,744 23 0,551 6 0,694 35

MUTAGENICITY

w/ Gen. (GRAN) 0,551 7 0,689 21 0.728 23 0,551 5 0,551 6
raw-data 0.141 9 0.166 7 0.191 46 0.166 13 0.166 10
w/ Real 0.166 8 0.158 15 0.166 96 0.166 8 0.166 17
w/ Gen. (GraphRNN) 0,166 12 0,241 49 0,241 65 0,166 14 0,166 15

ENZYMES

w/ Gen. (GRAN) 0,183 7 0,158 31 0,125 75 0,166 22 0,175 30
raw-data 0.666 22 0.944 25 0.944 26 0.666 10 0.666 11
w/ Real 0.666 32 0.833 54 0.944 15 0.666 11 0.666 10
w/ Gen. (GraphRNN) 0,388 70 0,888 85 0,944 79 0,666 14 0,777 52

MUTAG

w/ Gen. (GRAN) 0,944 27 0,666 30 0,777 60 0,666 14 0,777 21

Fig. 2: Proposed Graph Classification with Graph Size-aware Data Augmenta-
tion Framework Results Summary

sented in Fig. 2. The results here reflect the raw-data, w/R and w/G accuracy
values of the most accurate graph classifier for the relevant dataset (DD, COL-
LAB (C), TWITCH EGOS (TE), MUTAGENICITY (ME), ENZYMES (E),
MUTAG (M)). Mirroring the observations of Touat et al. [6], our study re-
veals that particularly when working with medium to large-sized graphs, the
graphs produced by GRAN are more analogous to the original graphs, however,
GraphRNN has scalability problems not applicable to large graphs. However,
while working with smaller graphs GRAN tends to overfit and its generation
quality drops, hence GrapRNN is better.

5 Conclusion and Future Work

To conclude that, our study demonstrates the substantial impact of synthetic
graph data on the performance of graph classification tasks across diverse datasets.
The proposed Graph classification with graph size-aware data augmentation frame-
work offers a flexible graph data generation process that is applicable for small,
medium, and large-sized graphs. Moreover, the experiments involving a signifi-

Data Augmentation in GNNs: The Role of Generated Synthetic Graphs 11

cant increase in the proportion of generated data further highlighted the poten-
tial of our graph generation framework to mitigate issues of data imbalance and
scarcity, especially in smaller datasets. This balance was crucial for achieving
higher prediction accuracy, as evidenced by the superior performance of models
utilizing balanced, generated datasets. Overall, our findings underscore the ef-
fectiveness of AI-driven data generation in enhancing graph classification tasks,
paving the way for more accurate and reliable machine learning models in diverse
applications.

For future work, we plan to investigate the reasons for the differences in the
performance of the generated data with explainable AI methods and also to work
on generating synthetic graphs for dynamic graphs.

Acknowledgments. This research is supported by the Scientific and Technological
Research Council of Turkey (TUBITAK) 1515 Frontier R&D Laboratories Support
Program (project number 5239903) and the ITU Scientific Research Projects Fund
under grant number YESAP-2024-45920.

Disclosure of Interests. There are no relevant financial or non-financial competing
interests to report.

References

1. Qiaoyu Tan, Ninghao Liu, and Xia Hu. Deep representation learning for social
network analysis. Frontiers in Big Data, 2:2, 2019. Article in Research Topic:
When Deep Learning Meets Social Networks.

2. Leho Tedersoo, Reena Küngas, Eve Oras, et al. Data sharing practices and
data availability upon request differ across scientific disciplines. Scientific Data,
8(1):192, 2021.

3. Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem,
Tianfan Fu, and Wenqi Wei. Machine learning for synthetic data generation: A
review, 2024.

4. Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobb-
hahn, and Anson Ho. Will we run out of data? an analysis of the limits of scaling
datasets in machine learning, 2022.

5. Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Hu-
mayun, Hossein Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G. Baraniuk.
Self-consuming generative models go mad, 2023.

6. Ousmane Touat, Julian Stier, Pierre-Edouard Portier, and Michael Granitzer. Gran
is superior to graphrnn: node orderings, kernel- and graph embeddings-based met-
rics for graph generators, 2023.

7. Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec.
Graphrnn: Generating realistic graphs with deep auto-regressive models, 2018.

8. Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep
graph learning: A survey, 2022.

9. Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann,
Neil Shah, and Meng Jiang. Graph data augmentation for graph machine learning:
A survey, 2023.

12 Sümeyye Baş, Kıymet Kaya, Resul Tugay, and Şule Gündüz Öğüdücü

10. Lu Lin, Jinghui Chen, and Hongning Wang. Spectral augmentation for self-
supervised learning on graphs, 2023.

11. Hritik Bansal and Aditya Grover. Leaving reality to imagination: Robust classifi-
cation via generated datasets. 2023.

12. Pei Liu, Xuemin Wang, Chao Xiang, and Weiye Meng. A survey of text data
augmentation. In 2020 International Conference on Computer Communication
and Network Security (CCNS), pages 191–195. IEEE, 2020.

13. Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke Huang, Yihan Cao, Zihao Wu,
Lin Zhao, Shaochen Xu, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu, Hongmin
Cai, Lichao Sun, Quanzheng Li, Dinggang Shen, Tianming Liu, and Xiang Li.
Auggpt: Leveraging chatgpt for text data augmentation, 2023.

14. Youzhi Luo, Michael McThrow, Wing Yee Au, Tao Komikado, Kanji Uchino, Koji
Maruhashi, and Shuiwang Ji. Automated data augmentations for graph classifica-
tion, 2023.

15. Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang
Wang, and Xiangnan He. Unleashing the power of graph data augmentation on
covariate distribution shift, 2023.

16. Han Yue, Chunhui Zhang, Chuxu Zhang, and Hongfu Liu. Label-invariant aug-
mentation for semi-supervised graph classification, 2022.

17. Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song
Bai, and Xiaojuan Qi. Is synthetic data from generative models ready for image
recognition?, 2023.

18. Victor Besnier, Himalaya Jain, Andrei Bursuc, Matthieu Cord, and Patrick Pérez.
This dataset does not exist: training models from generated images, 2019.

19. Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: Data-
driven molecular fingerprint via knowledge-aware contrastive learning from molec-
ular graph, 2022.

20. Zhengzheng Tang, Ziyue Qiao, Xuehai Hong, Yang Wang, Fayaz Ali Dharejo,
Yuanchun Zhou, and Yi Du. Data augmentation for graph convolutional network
on semi-supervised classification, 2021.

21. Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamil-
ton, David Duvenaud, Raquel Urtasun, and Richard S. Zemel. Efficient graph
generation with graph recurrent attention networks, 2020.

22. William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs, 2018.

23. Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks?, 2019.

24. Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks, 2017.

25. Frederik Diehl. Edge contraction pooling for graph neural networks, 2019.

	Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs

