
Message-Passing on Directed Acyclic Graphs
Prevents Over-Smoothing

Andreas Roth1(�), Franka Bause2,3, Nils M. Kriege2,4, and Thomas Liebig1

1 TU Dortmund University, 44227 Dortmund, Germany
{andreas.roth,thomas.liebig}@tu-dortmund.de

2 Faculty of Computer Science, University of Vienna, Vienna, Austria
3 UniVie Doctoral School Computer Science, University of Vienna, Vienna, Austria

4 Research Network Data Science, University of Vienna, Vienna, Austria
{franka.bause,nils.kriege}@univie.ac.at

Abstract. Despite the rising popularity of message-passing neural net-
works (MPNNs), their ability to fit complex functions over graphs is
limited as node representations become more similar with increasing
depth—a phenomenon known as over-smoothing. Most approaches to
mitigate over-smoothing extend common message-passing schemes, e.g.,
the graph convolutional network, by utilizing residual connections, gating
mechanisms, normalization, or regularization techniques. Our work con-
trarily proposes to operate MPNNs on multiple computational graphs.
We show that operating on a graph with no ergodic components, i.e.,
a directed acyclic graph (DAG), prevents over-smoothing. Each DAG
amplifies a different signal in the data, allowing their combination to
amplify multiple signals simultaneously and prevent representational rank
collapse. Based on these insights, we propose DA-MPNNs, a general
framework that splits any given graph into three computational graphs
based on a strict partial order of the nodes. We conduct comprehensive
experiments that confirm the computational benefits of DA-MPNNs,
leading to further improvements of state-of-the-art MPNNs.

Keywords: graph neural networks · message-passing neural networks ·
representation learning.

1 Introduction

Many challenging tasks, such as drug discovery [25] and predictions for social
networks [14], involve graph-structured data. Message-passing neural networks
(MPNNs) [20] have found success in many of these areas. However, MPNNs did
not see the same level of improvements against classical methods, such as graph
kernels [28], that were achieved for computer vision [24] and natural language
processing tasks [56]. MPNNs struggle to achieve satisfying performance for chal-
lenging tasks, such as large-scale heterophilic node classification. Computational
issues like over-squashing [2] and over-smoothing [30] limit the ability of MPNNs
to fit complex continuous functions. Recent works identified structural properties
of given graphs, such as bottlenecks [2], to amplify computational challenges.

2 A. Roth et al.

Methods such as graph rewiring [3] propose to operate on a modified computa-
tional graph that is less prone to over-squashing. However, it is less clear which
structural properties lead to over-smoothing and how beneficial computational
graphs for this phenomenon can be constructed.

Our work identifies the ergodicity of a graph as the structural reason behind
over-smoothing. We show that operating on a graph with no ergodic components,
a directed acyclic graph (DAG), cannot lead to over-smoothing. Importantly,
each DAG amplifies a unique signal in the data depending on its structure, while
all ergodic graphs amplify the same smooth signal. When operating on two DAGs
as two computational graphs, multiple signals can be amplified simultaneously,
preventing representational rank collapse. To transform any given graph into
DAGs for these computational benefits, we propose to split the given edges into
three computational graphs using a strict partial ordering of the nodes. This leads
to DA-MPNNs, for which messages are processed on each computational graph
using distinct feature transformations and then aggregated into a joint state.
This framework can be directly combined with any MPNN. In our experiments,
we evaluate several choices for the partial order and identify the node degree
as a powerful general choice. We empirically confirm that DA-MPNN cannot
over-smooth and that its ability to amplify multiple signals in the data benefits
the learning process for several methods. When the DA framework is combined
with Dir-GNN, a state-of-the-art method for node classification on heterophilic
directed graphs, we further improve their results on all five considered datasets.
We summarize our main contributions as follows:

– We show that the ergodicity of a graph leads to over-smoothing in MPNNs,
and that graphs without ergodic components do not over-smooth. Our theory
further shows the benefits of operating on multiple DAGs as this also avoids
representational rank collapse (Section 4).

– We propose DA-MPNNs, a framework that splits any graph into three
computational graphs based on a strict partial ordering of the nodes. This
framework can be applied to any MPNN by constructing different messages
depending on the order between nodes (Section 5).

– Our experiments confirm our theory by demonstrating that DA-MPNNs
cannot over-smooth and show improved optimization properties (Section 6).

2 Preliminaries

Let G = (V, E) be a graph, where V = {v1, . . . , vn} is its set of n nodes and
E ⊆ V × V its set of edges. We refer to A ∈ Rn×n as the adjacency matrix for
which Aij = 1 if (i, j) ∈ E , otherwise the entry is 0. The nodes with an edge
ending at vi are defined as its neighbors Ni = {k | (k, i) ∈ E}. Based on each
node’s incoming edges, we define the degree matrix D ∈ Rn×n as a diagonal
matrix with dii = |Ni|. A graph is strongly connected if a path exists between
each pair of nodes. It is aperiodic if the lengths of its cycles do not have a common
divisor > 1. A graph that is strongly connected and aperiodic is ergodic. We

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 3

utilize directed acyclic graphs (DAGs) as a special graph type that do not contain
any ergodic parts, which we formally define as follows:

Definition 1. (DAG) A graph G = (V, E) is called a directed acyclic graph if
there exists a strict partial order ≺ on V such that for each edge (i, j) ∈ E ⇒ i ≺ j.

Message-Passing Neural Networks Given a graph G and d-dimensional
features X ∈ Rn×d for each node, message-passing neural networks (MPNNs) aim
to obtain expressive node representations capturing both structural properties
and connections between node features. Most MPNNs follow an iterative message-
passing scheme that updates each node’s representations

x
(k+1)
i = ϕ(k)

x
(k)
i ,

⊕
j∈Ni

ψ(k)
(
x
(k)
i ,x

(k)
j

) (1)

using a message function ψ(k), a permutation invariant aggregation function ⊕,
and a combine function ϕ(k) for each iteration k. State-of-the-art MPNNs add
additional components such as residual connections [7,46], restart terms [7,43],
or gating mechanisms [32,47]. However, for exchanging messages, most methods
follow a simple scheme that can be expressed in matrix notation⊕

j∈Ni

ψ(k)
(
x
(k)
i ,x

(k)
j

)
=
[
Ã(k)X(k)W(k)

]
i

(2)

where Ã ∈ Rn×n corresponds to the aggregation function. Ã may be the symmet-
rically normalized adjacency matrix, the mean aggregation, the sum aggregation,
or contain attention coefficients. It may also include self-loops. Most models
apply a linear feature transformation W(k) ∈ Rdk×dk+1 .

Over-Smoothing and Rank Collapse For many MPNNs, node represen-
tations tend to become more similar as more update iterations are performed,
limiting the learnable functions over graphs. This results from Equation (2)
amplifying a single signal in the data, corresponding to the dominant eigenvector
of Ã [30,6,21,44]. In the limit, this signal dominates the representations, and all
features become linearly dependent, i.e., resulting in a rank one matrix. This
phenomenon is referred to as representational rank collapse [44]. As a special
case of rank collapse, over-smoothing occurs when the dominant eigenvector of
Ã is a smooth vector, resulting in representations becoming dominated by that
smooth signal [30,39]. In particular, averaging aggregation matrices have the
constant state 1 as their dominant eigenvector, and the symmetrically normalized
adjacency matrix D−1/2AD−1/2 has D1/21 as its dominant eigenvector [36]. To
quantify the degree of over-smoothing, the Dirichlet energy

E

(
X

||X||F

)
= tr

(
X

||X||F

T

∆
X

||X||F

)
=

1

2

∑
(i,j)∈E

∥∥∥∥ xi

||X||F
− xj

||X||F

∥∥∥∥2
2

(3)

4 A. Roth et al.

is typically employed, for which convergence to 0 indicates over-smoothing [6].
Depending on the type of smoothing the model performs, the unnormalized
graph Laplacian ∆ = D−A or the symmetrically normalized Laplacian ∆ =
I−D−1/2AD−1/2 is utilized.

3 Related Work

Dealing with Over-Smoothing Various methods to reduce over-smoothing
have been proposed. These include combining the output of Equation (2) with pre-
vious states, e.g., by utilizing residual connections [5,7] or restart terms [19,7,43].
Gating mechanisms were proposed to stop updating node states after varying
numbers of iterations [47,16]. Normalization operations that reduce the similar-
ity between representations were introduced [62,29]. Another line of research
proposes regularization terms to punish smooth representations during optimiza-
tion [63]. Various methods propose aggregation functions that do not amplify
smooth signals, including negative edge weights [4,59] and combining multiple
aggregation functions [10,51]. However, all these methods are built on top of
the base message-passing scheme (Equation (2)), which operates on the original
graph and amplifies a single signal.

Disconnecting the Computational Graph from the Input Graph Typi-
cally, MPNNs operate directly on the input graph G = (V, E), which may cause
computational issues like over-squashing [2] as information cannot flow over large
distances. Sparsely connected regions, called bottlenecks [2], and related graph
properties were identified as causes [55,11]. Several methods propose to perform
the message-passing on a computational graph G′ = (V, E ′) that has better-suited
structural properties, e.g., by graph rewiring techniques [1,3]. Dense connectivity,
including higher node degrees [59] and a larger curvature [38] were identified
to amplify over-smoothing. However, further structural properties leading to
over-smoothing and how to construct a beneficial computational graph remain
unclear. To the best of our knowledge, the benefits of operating on multiple
computational graphs have not been studied.

Operating on Directed Acyclic Graphs The given graph may already
satisfy specific properties. Related to our work, several methods for operating on
trees [65,26] and on DAGs [48,60,52] were proposed. Datasets satisfying these
properties are rare. These methods’ main application areas are source code
and neural architectures [52]. As the given graph is typically not a DAG, these
methods are not broadly applicable. The connection between the computational
benefits of these data structures has not been studied.

4 DAGs Solve Over-Smoothing and Rank Collapse

While theoretical studies on over-smoothing are available for both undirected and
directed graphs, they assume ergodicity of the underlying graph, i.e., strongly

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 5

(a) Original graph. (b) DAG. (c) Reverse DAG. (d) DA-MPNNs.

Fig. 1: Different computational graphs that we consider.

connected and aperiodic (see Section 2). This assumption is related to random
walks on ergodic graphs, averaging over incoming neighbors, converging to the
uniform distribution [17]. We want to investigate how removing this assumption
affects message-passing and over-smoothing. A graph that is not ergodic and does
not contain ergodic subgraphs is a DAG (Definition 1). We refer to nodes with
no incoming edges as root nodes and nodes with no outgoing edges as leaf nodes.
Instead of nodes becoming more similar to each other, all signals get pushed
away from the root nodes towards the leaf nodes. However, the signal is lost at
the leaf nodes as they do not send any messages. Adding self-loops to all leaf
nodes to maintain the signals in the graph provably prevents over-smoothing:

Proposition 1. (DAGs do not over-smooth.) Let A ∈ Rn×n represent a DAG,
A+ the DAG with added self-loops for all leaf nodes, and Ã+ = D−1

+ A+ its
normalized adjacency matrix. Further let X(k+1) = ÃX(k)W(k) for a.e. W(0) ∈
Rd0×d1 , . . . ,W(k) ∈ Rdk×dk+1 . Then, for all l > 0 and any X(0) ̸= 0 ∈ Rn×d0

E

(
X(l)

||X(l)||F

)
≥ 1

n · dl
.

We provide the proof in Appendix A. Its benefit is still limited, as the represen-
tations of all non-leaf nodes become the zero vector. Similar to over-smoothing,
where the smooth signal gets amplified in each iteration, here, only the signal
corresponding to the particular direction gets amplified. Amplifying a single
signal still leads to the more general rank collapse, which limits the performance
of MPNNs [44].

We exploit the property that each DAG amplifies different signals based on
their particular direction. This is contrary to any two ergodic graphs, for which
random walks averaging over incoming nodes amplify the same smooth signal.
Combining multiple DAGs with distinct partial orderings allows us to amplify
multiple signals simultaneously. The DAG that amplifies the most different signal
in the data is its reverse DAG, which we define as follows:

Definition 2. (Reverse DAG) For a given DAG G = (V, E), its reverse DAG is
defined as G′ = (V, E ′) with E ′ = {(j, i) | (i, j) ∈ E}.

When operating on these two computational graphs, we amplify multiple
signals in the data simultaneously as long as we use different feature transforma-

6 A. Roth et al.

tions. This provably prevents the rank collapse of feature representations and
ensures that all representations are non-zero:

Theorem 1. (Combining DAGs prevents rank collapse.) Let A1 ∈ Rn×n repre-
sent a DAG and A2 ∈ Rn×n represent its reverse DAG. We assume each node
to have at least one incoming edge in either A1 or A2. The row-wise vector
inequality is denoted as ̸=rw. Let X(k+1) = A1X

(k)W
(k)
1 +A2X

(k)W
(k)
2 . Then,

for all l > 0 and almost every W
(k)
1 ,W

(k)
2 ∈ Rdk×dk+1 and X(0) ̸=rw 0 ∈ Rn×dk

we have
X(l) ̸=rw 0 ∧ rank(X(l)) > 1 . (4)

The proof shows the critical importance of employing different feature trans-
formations for each computational graph. We avoid rank collapse as long as
both W

(k)
1 and W

(k)
2 map a vector to two linearly independent vectors, which

explains that the statement holds for almost every W
(k)
1 ,W

(k)
2 with respect to the

Lebesgue measure. This even holds in the non-linear case, as long as this property
holds for the employed activation functions, e.g., Leaky ReLU or Sigmoid:

Remark 1. Theorem 1 holds for any activation function ϕ that does not map
two linearly independent vectors onto linearly dependent vectors, i.e., ∀x,y ∈
Rd,∀a, b ∈ R,x ̸= a · y : ϕ(x) ̸= b · ϕ(y).

Our theory shows clear benefits of operating on DAGs as the computational
graphs. This will be particularly valuable for tasks that require models that can
capture complex dynamics, e.g., heterophilic graphs. However, for most tasks,
the given graph is not a DAG. Thus, we will next propose a method to convert
any graph into DAGs to benefit from the computational advantages.

5 DA-MPNNs

Given a graph G = (V, E), our goal is to transform it into a DAG G1 = (V, E1)
as our first computational graph. This is a well-known algorithmic challenge in
graph theory, which is connected to topological sorting [9] and finding feedback
arc sets [18]. In this work, we transform any graph into a DAG by defining a strict
partial order ≺ on the nodes. Using only those edges (i, j) for which i ≺ j results
in a DAG, i.e., E1 = {(i, j) ∈ E | i ≺ j}. We define our second computational
DAG using the converse relation, i.e., E2 = {(i, j) ∈ E | j ≺ i}. This corresponds
to the reverse DAG for an undirected graph. As we defined a strict partial order,
neither i ≺ j nor j ≺ i may be satisfied for some edges. These are not contained
in E1 or E2. To not lose these edges for our message-passing, we propose a third
computational graph G3 = (V, E3) that contains all the remaining edges, i.e.,
E3 = E \ (E1 ∪ E2). We provide an example for these computational graphs in
Figure 1. As this third computational graph amplifies a signal different to G1 and
G2, potentially a smooth signal, it is mathematically beneficial to also operate

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 7

on G3. We perform the message construction part separately for each edge based
on their relation

f(i, j) =

1, if i ≺ j

2, if j ≺ i

3, otherwise
(5)

within the strict partial order. The general form of our framework for DA-MPNNs

x
(k+1)
i =

[
DA-MPNN

(
X(k), E

)]
i
= ϕ(k)

x
(k)
i ,

⊕
j∈Ni

ψ
(k)
f(i,j)

(
x
(k)
i ,x

(k)
j

) (6)

is similar to the general form of MPNNs, with ψ(k)
1 , ψ

(k)
2 , ψ

(k)
3 being functions gen-

erating different messages per computational graph,
⊕

a permutation invariant
aggregation operator, and ϕ(k) a combine function. As examples, we introduce
two common models and a state-of-the-art method in the DA framework.

DA-GCN We restate the GCN [27] in our framework, as it is commonly used
and often serves as the message-passing component within complex models. We
define DA-GCN as[

DA-GCN
(
X(k), E

)]
i
=
[
Ã1X

(k)W
(k)
1 + Ã2X

(k)W
(k)
2 + Ã3X

(k)W
(k)
3

]
i

=
∑
j∈Ni

1√
di
√
dj

W
(k)
f(i,j)x

(k)
j ,

(7)

where W(k)
1 ,W

(k)
2 ,W

(k)
3 ∈ Rdk×dk+1 are feature transformations and Ã1, Ã2, Ã3 ∈

Rn×n contain the edge weights of the corresponding computational graph, i.e.,
Ã1 + Ã2 + Ã3 = D−1/2AD−1/2.

DA-SAGE We define the DA-SAGE version of the SAGE convolution [23] as[
DA-SAGE

(
X(k), E

)]
i
= W(k)x

(k)
i +

∑
j∈Ni

1

di
W

(k)
f(i,j)x

(k)
j , (8)

where W(k) ∈ Rdk×dk+1 is the additional feature transformation of the previous
state x

(k)
i .

State-of-the-Art Methods State-of-the-art methods utilize complex architec-
tures that may include residual connections, restart terms, normalization layers,
or other improvements. However, most methods utilize a basic MPNN as part
of their framework. Our approach is thus orthogonal to these methods. When
applying DA-MPNNs to these methods, we replace the basic message-passing
operation with its DA version. As an example, the current state-of-the-art MPNN

8 A. Roth et al.

on directed graphs, Dir-GNN [42], utilizes both E and the transposed version
ET = {(j, i) | (i, j) ∈ E}. They employ two basic MPNNs, like the GCN, which
we replace with its DA versions. This leads to our definition

DA-Dir-GNN
(
X(k), E

)
= α·DA-MPNN

(
X(k), E

)
+(1−α)·DA-MPNN

(
X(k), ET

)
(9)

where α ∈ [0, 1] is a hyperparameter as proposed in [42]. Combining the DA
framework with other methods is equivalent.

5.1 Bottleneck Transformations

Using the same dimensions for each W1,W2,W3 ∈ Rd×d′
in DA-MPNNs as

for W ∈ Rd×d′
in an MPNN, would cause the DA-MPNN to contain three

times as many parameters. While reducing d and d′ for the DA-MPNN would be
straightforward, this similarly creates issues, as each message would consist of
fewer features. Instead, we propose bottleneck transformations that are inspired
by bottleneck convolutions in image processing [24]. We reduce the feature
dimension using a shared encoding transformation T ∈ Rd×s, after which distinct
transformations U1,U2,U3 ∈ Rs×s are applied in this low-dimensional space.
The transformed states are then mapped back to the target dimension using a
shared decoding transformation V ∈ Rs×d′

. The three transformations combined
result in the proposed bottleneck transformations Wi = TUiV ∈ Rd×d′

. By
matching the total number of parameters d · s+ 3 · s2 + s · d′ = d · d′ and setting

s =

⌊
−d− d′ +

√
d2 + 14 · d · d′ + (d′)2

6

⌋
, (10)

we ensure that the feature dimension is unchanged and the total number of
parameters of the DA-GCN and DA-SAGE is equal to their respective GCN and
SAGE version or slightly lower due to rounding.

5.2 Computational Complexity

The main computational differences between a DA-MPNN and its MPNN version
are computing the strict partial ordering and applying three transformations
instead of one. However, for the bottleneck transformations and our choice of s
(Equation (10)), the number of multiplications and additions also matches or is
slightly lower for the DA-MPNN. Thus, ≺ is the main additional computational
cost of the DA framework, for which we will now discuss potential options.

5.3 Choosing a partial order

Many graph theoretical algorithms, such as graph traversal algorithms or cen-
trality measures like the node degree, can provide a strict partial ordering for
nodes. We construct the strict partial order based on a single real node value ri

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 9

Table 1: Mean values and standard deviations over three runs on the ZINC
dataset (best results marked in bold). Step times are in milliseconds (ms), and
values for the mean absolute error (MAE) are multiplied by 100 for clarity. Train
MAE is the overall minimum, test MAE is based on the best validation MAE.

Metrics
Step Time (ms) MAE
Train Val Train Test

GCN 3.3± 0.1 2.1± 0.1 15.9± 0.4 20.1± 0.3

DA-GCN (random) 4.5± 0.2 2.6± 0.1 21.3± 0.2 21.5± 0.4
DA-GCN (Features) 4.6± 0.1 2.6± 0.1 12.2± 0.3 15.5± 0.7
DA-GCN (PPR) 5.7± 0.2 3.7± 0.2 16.3± 0.1 19.7± 0.2
DA-GCN (Degree) 4.7± 0.2 2.7± 0.1 12.7± 0.2 16.6± 0.4

DA-GCN (Degree) \ Bottleneck 4.1± 0.1 2.4± 0.1 10.9± 0.1 16.3± 0.4

Table 2: Train losses reported are the overall minimum. Test scores are based on
the best validation score. The cross-entropy (CE), mean absolute error (MAE),
and the average precision (AP) are reported. Mean and standard deviation are
reported (pairwise best results marked in bold).

Method ZINC (MAE) Peptides-Func Peptides-Struct (MAE)
Train Test Train (CE) Test (AP) Train Test

GCN 15.9± 0.4 20.1± 0.3 3.4± 0.5 57.4± 0.8 14.6± 3.2 30.2± 0.5
DA-GCN 12.2± 0.1 16.6± 0.2 0.3± 0.0 59.5± 0.3 10.9± 0.7 30.4± 0.8

SAGE 7.9± 0.2 13.2± 0.3 1.3± 1.5 56.5± 1.8 16.8± 0.4 31.3± 0.5
DA-SAGE 5.7± 0.0 10.7± 0.3 0.3± 0.0 59.8± 1.0 7.2± 0.6 30.8± 0.7

per node i, i.e., i ≺ j ⇔ ri < rj . The choice of partial order adds an inductive
bias to the model and removes invariances of messages to their direction, i.e.,
removing isotropy [57]. The three computational graphs should benefit from
different feature transformations for favorable optimization properties. Messages
within each computational graph should be more similar to each other than
to messages of other computational graphs. For example, when choosing the
node degree as our partial ordering, messages from higher-degree nodes to lower-
degree nodes should benefit from being transformed differently from their reverse
messages. In molecular data, higher-degree nodes correspond to other atoms
than lower-degree nodes [58], which may benefit from sending different messages.
Finding the optimal ordering per task is a separate algorithmic challenge.

10 A. Roth et al.

Fig. 2: Comparison of the Dirichlet en-
ergy when increasing the number of lay-
ers. Mean values over 50 random seeds
in bold. Minimum and maximum values
as semi-transparent areas.

Fig. 3: Training loss (Cross-Entropy)
during optimization on Peptides-Func
for MPNNs with four layers. Mean val-
ues over five runs with standard devia-
tions as semi-transparent areas.

6 Experiments

We now investigate the ability of DA-MPNNs to improve learning for complex
tasks. We provide additional details in Appendix B and reproducible code for all
experiments as supplementary material5.

6.1 Improving the Learning Process

We consider three challenging tasks for molecular prediction, namely, Peptides-
Func and Peptides-Struct from the long-range graph benchmark (LRGB) [12] and
the ZINC dataset. The Peptides dataset consists of 15 535 graphs. For Peptides-
Func, the task is a multi-label graph classification to predict ten molecular
properties. For Peptides-Struct, the targets are five geometric properties in a
multi-label graph regression setting. ZINC is a single-label graph regression
task that consists of 249 456 graphs representing chemical compounds [50]. All
considered models perform k iterations of message-passing, with ReLU as a
non-linear activation function, followed by a linear prediction layer. We do
not use additional techniques like positional encodings, residual connections,
normalization layers, or regularization to compare the differences between the
message-passing operators independently. We reuse the standard optimization
process from [13] using the AdamW optimizer [34]. See Appendix B for more
details. We integrate our models into the implementation of [54].

Evaluating Node Orderings We compare different strategies for constructing
an ordering using a single value per node. We consider random values, the sum of
initial node features, Personalized PageRank (PPR) scores, and the node degree.
The strategies are evaluated in terms of execution time per training and validation
step, minimal training loss, and test loss corresponding to the best validation
5 https://anonymous.4open.science/r/da-mpnns-46E9/README.md

https://anonymous.4open.science/r/da-mpnns-46E9/README.md

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 11

performance. We tune the learning rate and number of layers for each experiment
and repeat for three random seeds. All orderings are applied to DA-GCNs.

Results are presented in Table 1. Apart from the random ordering, all orderings
improve the performance, with degree and feature-based orderings achieving the
best test scores. The DA-GCNs are able to reduce the training loss, which leads to
test improvements. Runtime is increased by around 35% for our implementation.
DA-GCN performs slightly better without the bottleneck transformation. While
this experiment shows potential for studying further orderings, we utilize the node
degree as our ordering and bottleneck transformations for all other experiments
due to their general applicability and better comparability.

Preventing Over-Smoothing To empirically validate that DA-MPNNs cannot
cause over-smoothing, we apply MPNN layers and ReLU activations over 128
layers and track the Dirichlet energy after each iteration. We use the Peptides-
Func dataset [13] as our initial representations and graph structure. We compare
the GCN with DA-GCN and SAGE with DA-SAGE in Figure 2. The Dirichlet
energy for the GCN and SAGE converges to zero, with SAGE reaching floating
point imprecision after around 25 layers and GCN after around 110 layers.
Contrarily, it remains constant across all 128 layers for the DA versions.

Combination with other Methods We investigate how DA-MPNNs can im-
prove performance. We present training losses and achieved test scores in Table 2.
The training loss is reduced in all cases, with the largest improvement being
by more than 90%. As GCN can only amplify the smooth signal in the data,
it severely underfits the task. As DA-MPNN amplifies multiple signals, it fits
the target function better, which leads to improvements in test scores in most
cases. To emphasize this, we display the training loss during optimization in Fig-
ure 3. DA-MPNNs visibly improve the optimization process. However, test scores
are not improved in all cases. This indicates overfitting of DA-MPNNS to the
training data, given their improved approximation abilities. Successfully applying
DA-MPNNs thus requires sufficient amounts of data or strong regularization.

6.2 Comparison with State-of-the-Art

Improved optimization of the target function suggests that DA-MPNNs will be
particularly valuable for challenging tasks. We consider large-scale heterophilic
graphs, namely Squirrel and Chameleon [40], Arxiv-Year and Snap-Patents [33],
and Roman-Empire [41]. Our implementation is based on Dir-GNN [42], a
state-of-the-art method. We replace the MPNN modules of Dir-GNN with the
corresponding DA-MPNN modules. Accordingly, DA-SAGE is used for Roman-
Empire, while DA-GCN is used for the other datasets. Experiments for Squirrel,
Chameleon, and Roman-Empire are repeated for ten fixed splits into training,
validation, and test sets and for Arxiv-Year and Snap-Patents for five fixed splits.
The baseline results are reused from our reference implementation [42]. Based on
their hyperparameter values, we tune the learning rate, number of layers, and

12 A. Roth et al.

Table 3: Mean accuracy and standard deviation for five directed benchmark
graphs (best result marked in bold and second-best underlined).

Method Squirrel Chameleon Arxiv-year Snap-patents Roman-Empire

MLP 28.77± 1.56 46.21± 2.99 36.70± 0.21 31.34± 0.05 64.94± 0.62
GCN 53.43± 2.01 64.82± 2.24 46.02± 0.26 51.02± 0.06 73.69± 0.74
GPR-GNN 54.35± 0.87 62.85± 2.90 45.07± 0.21 40.19± 0.03 64.85± 0.27
LINKX 61.81± 1.80 68.42± 1.38 56.00± 0.17 61.95± 0.12 37.55± 0.36
ACM-GCN 67.40± 2.21 74.76± 2.20 47.37± 0.59 55.14± 0.16 69.66± 0.62
GloGNN 57.88± 1.76 71.21± 1.84 54.79± 0.25 62.09± 0.27 59.63± 0.69
Grad. Gating 64.26± 2.38 71.40± 2.38 63.30± 1.84 69.50± 0.39 82.16± 0.78

DiGCN 37.74± 1.54 52.24± 3.65 OOM OOM 52.71± 0.32
MagNet 39.01± 1.93 58.22± 2.87 60.29± 0.27 OOM 88.07± 0.27
Dir-GNN 75.31± 1.92 79.71± 1.26 64.08± 0.30 73.95± 0.05 91.23± 0.32

DA-Dir-GNN 75.49± 1.70 80.13± 1.53 65.70± 0.23 74.51± 0.07 91.46± 0.53

dropout ratio using a grid search. Best-performing hyperparameters are reused
for five repetitions of each split, for which we report the average test scores. We
compare to seven state-of-the-art methods for heterophilic graphs and three for
directed graphs. Further details are provided in Appendix B. We present the
test results in Table 3. DA-MPNNs slightly improve the performance for all five
datasets, with more significant gains for the larger datasets, i.e., Arxiv-Year and
Snap-Patents. As with our other experiments, we observe larger improvements
in the training loss (see Figure 4). This confirms the benefits of DA-MPNNs for
optimization, while generalization properties can be further improved.

7 Conclusion

In this work, we propose to operate MPNNs on multiple computational graphs.
By removing all ergodic components from a graph, which results in a DAG,
over-smoothing is prevented, and different signals are amplified depending on
the direction. Operating on multiple DAGs amplifies multiple signals in the data
simultaneously, which additionally prevents rank collapse. To utilize the compu-
tational benefits, we propose splitting any given graph into three computational
graphs based on a strict partial order of the nodes. Messages are constructed for
each computational graph and combined into a joint state. This framework, which
we call DA-MPNN, can be applied to any MPNN. Our experiments confirm that
DA-MPNNs cannot cause over-smoothing and can improve learning.

We anticipate further opportunities to study the benefits of multiple compu-
tational graphs, potentially operating on more than three graphs. Task-specific
knowledge and invariances for graph splitting can provide additional benefits.
Limitations of DA-MPNNs are worsened generalization capabilities, potentially
different optimal partial orderings per task, and slower runtime.

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 13

Acknowledgments. Part of this research has been funded by the Federal Ministry
of Education and Research of Germany and the state of North-Rhine Westphalia as
part of the Lamarr-Institute for Machine Learning and Artificial Intelligence and by the
Federal Ministry of Education and Research of Germany under grant no. 01IS22094E
WEST-AI. This work was supported by the Vienna Science and Technology Fund
(WWTF) [10.47379/VRG19009].

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Abboud, R., Dimitrov, R., Ceylan, I.I.: Shortest path networks for graph property
prediction. In: Learning on Graphs Conference. pp. 5–1. PMLR (2022)

2. Alon, U., Yahav, E.: On the bottleneck of graph neural networks and its practical
implications. In: International Conference on Learning Representations (2021)

3. Barbero, F., Velingker, A., Saberi, A., Bronstein, M.M., Giovanni, F.D.: Locality-
aware graph rewiring in GNNs. In: The Twelfth International Conference on
Learning Representations (2024)

4. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph con-
volutional networks. In: Proceedings of the AAAI conference on artificial intelligence.
pp. 3950–3957 (2021)

5. Bresson, X., Laurent, T.: Residual gated graph convnets. arXiv preprint
arXiv:1711.07553 (2017)

6. Cai, C., Wang, Y.: A note on over-smoothing for graph neural networks. arXiv
preprint arXiv:2006.13318 (2020)

7. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional
networks. In: International conference on machine learning. pp. 1725–1735. PMLR
(2020)

8. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank
graph neural network. In: International Conference on Learning Representations
(2021)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2022)

10. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood
aggregation for graph nets. Advances in Neural Information Processing Systems
33, 13260–13271 (2020)

11. Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio, P., Bronstein, M.M.: On
over-squashing in message passing neural networks: The impact of width, depth,
and topology. In: International Conference on Machine Learning. pp. 7865–7885.
PMLR (2023)

12. Dwivedi, V.P., Luu, A.T., Laurent, T., Bengio, Y., Bresson, X.: Graph neural
networks with learnable structural and positional representations. In: International
Conference on Learning Representations (2022)

13. Dwivedi, V.P., Rampášek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A.T., Beaini, D.:
Long range graph benchmark. In: Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (2022)

14. Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D.: Graph neural networks
for social recommendation. In: The world wide web conference. pp. 417–426 (2019)

14 A. Roth et al.

15. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

16. Finkelshtein, B., Huang, X., Bronstein, M., Ceylan, İ.İ.: Cooperative graph neural
networks. arXiv preprint arXiv:2310.01267 (2023)

17. Gallager, R.G.: Discrete stochastic processes. Journal of the Operational Research
Society 48(1), 103–103 (1997)

18. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 174. freeman San
Francisco (1979)

19. Gasteiger, J., Bojchevski, A., Günnemann, S.: Combining neural networks with
personalized pagerank for classification on graphs. In: International Conference on
Learning Representations (2019)

20. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International conference on machine learning.
pp. 1263–1272. PMLR (2017)

21. Giovanni, F.D., Rowbottom, J., Chamberlain, B.P., Markovich, T., Bronstein,
M.M.: Understanding convolution on graphs via energies. Transactions on Machine
Learning Research (2023)

22. Hall, B.H., Jaffe, A.B., Trajtenberg, M.: The nber patent citation data file: Lessons,
insights and methodological tools (2001)

23. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Advances in neural information processing systems 30 (2017)

24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

25. Igashov, I., Stärk, H., Vignac, C., Schneuing, A., Satorras, V.G., Frossard, P.,
Welling, M., Bronstein, M., Correia, B.: Equivariant 3d-conditional diffusion model
for molecular linker design. Nature Machine Intelligence pp. 1–11 (2024)

26. Kiperwasser, E., Goldberg, Y.: Easy-first dependency parsing with hierarchical tree
lstms. Transactions of the Association for Computational Linguistics 4, 445–461
(2016)

27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2016)

28. Kriege, N.M.: Weisfeiler and leman go walking: Random walk kernels revisited.
In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.)
Advances in Neural Information Processing Systems. vol. 35, pp. 20119–20132
(2022)

29. Li, G., Xiong, C., Thabet, A., Ghanem, B.: Deepergcn: All you need to train deeper
gcns. arXiv preprint arXiv:2006.07739 (2020)

30. Li, Q., Han, Z., Wu, X.: Deeper insights into graph convolutional networks for
semi-supervised learning. In: Proceedings of the AAAI conference on artificial
intelligence (2018)

31. Li, X., Zhu, R., Cheng, Y., Shan, C., Luo, S., Li, D., Qian, W.: Finding global
homophily in graph neural networks when meeting heterophily. In: International
Conference on Machine Learning. pp. 13242–13256. PMLR (2022)

32. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 (2015)

33. Lim, D., Hohne, F., Li, X., Huang, S.L., Gupta, V., Bhalerao, O., Lim, S.N.: Large
scale learning on non-homophilous graphs: New benchmarks and strong simple
methods. Advances in Neural Information Processing Systems 34, 20887–20902
(2021)

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 15

34. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2019)

35. Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., Chang, X.W., Precup, D.:
Revisiting heterophily for graph neural networks. Advances in neural information
processing systems 35, 1362–1375 (2022)

36. Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4),
395–416 (2007)

37. Maurya, S.K., Liu, X., Murata, T.: Improving graph neural networks with simple
architecture design. arXiv preprint arXiv:2105.07634 (2021)

38. Nguyen, K., Hieu, N.M., Nguyen, V.D., Ho, N., Osher, S., Nguyen, T.M.: Revisiting
over-smoothing and over-squashing using ollivier-ricci curvature. In: Proceedings of
the 40th International Conference on Machine Learning. pp. 25956–25979 (2023)

39. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power for
node classification. In: international conference on learning representations (ICLR)
(2020)

40. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-gcn: Geometric graph
convolutional networks. In: International Conference on Learning Representations
(2020)

41. Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., Prokhorenkova, L.: A
critical look at the evaluation of GNNs under heterophily: Are we really making
progress? In: The Eleventh International Conference on Learning Representations
(2023)

42. Rossi, E., Charpentier, B., Di Giovanni, F., Frasca, F., Günnemann, S., Bronstein,
M.M.: Edge directionality improves learning on heterophilic graphs. In: The Second
Learning on Graphs Conference (2023)

43. Roth, A., Liebig, T.: Transforming pagerank into an infinite-depth graph neural
network. In: Joint European conference on machine learning and knowledge discovery
in databases. pp. 469–484. Springer (2022)

44. Roth, A., Liebig, T.: Rank collapse causes over-smoothing and over-correlation in
graph neural networks. In: The Second Learning on Graphs Conference (2023)

45. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding.
Journal of Complex Networks 9(2), cnab014 (2021)

46. Rusch, T.K., Chamberlain, B., Rowbottom, J., Mishra, S., Bronstein, M.: Graph-
coupled oscillator networks. In: International Conference on Machine Learning. pp.
18888–18909. PMLR (2022)

47. Rusch, T.K., Chamberlain, B.P., Mahoney, M.W., Bronstein, M.M., Mishra, S.: Gra-
dient gating for deep multi-rate learning on graphs. In: The Eleventh International
Conference on Learning Representations (2023)

48. Shuai, B., Zuo, Z., Wang, B., Wang, G.: Dag-recurrent neural networks for scene
labeling. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 3620–3629 (2016)

49. Singh, S., Chaudhary, K., Dhanda, S.K., Bhalla, S., Usmani, S.S., Gautam, A.,
Tuknait, A., Agrawal, P., Mathur, D., Raghava, G.P.: Satpdb: a database of
structurally annotated therapeutic peptides. Nucleic acids research 44(D1), D1119–
D1126 (2016)

50. Sterling, T., Irwin, J.J.: Zinc 15 – ligand discovery for everyone. Journal of Chemical
Information and Modeling 55(11), 2324–2337 (2015). https://doi.org/10.1021/
acs.jcim.5b00559

51. Tailor, S.A., Opolka, F., Lio, P., Lane, N.D.: Adaptive filters for low-latency and
memory-efficient graph neural networks. In: International Conference on Learning
Representations (2022)

https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.5b00559

16 A. Roth et al.

52. Thost, V., Chen, J.: Directed acyclic graph neural networks. In: International
Conference on Learning Representations (2021)

53. Tong, Z., Liang, Y., Sun, C., Li, X., Rosenblum, D., Lim, A.: Digraph inception
convolutional networks. Advances in neural information processing systems 33,
17907–17918 (2020)

54. Tönshoff, J., Ritzert, M., Rosenbluth, E., Grohe, M.: Where did the gap go?
reassessing the long-range graph benchmark. In: The Second Learning on Graphs
Conference (2023)

55. Topping, J., Giovanni, F.D., Chamberlain, B.P., Dong, X., Bronstein, M.M.: Under-
standing over-squashing and bottlenecks on graphs via curvature. In: International
Conference on Learning Representations (2022)

56. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in neural information
processing systems 30 (2017)

57. Weickert, J., et al.: Anisotropic diffusion in image processing, vol. 1. Teubner
Stuttgart (1998)

58. Wells, A.F.: Structural inorganic chemistry. Oxford University Press, USA (2012)
59. Yan, Y., Hashemi, M., Swersky, K., Yang, Y., Koutra, D.: Two sides of the same

coin: Heterophily and oversmoothing in graph convolutional neural networks. In:
2022 IEEE International Conference on Data Mining (ICDM). pp. 1287–1292. IEEE
(2022)

60. Zhang, M., Jiang, S., Cui, Z., Garnett, R., Chen, Y.: D-vae: A variational au-
toencoder for directed acyclic graphs. Advances in neural information processing
systems 32 (2019)

61. Zhang, X., He, Y., Brugnone, N., Perlmutter, M., Hirn, M.: Magnet: A neural
network for directed graphs. Advances in neural information processing systems 34,
27003–27015 (2021)

62. Zhao, L., Akoglu, L.: Pairnorm: Tackling oversmoothing in gnns. In: International
Conference on Learning Representations (2020)

63. Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.H., Hu, X.: Dirichlet
energy constrained learning for deep graph neural networks. Advances in Neural
Information Processing Systems 34, 21834–21846 (2021)

64. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: Current limitations and effective designs. Advances in
neural information processing systems 33, 7793–7804 (2020)

65. Zhu, X., Sobihani, P., Guo, H.: Long short-term memory over recursive structures.
In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp.
1604–1612. PMLR (07–09 Jul 2015)

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 17

A Mathematical Details

Proof for Proposition 1

Proposition 2 (DAGs do not over-smooth.) Let A ∈ Rn×n represent a DAG,
A+ the DAG with added self-loops for all leaf nodes, and Ã+ = D−1

+ A+ its
normalized adjacency matrix. Further let X(k+1) = ÃX(k)W(k) for a.e. W(0) ∈
Rd0×d1 , . . . ,W(k) ∈ Rdk×dk+1 . Then, for any X(0) ̸= 0 ∈ Rn×d0

E

(
X(l)

||X(l)||F

)
≥ 1

n · dl
for all l > 0.

Proof. For l > 0, the representations of the root nodes are the zero vector. As
we added self-loops to the leaf nodes, there exists a node representation that
is non-zero unless W(k) maps a representation to the zero vector. Thus, this
holds for almost every W(k) with respect to the Lebesgue measure. Consider
the node representation xi with the maximal norm max ∥xi∥1. There exists a
path r, q1, . . . , q − 1, i between a root node r and node i. The Dirichlet energy is
bounded by the Dirichlet energy along this path:

E

(
X(l)

∥X(l)∥F

)
≥

∥∥∥∥∥ x
(l)
i

∥X(l)∥F
−

x
(l)
q−1

∥X(l)∥F

∥∥∥∥∥
2

2

+ · · ·+

∥∥∥∥∥ x
(l)
q1

∥X(l)∥F
− x

(l)
r

∥X(l)∥F

∥∥∥∥∥
2

2

≥

∥∥∥∥∥ x
(l)
i

∥X(l)∥F

∥∥∥∥∥
2

2

.

(11)

As the representation of the root node x
(l)
r = 0 is zero, we apply the triangle

inequality to obtain the last inequality.
We utilize the known norm equivalence of the Frobenius norm

∥X(l)∥2F ≤ n · dl · ∥X(l)∥2∞ (12)

and the vector norm equivalence ∥x(l)
i ∥22 ≤ ∥x(l)

i ∥21. We thus obtain the lower
bound

E

(
X(l)

∥X(l)∥F

)
≥

∥∥∥∥∥ x
(l)
i

∥X(l)∥F

∥∥∥∥∥
2

2

≥ ∥x(l)
i ∥21

n · d · ∥X(l)∥2∞
=

1

n · dl
(13)

as x
(l)
i has the maximal 1-norm by definition which is equal to ∥X(l)∥∞.

Proof for Theorem 1

Theorem 3 (Combining DAGs prevents rank collapse.) Let A1 ∈ Rn×n represent
a DAG and A2 ∈ Rn×n represent its reverse DAG. We assume each node to have
at least one incoming edge in either A1 or A2. The row-wise vector inequality is
denoted as ̸=rw. Let X(k+1) = A1X

(k)W
(k)
1 +A2X

(k)W
(k)
2 . Then, for all l > 0

and almost every W
(k)
1 ,W

(k)
2 ∈ Rdk×dk+1 and X(0) ̸=rw 0 ∈ Rn×dk we have

X(l) ̸=rw 0 ∧ rank(X(l)) > 1 . (14)

18 A. Roth et al.

Proof. We will show that this property is maintained in each iteration. Consider
one leaf node vp from A1 and one leaf node vq from A2. These only have incoming
messages from A1 or A2, respectively. Thus, x(k+1)

p = yW
(k)
1 and x

(k+1)
q = zW

(k)
2

for some y, z ∈ Rdk . In particular, y and z could be equal or linearly dependent.
For W

(k)
1 and W

(k)
2 almost everywhere with respect to the Lebesgue measure,

two vectors will be mapped to linearly independent vectors, as long as y ̸= 0
and z ̸= 0. Thus, rank(X(k+1)) > 1. By assumption, each node i has at least one
incoming edge in one of the graphs. Thus, x(k+1)

i = qW
(k)
1 + rW

(k)
2 ̸= 0 for some

q, r ∈ Rdk and either one being non-zero.

Computational Complexity Here, we provide the calculation for the number of
multiplications for the bottleneck transformation using the basic matrix multipli-
cation method, i.e., one scalar product per entry:

Performing a matrix multiplication XW for X ∈ Rn×d,W ∈ Rd×d′
costs

n · d′ · d multiplications, i.e., perform l multiplications for each entry. For the
bottleneck transformation, we have XTUV with T ∈ Rd×s,Ui ∈ Rs×s,V ∈
Rs×d′

. In total, we have n · s · d+ 3n · s · s+ n · s · d′ multiplications. By equating
both terms and canceling n, the resulting equation d′ · d = s · d+ 3s · s+ s · d′
is equal to the equation for the number of parameters. By definition of s, the
resulting value for the bottleneck transformation is at most as large as for the
regular transformation. Equivalently for the number of additions.

B Experiments

In this section, we provide additional details regarding our experiments. All
experiments were run on an internal cluster and separately on H100 GPUs, each
on a single H100 GPU and an Intel Xeon 8468 Sapphire CPU.

B.1 Improving the Learning Process

Our implementation is built on the Long Range Graph Benchmark (LRGB) [13,54]
which is available under the MIT license. It is based on PyTorch Geometric [15].
We add our models while making no changes to the optimization and data
construction parts.

Models and Optimization All models perform k iterations of message-passing,
with ReLU as a non-linear activation function. We reuse the standard optimization
process from [13] and use the AdamW [34] optimizer with a cosine learning rate
schedule. The cross-entropy loss is used for optimization, and the average precision
(AP) as a metric. All DA models use the bottleneck transformation to utilize at
most as many parameters as the base version.

Datasets We now briefly describe the considered datasets, ZINC, Peptides-Func,
and Peptides-Struct.

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 19

ZINC The ZINC dataset [50] consists of 249 456 chemical compounds that are
represented as graphs. Each node represents an atom, and each edge is a bond
between two atoms. On average, a graph has around 23 nodes and 50 edges.
Node features are given as a single value indicating its corresponding type of
heavy atom. We do not utilize edge features. The objective is given as a graph
regression task, which corresponds to the prediction of the constrained solubility
of the molecule. The mean absolute error (MAE) is used as the loss function
and for the score. Each experiment on ZINC is repeated for three random seeds.
ZINC is freely commercially available under the license DbCL.

Peptides-Func The Peptides dataset consists of 15 535 peptides, which are short
molecular chains [49]. As with ZINC, nodes of the graph represent atoms and
edges the bonds between them. They are part of the LRGB as peptides have a
large diameter while each node has a low average degree of around 2. Thus, it is
argued that this dataset requires models that can combine distant information in
the graph, i.e., models with many layers. Node and edge features are constructed
using molecular SMILES based on the atom types. This dataset was released
under license CC BY-NC 4.0.

The task is to predict the molecular properties of each peptide, i.e., a multi-
label graph classification task. Each graph belongs, on average, to 1.65 of 10
classes. As proposed by [13], the cross-entropy (CE) loss is used for optimization,
and the unweighted mean average precision (AP) as the metric. We follow their
same data split, i.e., 70% for training and 15% for validation and testing.

The resulting representations are globally aggregated using the mean and
mapped to class probabilities using a linear layer.

Peptides-Struct The dataset is the same as used for Peptides-Func. The task is
to predict five continuous geometric properties of the peptides, i.e., a multi-label
graph regression task. The same data split is utilized. The MAE is used for both
optimization and as the target metric.

Orderings For all orderings, we compute a single value ri per node vi and
construct the strict partial ordering i ≺ j ⇔ ri < rj .

Random For the random ordering, we assign each node vi ∈ V a unique random
index ri ∈ [0, |V|]. This index is consistent across layers and epochs. The edges
within each computational graph will be similar to those from different compu-
tational graphs. Thus, we expect the optimal solution to be achieved when all
transformations are equal.

Features This ordering utilizes the initial node features xi ∈ Rd by summing
ri =

∑
c∈[d] xic over all features of that node.

PPR Here, we perform 15 iterations of Personalized PageRank (PPR) with a
restart probability α = 0.1. This provides a finer node centrality measure as

20 A. Roth et al.

Table 4: Best hyperparameters for results in Table 1

Dataset ZINC
Parameter Split LR Layers

GCN
Train 0.0003 16
Val 0.0003 16

DA-GCN (random)
Train 0.0003 16
Val 0.001 8

DA-GCN (Features)
Train 0.0003 16
Val 0.0003 16

DA-GCN (PPR)
Train 0.0003 16
Val 0.0003 16

DA-GCN (Degree)
Train 0.0003 16
Val 0.001 8

DA-GCN (Degree) \ Bottleneck
Train 0.0003 16
Val 0.0003 16

opposed to the node degree. A finer ordering will have fewer edges in the third
computational graph, but the similarity between edges in each computational
graph may be lowered. A node’s role in a graph is connected to its centrality,
e.g., influential persons in social networks have many connections.

Degree As a coarser node centrality measure, we consider the node degree ri = di.
For molecular graphs, the node degree is closely connected with its role within
the molecule. The degree is also much more efficient to compute compared to
PPR.

Comparing Partial Orderings (Table 1) To compare the performances of the
partial orderings we considered, we evaluate them on the ZINC task. All models
have a fixed hidden dimension of 64. For DA-GCN without a bottleneck transfor-
mation, the hidden dimension is reduced so that the total number of parameters is
less than the number of parameters for the GCN with the same number of layers.
We tune the learning rate for all models with values ∈ {0.001, 0.0003, 0.0001}
and the number of layers ∈ {1, 2, 4, 8, 16}. All experiments are repeated for three
random seeds. Best hyperparameters are presented in Table 4. We compute the
ordering and the split once in each forward pass for all DA methods. Normalizing
the edge weights is performed once per forward pass for GCN and DA-GCN.
Displayed runtimes are for four-layer models. These experiments run for a total
of around 600 hours on one H100 GPU.

Preventing Over-Smoothing (Figure 2) We sample 100 random graphs
from the Peptides-Func dataset for a total of 15 454 nodes and 31 458 edges. We
perform a single linear transformation to change the feature dimension to 16.

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 21

Table 5: Best hyperparameters for results in Table 2

Dataset ZINC Peptides-Func Peptides-Struct
Parameter Split LR Layers LR Layers LR Layers

GCN
Train 0.003 16 0.005 4 0.005 8
Val 0.003 16 0.001 8 0.0005 32

DA-GCN
Train 0.003 16 0.001 8 0.001 8
Val 0.001 8 0.001 16 0.0005 32

SAGE
Train 0.003 16 0.001 16 0.001 16
Val 0.003 16 0.001 8 0.0005 16

DA-SAGE
Train 0.003 16 0.001 16 0.001 16
Val 0.003 16 0.001 16 0.005 32

We then apply message-passing iterations, each followed by a ReLU activation.
Each iteration maintains the feature dimension as 16. Feature transformations
are not shared between iterations. The Dirichlet energy is calculated after the
ReLU activation. Corresponding to their aggregation functions, the Dirichlet
energy for the GCN and the DA-GCN uses the symmetrically normalized graph
Laplacian and the unnormalized graph Laplacian for SAGE and DA-SAGE. These
experiments run for less than one minute on a CPU.

Details on Table 2 We tune the number of layers in {1, 2, 4, 8, 16} and the
base learning rate in {0.005, 0.001, 0.0005} for Peptides-Func and Peptides-Struct
using a grid search. As proposed in [13], the hidden dimension is set so that the
total number of parameters is less than 500k. For ZINC, we tune the number
of layers in {1, 2, 4, 8, 16} and the base learning rate in {0.001, 0.0003, 0.0001}.
All runs utilize a cosine learning rate schedule with a maximum of 500 epochs
for Peptides and 400 for ZINC. As given by our reference implementation [54], a
batch size of 200 is used for Peptides. For ZINC, a batch size of 32 is used, as
given in [12]. Best hyperparameters for each experiment are displayed in Table 5.
These experiments require around 450 hours on an H100 GPU.

B.2 Comparison with State-of-the-Art

Our models are integrated into the implementation of Dir-GNNs [42]. This
implementation is available under the MIT license.

Datasets

Chameleon and Squirrel These two datasets are based on pages about particular
topics in Wikipedia. Nodes represent articles on that topic and edges their links.
Node features are constructed as the appearance of particular nouns [45]. The task
is to classify each article based on their average monthly traffic [40]. Chameleon

22 A. Roth et al.

Table 6: Best hyperparameters for the results in Table 3.

Dataset Learning Rate Layers Dropout Ratio

Chameleon 0.005 6 0.2
Squirrel 0.001 6 0.0
Roman-Empire 0.005 6 0.2
Arxiv-Year 0.005 5 0.6
Snap-Patents 0.01 6 0.0

consists of 2277 nodes and 36 101 edges. Squirrel consists of 5201 nodes and
217 073 edges. To the best of our knowledge, the dataset was released without a
license.

Arxiv-Year In this dataset, nodes correspond to publications, and an edge
is constructed when a publication cites another. The task is to classify the
publication year into one of five time spans. It consists of 169 343 nodes and
1 166 243 edges. Nodes are given by word 128-dimensional embeddings of the title
and abstract of the corresponding publication. Arxiv-Year is released under the
ODC-BY license.

Snap-Patents Nodes correspond to patents, for which the year it was granted
should be classified into one of five time spans. Edges similarly correspond to
citations between patents. This dataset consists of 2 923 922 nodes and 13 975 791
edges. This dataset was released without a license in [22].

Implementational Details We compare to several state-of-the-art methods
for directed graphs, namely DiGCN [53], MagNet [61], and Dir-GNN [42], and
state-of-the-art methods for heterophilic graphs, namely H2GCN [64], GPR-
GNN [8], LINKX [33], FSGNN [37], ACM-GCN [35], GloGNN [31], and Gradient
Gating [47].

We use the same model as the Dir-GNN [42], with the only change being the
DA-MPNN instead of each MPNN, as proposed in Equation 9. The models consist
of k layers of message-passing, each followed by ReLU and potentially Dropout. All
representations are normalized by the L2-norm ∥X∥2. Final representations are
obtained by Knowledge Knowledge, either concatenating all intermediate states
(cat) or taking the element-wise maximum (max). Bottleneck transformation and
degree-based ordering are used for all experiments. Bottleneck transformations
are initialized with the same values across the three computational graphs.
It thus equals the base model at initialization and helps with generalization.
We tune DA-Dir-GNN using the same hyperparameters and their ranges as
performed for Dir-GNN using the same implementation: The learning rate ∈
{0.01, 0.005, 0.001, 0.0005}, number of layers ∈ {4, 5, 6}, jumping knowledge
∈ {cat,max}, dropout ∈ {0.0, 0.2, 0.4, 0.6}. We use their optimal values for

Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing 23

(a) Chameleon. (b) Squirrel.

(c) Roman-Empire. (d) Arxiv-Year.

(e) Snap-Patents.

Fig. 4: Training loss during optimization. All hyperparameters are set to the
best-performing ones of Dir-GNNs.

24 A. Roth et al.

hidden feature dimension ∈ {32, 64, 128, 256, 512}, normalization ∈ {True,False}
and α ∈ {0., 0.5, 1} for each task. As given in their implementation, the patience
of stopping training based on not improving the validation accuracy is set to 200
for Roman-Empire, Snap-Patents, and Arxiv-Year and to 400 for Squirrel and
Chameleon. Consequently, DA-SAGE is used for Roman-Empire and DA-GCN
for the other datasets. The best-performing hyperparameters are presented in
Table 6.

Runtime On an H100, each run for Chameleon takes around 10 seconds, for
Squirrel 20 seconds, for Roman-Empire 90 seconds, for Arxiv-Year 15 minutes,
and for Snap-Patents 30 minutes. In total, these Experiments take around 150
GPU hours. We estimate the time of our preliminary experiments with various
versions of DA-MPNNs to additional 1500 hours.

Training Losses We present a comparison between training losses for all
datasets in Figure 4. For a fair comparison, all runs utilize the best-performing
hyperparameters that were identified for the corresponding Dir-GNNs [42]. For all
considered datasets, we observe that DA-MPNNs benefit from a smaller learning
rate.

	Message-Passing on Directed Acyclic Graphs Prevents Over-Smoothing

