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Abstract. Graph-structured data naturally occurs in many research
fields, such as chemistry and sociology. The relational information con-
tained therein can be leveraged to statistically model graph proper-
ties through geometrical deep learning. Graph neural networks employ
techniques, such as message-passing layers, to propagate local features
through a graph. However, message-passing layers can be computation-
ally expensive when dealing with large and sparse graphs. Graph pool-
ing operators offer the possibility of removing or merging nodes in such
graphs, thus lowering computational costs. However, pooling operators
that remove nodes cause data loss, and pooling operators that merge
nodes are often computationally expensive.
We propose a pooling operator that merges nodes so as not to cause
data loss but is also conceptually simple and computationally inexpen-
sive. We empirically demonstrate that the proposed pooling operator
performs statistically significantly better than edge pool on four popular
benchmark datasets while reducing time complexity and the number of
trainable parameters by 70.6% on average. Compared to another maxi-
mally powerful method named Graph Isomporhic Network, we show that
we outperform them on two popular benchmark datasets while reducing
the number of learnable parameters on average by 60.9%.

Keywords: Geometric Deep Learning · Graph Neural Networks · Graph
Pooling

1 Introduction

Graph-structured data is commonly encountered in many fields of study [3],
such as biology, chemistry, and sociology. Over the past few years, graph neu-
ral networks have seen a multitude of new graph-based operators to improve
graph or node classification tasks. The operators can generally be categorised
as message-passing, such as graph convolutional networks [14], graph isomor-
phism networks [25] and GraphSAGE [10], and pooling, such as node cluster
pooling [5,13,27,28] and node drop pooling [8,9,16,29].
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Message-passing operators propagate the features of a node to its local neigh-
bourhood with a distance of k hops per operator, the exception being sequential
message-passing operators specifically designed for directed acyclic graphs [22].
They directly update node features by a permutation-invariant aggregation func-
tion, as the neighbourhoods of nodes in a graph are generally unordered. Al-
though effective, these methods can become costly for large and sparse graphs,
as many iterations of an operator may be required for information to propagate
over the longest path in the graph.

Graph pooling operators aim to improve computational performance by mod-
ifying the structure of the given graph by removing or combining a subset of its
nodes. In graph neural networks, these operators are used to, e.g., create more
adequate graph-level representations [18]. Pooling operators can offer several
advantages when working with deep learning on graphs, such as improving com-
putational efficiency by reducing the number of nodes and edges or by making
the graph easier to interpret. They can also improve the connectivity in the
graph by reducing the longest path so that messages are propagated further in
a single layer. This can be crucial for performance when handling large, sparsely
connected graphs [1,18]. Liu et al. [18] established a taxonomy of graph pooling
operators. They defined two subcategories of graph pooling: Node cluster pool-
ing and node drop pooling; the key difference between these is that the latter
sacrifices information in the network for speed. In this work, we aim to bridge
this gap and create a relatively efficient graph pooling operator that does not
drop nodes and thus reduces information loss.

We propose an improved version of edge contraction pooling by Diehl et
al. [5], named edge-based graph component pooling, addressing several design
limitations. Our main contributions are:

– We remove the hard constraints of edge contraction pooling where always
half the nodes are merged, and nodes can only be merged with one neighbour,
creating a more flexible operator.

– Our new operator is computationally cheap, with worst-case time complexity
quadratic in the number of nodes.

– We show that our operator improves performance compared to edge contrac-
tion pooling while being substantially more computationally efficient.

– We show that our operator does not suffer information loss by obtaining
comparable performance to an expensive graph neural network that does
not pool nodes.

Our proposed method, graph component pooling, like edge contraction pool-
ing, offers other advantages over node drop pooling methods. It maintains infor-
mation on how nodes were combined, preserving their information and allowing
the pooling step to be reverted. This is an essential characteristic for the layer to
be relevant for node-based tasks. In contrast, node drop pooling methods cause
inevitable loss of information and cannot be used in node-based tasks, but are
generally more computationally efficient [18]. Our method aims to provide the
full benefits of node cluster pooling methods whilst approaching the efficiency
of node drop pooling methods.
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2 Related Work

Liu et al. [18] introduce a generalized framework for pooling operators in graph
neural networks. The authors note the necessity of graph pooling operators
for graph-level representations and summarise the latest developments in the
field [1,13,28,9,29,12,4]. They separate the process of graph pooling into either
two (node cluster pooling) or three (node drop pooling) steps. Node cluster pool-
ing consists of a cluster assignment matrix step, where the cluster assignment
for each node is determined, and a graph coarsening step where the new graph
is created based on the node features X and the adjacency matrix A. Node drop
pooling is constructed by a score generator step, followed by a node selector
and finalized with a graph coarsening step based on the feature matrix X, the
adjacency matrix A, the scores S and the selected nodes idx. Liu et al. [18]
state that edge contraction pooling belongs to neither of these categories as it
approaches the problem from the edge view, but we will go on to show that our
method belongs to the node clustering pooling subgroup due to our adaptations.
Liu et al. [18] establish well-known datasets used for benchmarking graph neural
networks, including the datasets used in our experiments. They also presented
challenges and opportunities in the field, and in our work, we contribute to
one of these: We present our operator with an unpooling component to support
node-based tasks in the future, as Liu et al. [18] quantifiably shows that cur-
rently most pooling approaches have been focussed on graph-based tasks rather
than node-based tasks. Secondly, in terms of expressive power, we contribute a
method that is maximally expressive, as Bianchi et al. [1] have shown that the
work of Diehl et al. [5] is theoretically as expressive as the Weisfeller-Lehman
(WL) test. Since we use the same aggregation method as the work of Diehl et
al. [5], this proof also holds up for our approach.

In geometric deep learning, Xu et al. [25] have outlined the mathematical
capabilities and limitations of graph neural networks (GNNs). More importantly,
in their work, they have shown that GNNs are at best as powerful as the WL
graph isomorphism test [17], an algorithm designed to test whether two graphs
G and H are not isomorphic. The strong relation between the WL test and
GNNs lies in the parallelism that both are message-passing constructs: They
iteratively create a representation of a node based on its local neighbourhood. To
distinguish different graph structures, the combined representation of the nodes
must be distinguishable if the graphs are not isomorphic [25]. Their proposed
method, graph isomorphism network, is a message-passing layer constructed of
a multi-layer perceptron to model a function to update a node’s representation
based on its local neighbourhood. The authors prove that their method is as
powerful as the WL test.

Although our method does not fall within the message-passing framework,
we designed it to align with the mathematical proofs of maximizing the ex-
pressiveness of the GNNs. Bianchi et al. [1] stated that a pooling operator can
be considered as powerful as the message-passing layers before it, as long as
the network remains as expressive as after the pooling operation. The origi-
nal edge contraction pool [5] is considered to be maximally powerful, according
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to Bianchi et al. [1], who also demonstrated its potential empirically. Specifi-
cally, they studied the expressiveness of pooling operators using a modified SAT
dataset of graphs that are provably non-isomorphic by the WL test, and on this
benchmark of pooling operators, edge contraction was the only pooling operator
to achieve 100.0% accuracy. Our work meets the theoretical criteria of Bianchi
et al.[1] by maintaining the injective property of the aggregation function for
our clusters (supernodes). It is important to note that Bianchi et al. [1] also
empirically observed high running times for edge contraction pool (in terms of
wallclock time), an important challenge we aim to overcome in computational
complexity, required number of layers and computational efficiency of the layer
itself. We find that the theoretical and practical impact of the work of Xu et
al. [25] has been of great significance in the field of geometric deep learning,
and therefore, in Section 4, we compare the effectiveness of our methods on the
benchmark datasets to the graph neural networks presented in Xu et al. [25].

Our work is a direct extension of the method proposed by Diehl et al. [5]. They
introduced edge contraction pooling, a technique that scores the edges in a graph
and contracts those with the highest scores until either half of the nodes have
been pooled together or no nodes are eligible anymore for pooling. This requires
sorting the edge scores to determine the edge order, yielding an upper bound
time complexity of O(n2 · log(n)) where n represents the number of nodes, as the
number of edges in a graph is at maximum the number of nodes squared. We
found this technique to be overly restrictive. The two most important limitations
are as follows: Edge pooling always attempts to reduce the number of nodes by
50%. This is a relatively arbitrary fraction, as both the task and the network
may require varying amounts of pooling based on the nature and context of the
data. Secondly, the pooling operator is restricted in terms of nodes per cluster,
namely no cluster may consist of more than two nodes. This can negatively
impact the efficacy of the operator, as an edge with a relatively high score may
be ignored in favour of an edge with a lower score due to one of its nodes already
participating in a cluster. We address both of these limitations by introducing
a more flexible pooling operator that selects the edges which exceed some user-
configurable threshold. As a downside, we are not guaranteed to which extent, if
at all, the size of the graph is reduced. We are not the first to seek improvements
in the work of Diehl et al. [5]: Landolfi [15] has suggested parallelization of the
edge contraction pooling method, an implementation improvement we have also
integrated into our work.

3 Methodology

In this paper, we will combine the notations from Bronstein et al. [2] and Liu
et al. [18]. Let G = ⟨V, E⟩ be a graph with nodes V = ⟨1, · · · ,m⟩ and edges
E = ⟨1, · · · , n⟩. Nodes have features xi with dimension d, such that the feature
matrix is X ∈ Rm×d. Each edge e ∈ E is a pair of nodes e = ⟨i, j⟩, and we
consider the adjacency matrix A ∈ {0, 1}m×m with Aij = 1 if ⟨i, j⟩ ∈ E and 0



Edge-Based Graph Component Pooling 5

1

4

7

3

2

5 6

CAM  and weights Coarsen

0.65

1

0.75 0.950.8

4

7

-0.4

3

-0.8

2

5 6

0.65

1

0.75 0.950.85

4

7

3

2

5 6

3

1,2

4-7

1

Fig. 1. General illustration of our pooling operator G′ = POOL(G). Here we show how
we create G′ = ⟨V ′, E ′⟩ from G = ⟨V, E⟩ in two steps: We calculate the weights W for
every node using the edge scores and create the CAM C using the graph component
detection algorithm from Tarjan [21]. We then coarsen the graph by combining the
components into supernodes and removing the selected edges.

otherwise. A pooling operator POOL acts on a graph such that G′ = POOL(G),
with G′ = ⟨V ′, E ′⟩ where |V ′| ≤ |V| and |E ′| ≤ |E|.

Lui et al. [18] defined a two-step approach that can be identified in most
graph pooling operators. The first step is to generate the cluster assignment
matrix (CAM) C that defines which nodes will be combined through binary or
weighted values in the matrix. C is often used as a multiplication factor for
the original feature and adjacency matrices to transform the graph. The second
step is graph coarsening, where the feature matrix X, the adjacency matrix A,
and the CAM C are used to obtain the new graph. Precisely how the CAM
is obtained and coarsening is performed differs between graph pool operators.
We will discuss our implementation of these two steps in the following sections.
In Figure 1, we summarize the overall structure of our pooling operator in a
graphical representation.

3.1 Cluster Assignment Matrix generator

Our CAM is generated in three steps. The first step is defined in Equation 1. The
concatenated features of two nodes connected by an edge are passed through a
linear layer ψ, and a bias term b is added. After applying an activation function
σ, we obtain a score Sij used to decide whether two nodes should be merged.
We treat undirected graphs as if both ⟨i, j⟩ ∈ E and ⟨j, i⟩ ∈ E . We acquire the
subset of edges to be merged Em using Equation 2 by setting a threshold t for
the edge score.

Sij = σ (ψ(xi, xj) + b) (1)
Em = {⟨i, j⟩ | Sij > t ∀⟨i, j⟩ ∈ E} (2)
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Clusters of nodes that will be merged are extracted by detecting weakly
connected graph components [11] based on Em. We use an algorithm with time
complexity O(|V|+|E|), which can be reduced to O(|V|2) as |E| is upper bounded
by |V|2. This algorithm was introduced by Tarjan [21] and is implemented in
Scipy [23]. The algorithm assigns each node to a cluster Vc, resulting in a tuple
of clusters ⟨V1

c , · · · ,Vk
c ⟩, such that V =

⋃k
i=1 Vi

c. Note that single nodes that are
not merged are considered to be a cluster. The cluster assignment matrix C is
created based on the detected clusters, where C ∈ {0, 1}|V|×k.

Separate from the cluster assignment matrix, we also create a weight matrix
W ∈ R|V|×|V| that contains weights used to sum the features of nodes in a cluster.
This also ensures that gradients from the loss function propagate backwards to
the linear layer and bias term in Equation 1. All elements of W are obtained by
Equation 3.

Wij =


Sij if ⟨i, j⟩ ∈ Em
1 if i = j and vi will not be merged
0 otherwise

(3)

3.2 Graph Coarsening

Using the cluster assignment matrix C and the weight matrix W , we can coarsen
the graph by merging the clusters of nodes. Weighted sums are applied to com-
bine the features of the merged nodes to prevent information loss. Starting with
node feature matrix X and adjacency matrix A, we obtain coarsened feature
and adjacency matrices X ′ and A′ through Equation 4.

X ′ = (W × C)⊺ ×X

U = C⊺ ×A× C

A′ = (min(Uij , 1))1≤i,j≤k

(4)

In Equation 4, the matrix U can have values greater than 1, as it sums the
number of edges between nodes that are merged into a cluster. Therefore, the
min function is applied over the elements of matrix U to obtain the updated
adjacency matrix A′ containing only zeros and ones. Finally, we rebuild the set
of nodes V ′ to match the coarsened feature matrix X ′ and rebuild the set of
edges based on the coarsened adjacency matrix A′ using Equation 5.

E ′ = {⟨i, j⟩ | A′
ij = 1} (5)

The complete method is provided as pseudo-code in Algorithm 1. For de-
tails on the “ConnectedComponents” procedure, we refer the reader to Tarjan et
al. [21] and the documentation of its implementation in the SciPy package [23]
used in this paper.4

4 https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.
csgraph.connected_components.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.connected_components.html
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Algorithm 1 Edge-based Contraction Pooling algorithm
Require X ∈ Rm×d Feature matrix

A ∈ {0, 1}m×m Adjacency matrix
t ∈ [0, 1] Threshold

1: S ← 0m×m

2: for all i, j such that A[i, j] = 1 do
3: S[i, j]← σ (ψ(xi, xj) + b) ▷ xi, xj ∈ X
4: end for
5: Amerge ← S ≥ t ▷ 1 where true, 0 otherwise
6: W ← S ◦Amerge ▷ Hadamard product
7: C ← ConnectedComponents(Amerge) ▷ Tarjan et al. [21]
8: Nunmerged ← (

∑m
i=1Amerge[i, ·] +

∑m
j=1Amerge[·, j]) = 0

9: W ←W +Diagonal(Nunmerged)
10: X ′ ← (W × C)⊺ ×X
11: U ← C⊺ ×A× C
12: A′ ← (min(Uij , 1))1≤i,j≤k

13: return X ′, A′

4 Emperical Evaluation

To evaluate our new operator, we test it in a graph classification task on a
multitude of datasets while closely following common experimentation practices
in the field (e.g., Ying et al. [27] and Zhang et al. [29]).

4.1 Datasets

We use several datasets collected as a benchmark by Morris et al. [19]. In Ta-
ble 1, these datasets are listed alongside core characteristics. The protein dataset
is a classification problem where the task is to predict whether a protein acts as
an enzyme. There are six social network datasets. The first is Collaboration, a
set of scientific collaboration networks where the task is to predict the subdo-
main of research of a researcher based on their network. In the Reddit datasets,
the graphs are user interactions in a subreddit, and the task is to predict the
subreddit. The IMDB datasets describe movie collaborations of actors within
a given set of genres, and the task is to predict the genre of such a collabora-
tion network. Finally, the molecule dataset NCI1 was built to predict whether a
chemical compound can suppress the growth of tumours in the human body.

Except for the proteins dataset, the datasets do not contain node features;
thus, distinguishing the classes must be done based on the structure of the given
graph. To allow for comparison with Xu et al. [25], we have synthesized node
features of the IMDB datasets, Collaboration and NCI1 by using a one-hot
encoding of the nodes’ neighbourhood size. For all other graphs, we have set the
node features to a scalar of one, following Xu et al [25]. While Xu et al. [25]
presented results on several other benchmark datasets, such as MUTAG and
PTC, we decided not to include these datasets, as they are small and tend to
yield unreliable results.
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Dataset Category Size Avg. |V| Avg. |E| Features # Classes

Proteins [6] Protein 1,113 39.06 72.82 8 2
Reddit-Binary [26] Social 2,000 429.63 497.75 Scalar: 1 2
Reddit-Multi-12K [26] Social 11,929 391.41 456.89 Scalar: 1 11
Collaboration [26] Social 5,000 74.49 2457.78 Synthesized 3
IMDB Binary [26] Social 1,000 19.77 96.53 Synthesized 2
IMDB Multi [26] Social 1,500 13.00 65.94 Synthesized 3
NCI1 [24] Molecule 4,110 29.87 32.30 Synthesized 2
Reddit-Multi-5K [26] Social 4,999 508.52 594.87 Scalar: 1 5

Table 1. Dataset metadata, as described by Liu et al [18];|V| denotes the average
number of nodes in a graph, and |E| is the average number of edges. The features
column describes node-level features. For graphs without node features, we set their
features to scalar 1.

4.2 Setup of Experiments

Xu et al. [25] and Diehl et al. [5] trained their method 10 times on randomly split
training and validation sets, using 10-fold cross-validation. Xu et al. [25] report
performance on the validation set, Diehl et al. [5] on the test set. However, the
limited number of iterations can lead to unreliable performance measures as some
datasets are small (e.g., the protein dataset), causing skewed label distributions
in the sampled sets. We mitigate this by repeating this procedure 100 rather
than 10 times. We re-evaluate our and their methods with the extended number
of training iterations. The random seed used to split the sets is re-used in each
experiment, ensuring that all methods use identical data.

We recreated the method of Xu et al. [25] based on the architectures and
hyperparameters described in their paper. The pooling operator designed by
Diehl et al. [5] is included in the PyTorch Geometric [7] package, and we re-
implemented the remainder of their architecture based on the paper using Sage-
Conv [10] and optimized the hyperparameters manually. We do not evaluate
their methods on all datasets, as they did not design a network for all of the
datasets. Designing such networks ourselves would lead to an unfair comparison.

Like Diehl et al. [5], we loosely based the architectures of our models on those
of Xu et al. [25] and Fey and Lenssen [7]. For our pooling operator, we set σ
in Equation 1 to be the hyperbolic tangent activation function and set t = 0
in Equation 2. In most architectures, dropout is applied to mitigate overfitting
on the training datasets [20]. To allow for graph-level classification, we apply
global sum pooling on the node feature matrix after the graph convolutional
layers to reduce it to a vector. Finally, the obtained vector is passed through
linear layers to obtain the classification logits. We present the most important
hyperparameters of our models in Table 2. Our code implementation can be
found on Github.5

We split the datasets into training, validation, and test sets of 80%, 10%
and 10% of the data, respectively. The validation set is used to make train-time
5 https://github.com/ADA-research/graphclusterpool

https://github.com/ADA-research/graphclusterpool
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Variable Architecture Hidden size # Epochs LR LR halving Dropout # Params

Proteins CPCL 16 200 0.001 100 epochs 0.100 802
Reddit-Binary CCPCCPCLL 128 200 0.001 50 epochs 0 83 459
Reddit-Multi 12K CCPCCPCLL 256 200 0.00025 55 epochs 0.025 333 325
Collaboration CPCL 32 100 0.001 65 epochs 0.500 12 996
IMDB Binary CPCL 32 100 0.0001 22 epochs 0.100 18 498
IMDB Multi CPCL 128 200 0.001 45 epochs 0.100 62 468
NCI1 CPCL 128 200 0.005 45 epochs 0.100 38 274
Reddit-Multi 5K CCPCCPCLL 128 300 0.0007 80 epochs 0 83 975

Table 2. Hyperparameters of the models. The architecture is described by letters from
left to right, where C is a graph convolutional layer [14] with ReLU activation function,
P is our pooling layer with hyperbolic tangent activation, and L is a fully connected
linear layer with ReLU activation. The output size of the intermediate layers is identical
for every layer of the architectures, with the exception of the output layer, which is set
to match the number of classes in the classification task considered. Here, the sigmoid
activation function is used for binary classification and the softmax activation function
for multi-class classification.

Dataset Proteins Reddit-Binary Reddit-Multi 12K Collaboration IMDB Binary IMDB Multi NCI1 Reddit-Multi 5K

Ours 74.7± 3.9 89.7± 3.0 48.4± 1.7 77.9± 2.0 72.7± 3.9 49.6± 4.3 72.2± 3.5 52.6± 3.0
Diehl et al. 70.9± 4.6 81.1± 5.6 36.9± 2.1 69.5± 2.7 - - - -
Xu et al. 73.5± 4.6 87.8± 2.7 - 78.7± 2.0 72.7± 4.3 49.6± 4.3 79.5± 2.0 55.1± 2.4

Table 3. Results on benchmark datasets [19]; we report means and standard deviations
over 100 test scores. Missing results are caused by the model design missing from the
original work. Statistically significant results are marked in boldface, and statistically
insignificant results are underlined.

decisions such as outputting the best model based on past validation scores. The
reported performance is based on 100 evaluations on the test set.

4.3 Results

We present our results on the benchmark datasets in Table 3 and Figure 2.
In Table 3, we see a substantial improvement using our method compared

to the work of Diehl et al. [5] on every benchmark dataset while improving the
pooling operator to quadratic time complexity. Comparing our method to Xu et
al. [25], we observe an accuracy score improvement for Proteins and the Reddit-
Binary benchmark. However, we see a decrease in performance on the NCI1 and
Reddit-Multi-5K datasets.

We assessed the statistical significance of performance differences using a
two-tailed t-test with a standard significance level of 0.05 based on the 100 test
scores. We compare our method to that of Xu et al. [25] and Diehl et al. [5],
report the p-values from the t-test in Table 4, and indicate them in Table 3.

We find that our results are significantly better for two datasets in compari-
son to Xu et al. [25]. On Proteins and Reddit Binary, we show an improvement
of 1.2% and 1.9% on average, respectively. Furthermore, we’ve found that our
results are significantly worse on the Collaboration, NCI1, and Reddit Multi-
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Fig. 2. Boxplot visualization of the test set results shown in Table 3, with accuracy on
the y-axis. The results of our method and the methods we compare against are grouped
per benchmark dataset on the x-axis.

Dataset Proteins Reddit-Binary Reddit-Multi 12K Collaboration IMDB Binary IMDB Multi NCI1 Reddit-Multi 5K

Diehl et al. 0.000 0.000 0.000 0.000 - - - -
Xu et al. 0.048 0.000 - 0.009 0.892 0.887 0.000 0.000

Table 4. p-values from the statistical significance test on performance differences be-
tween our results on benchmark datasets from Table 3 and the works of Diehl et al. [5]
and Xu et al [25]. We used a two-tailed t-test over a population of 100 test scores
and rounded to three decimals. We reject the null hypothesis of equal performance if
p < 0.05. We find that all our results are significantly different from Diehl et al. [5]
and for Proteins, Reddit-Binary, Collaboration, NCI1 and Reddit-Multi 5K compared
to Xu et al. [25]

Classification 5K dataset, we show a decrease of 0.8% 7.3% and 1.9%, respec-
tively. We find our results to be tied in performance for the IMDB datasets.

Finally, we show the number of parameters used per model in Figure 3.
We see a very substantial decrease of learnable parameters in comparison to

Xu et al. [25] in three datasets, ranging from 70.8% to 76.6%. However, in three
cases a very substantial increase of learnable parameters can be found, averaging
159.2%, showing that in this category our method struggles as well to compete
with the method of Xu et al. [25]

The complete information on learnable parameters can be found in Table 5.

5 Conclusions & Future Work

In this work, we introduced a computationally efficient graph pooling operator,
dubbed edge-based graph component pooling, based on the work of Diehl et
al. [5]. We showed that the operator, like the original work, is a maximally
expressive pooling layer [1], thus, when added into any existing graph neural
network, the expressiveness of the model is not reduced. When evaluating the
performance of our operator, we showed that it achieves substantially better
accuracy than that of Diehl et al. [5].
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Fig. 3. Bar graph of the number of learnable parameters used per model, per bench-
mark, as seen in Table 5. On the y-axis, we show the number of learnable parameters
per model architecture of our method and the methods we compare against.

We also compare to a method that does not apply pooling, the work of Xu et
al. [25], to see whether our pooling operator causes information loss. We showed
that our method achieves statistically significant improved performance on two
out of seven benchmarks and is significantly outperformed on three. On two other
datasets, the performance of the models is similar. The comparable performance
indicates that our operator does not cause information loss while having the
benefit of reducing the number of required parameters through graph coarsening.
Reducing the number of learnable parameters in a model has several advantages,
such as mitigating overfitting [20], reducing the computational cost for training
and inference procedures, and avoiding using large storage space. Specifically, we
have shown that, on average, our models use 70.6% fewer learnable parameters
compared to the original method of Diehl et al. [5], highlighting the efficacy of
our pooling operator.

Based on the work of Diehl et al. [5] and the presented opportunities in Liu
et al. [18], we also implemented a reverse operator. Given the reduced graph,
all the removed nodes and their respective edges can be restored by copying
the cluster features into each node. This also allows the operator to be used for
node classification tasks. It would be interesting to see how the operator would
perform in, for example, an adapted graph U-Net structure [8] for node-based
tasks described by Liu et al. [18]. We leave this for future work.

We did not consider edge features in this work, but they can trivially be
included in our method. An approach for this would be to score the edges not
only based on the node features but also include the edge features. This allows
the edge features to have a direct impact on the features of the newly created
node.

Our method uses a learned edge scoring method with a customisable thresh-
old determining which edges will be merged, leading to an unknown number
of edges being merged. This could be misaligned with the user’s objective and
reason to use edge pool [5] or top-k pool [8] instead. An adaptation could be
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made to merge only part of the edges based on the edge scores, such as the high-
est quantile. Although interesting, we did not see this within the scope of our
work, as we aimed to move away from hard proportionality reduction towards
an unrestricted number of merged edges.

Finally, instead of pooling entire graphs by averaging all node features, which
is sometimes done in deep learning on graphs, it would be interesting to see if
our operator could pool entire graphs through the learned edge weights. This
creates a learnable global pool operator. Whether such a learned global pool
operator would perform well remains an open question.
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Appendix

Dataset Proteins Reddit-Binary Reddit-Multi 12K Collaboration IMDB Binary IMDB Multi NCI1 Reddit-Multi 5K

Diehl et al. 156 291 149 123 595 725 243 077 - - - -
Xu et al. 2742 30 538 - 55 584 65 638 54 646 9294 31 586
Ours 802 83 459 333 325 12 996 18 498 62 468 38 274 83 975
Diehl % change −99.5% −44.0% −44.1% −94.7% - - - -
Xu % change −70.8% +173.3% - −76.6% −71.8% +14.3% +311.8% +165.9%

Table 5. Number of learnable parameters in each neural network architecture, per
benchmark dataset [19] of our models versus Xu et al [25].
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