
Inductive Anomaly Detection in Dynamic Graphs
with Accumulative Causal Walk Alignment

Leshanshui Yang1,2 (�), Clément Chatelain3, and Sébastien Adam2

1 Saagie, 72 Rue de la République, 76140 Le Petit-Quevilly, France
2 Univ Rouen Normandie, LITIS UR 4108, F-76000 Rouen, France
3 INSA Rouen Normandie, LITIS UR 4108, F-76000 Rouen, France

Abstract. Leveraging structural information and temporal evolution,
dynamic graph-based methods have advanced anomaly detection, ad-
dressing challenges in real-world social and transaction networks. Despite
progress, existing approaches, particularly those based on Graph Neu-
ral Networks, face challenges with long-range dependencies and encoding
unseen nodes, affecting model performance and generalisation. This pa-
per presents the Dual-Contextual Inductive Dynamic Graph Transformer
(DCIDGT), an architecture that efficiently encodes both global and lo-
cal contexts of target edges. Through a novel mechanism, Accumulative
Causal Walk Alignment, DCIDGT captures global spatio-temporal in-
formation for unseen nodes and ensures their semantic alignment across
snapshots. Our approach is evaluated on real-world cryptocurrency trans-
action datasets with PR AUC metric that significantly outperforms ex-
isting baselines, demonstrating its effectiveness and potential in dynamic
graph representation learning.

Keywords: Dynamic graph representation learning · Anomaly detec-
tion · Inductive learning · Transformer.

1 Introduction

Anomaly detection tasks focus on identifying anomalous patterns that deviate
from typical observations [13]. Over the last decade, graph-based methods have
contributed significantly to the development of anomaly detection, by exploiting
the expressive power of structural information. More recently, these graph-based
approaches have been extended to dynamic graph (DG) scenarios where the
graph structure and the graph attributes evolve [13,20] over time. These advances
have pushed the boundaries of anomaly detection and efficiently solved real-world
problems [4,19,42]. As example, with the explosion of cryptocurrencies and social
media platforms, the detection of anomalous edges in DGs has applications in a
variety of areas, including email systems [42], transaction networks [4] and, more
broadly, social networks [40].

To address the Dynamic Graph Anomaly Detection problem, early approaches
relied on handcrafted features to predict anomalous edges or nodes, which is a
time-consuming and labour-intensive process [13,20]. More recently, deep learn-
ing models, including in particular Graph Neural Networks (GNN) [42,4], have

2 L. Yang et al.

been employed to efficiently learn graph representations and make predictions.
However, Dynamic Graph Anomaly Detection faces two major challenges: long-
range dependencies and unseen node encoding.

Over-squashing is a common problem faced by GNNs: When the propagation
path of information is long or a node has many neighbours, compressing all this
information into a fixed-size representation leads to loss and distortion, severely
affecting the model’s performance and generalisation ability [1,33].

Another major challenge is encoding newly appearing nodes, a long-standing
issue in the field of dynamic graph learning known as "Inductive Learning" and
referred to as the "Cold-Start" problem in industry [3,37]. This problem is partic-
ularly challenging in networks without node attributes, such as cryptocurrency
trading network [18,17], which demand extracting representations directly from
the graph structure when nodes first appear. To our knowledge, the most recent
approaches avoid using graph-level representation of unseen nodes and instead,
attempt to encode local information about nodes by computing statistical prop-
erties of subgraphs [4,19]. However, these approaches fall short in capturing of
the long-range dependencies in both spatial and temporal aspects. Consequently,
encoding dynamic graphs in the inductive setting with simultaneous local and
graph-level focus in both temporal and spatial contexts is a challenging problem.

To address these two challenges, this paper presents two contributions to
the field of dynamic graph edge anomaly detection. As opposed to the state-
of-the-art algorithms mentioned above which focus on subgraphs, we intro-
duce Dual-Contextual Inductive Dynamic Graph Transformer (DCIDGT). The
model architecture is designed to efficiently encode both long-range and local
spatio-temporal information, providing a rich foundation of global and histori-
cal insights for downstream tasks. To encode unseen nodes and capture global
spatio-temporal information, we propose a novel mechanism called Accumula-
tive Causal Walk Alignment (ACWA). This mechanism incorporates historical
information in causal random walks to obtain global node embeddings at each
snapshot, and then aligns their semantics across snapshots using the Orthog-
onal Procruste method [12] optimised for DGs. Through experiments on the
edge anomaly detection task using publicly available real-world datasets [18,17],
our model outperforms existing baseline models. The paper is structured as fol-
lows. Section 2 gives important definitions and describes related works. Section
3 presents the main contributions of the paper while section 4 describes the
experimental part of the work and discusses obtained results.

2 Preliminaries and related works

In the nascent field of Dynamic Graph Anomaly Detection, many of the edge
anomaly detection approaches use discrete-time dynamic graphs (DTDG) for
representing DGs [40,42,4,19]. In this case, the dynamic graph is represented by
a series of snapshots (Definition 1), and the system learns to predict the edge
anomaly score based on historical information (Definition 2). Figure 1 describes
the edge anomaly detection task on DTDG.

Inductive Anomaly Detection in Dynamic Graphs 3

Definition 1 (Discrete Time Dynamic Graphs). Discrete Time Dynamic
Graphs (DTDGs) can be described by a sequence of graphs G = {G1, G2, . . . , GT }.
Each snapshot Gt at time step t comprises a set of edges Et ⊆ E where E denotes
the whole set of edges over the T time steps. The set of nodes involved in Et is
denoted as V t ⊆ V, V being the whole set of nodes over the T time steps. G is
fully described by {E1, E2, . . . , ET }. N t = |V t| and M t = |Et| are respectively
the number of nodes and of edges snapshot Gt.

Definition 2 (Edge Anomaly Detection in DTDGs). Edge Anomaly De-
tection in DTDGs aims to predict whether an edge is an anomaly for each
edge in Et at time step t, based on the given previous and current information
{E1, . . . , Et}.

Fig. 1. Data processing for edge anomaly detection on discrete time dynamic graphs:
The dataset is aggregated into T snapshots. A model learns to represent edges based
on the real edges of the first Ttrain snapshots and predicts the anomaly score of each
edge in the Ttest snapshots. New nodes may appear, so the test phase will have nodes
that were not seen in training (nodes F, G and H).

2.1 Representation Learning in Discrete Time Dynamic Graphs

Representation learning consists in projecting input data into a continuous vec-
tor space (through an encoder) used for solving downstream tasks (through a
decoder) [11]. When input data are static graphs, common encoders include spa-
tial convolution [10,16], spectral convolution [6], Random Walk-based algorithms
[9,28] and graph Transformers [24,39,14] (see appendix A.1).

To take into account the time factor involved in dynamic graph representation
learning, several approaches [21,42] have been proposed. Most of them choose to
process snapshots sequentially [38], using a static node-based graph encoder fG
such as GNN and then use a temporal encoder fT such as RNN to encode the
information computed from fG across the time steps.

This common paradigm for DTDG encoding, although intuitive and simple
to practice, struggles to deal with the apparition of new nodes, as illustrated in

4 L. Yang et al.

figure 1. Hence, since the number of nodes at each time step is not fixed, the
input data to fT will have gaps in the time dimension (see Fig. 2 (a)).

Fig. 2. Three challenges in the coding of discrete-time dynamic graphs: (a) Variation
in the number of nodes can lead to the unavailability of a temporal encoder because
of the gaps in its inputs. (b) Initial embedding of unseen nodes cannot be learnt. (c)
Random Walk-based embedding, such as Node2Vec, is misaligned across snapshots.
For example, although the structure of the pink, red, and orange nodes is similar
in t1, t3, and t4, their embedding coordinates in t3 are approximated to those in t1
but after swapping the coordinates d1 and d2, their embedding coordinates in t4 are
approximated to those in t1 but by a 180°rotation along the point (0.5,0.5).

Another common challenge in real-world applications is the lack of node
attributes. Without these attributes, most existing Dynamic Graph Neural Net-
work models first compute initial node features (i.e. an initial node embedding)
[35,15], which are used as input to GNN layers or directly as input to the RNN
model. These features are usually computed using a model that has been trained
to project one-hot node indices into a vectorial space, using some supervised la-
bels provided either at the node level or at the graph level. As the node set
evolves, such models generally become unusable as the input dimensions change,
as shown in Fig. 2 (b).

To address the above challenges, random walk methods [9,28] are often used.
Such methods rely only on the graph structure to obtain node representations
and are thus feasible even on unattributed graphs.

Definition 3 (Random Walk).
A Random Walk of length L on a graph G = (V,E), where V and E denote

the sets of nodes and edges, is a sequence of vertices ⟨v1, v2, . . . , vL⟩ such that
each vi+1 is chosen randomly from the neighbours of vi.

Inspired by Word2Vec [23,8], Random Walk-based approaches directly ex-
ploit the structural information to compute the node embedding, satisfying that
nodes which often appear in the same walk have similar embeddings and vice
versa. In simple terms, such methods learn by attempting to predict a node cor-
rectly based on the contextual nodes [9,28,25]. For example, for a random walk
⟨va, vb, vc, vd, ve, vf , vg, ...⟩ (Def. 3), by hiding the node vd, the model attempts to

Inductive Anomaly Detection in Dynamic Graphs 5

find the most appropriate node for the contextual nodes ⟨vb, vc, ?, ve, vf ⟩. These
methods thus find the node embedding in a self-supervised manner.

While efficient at clustering similar nodes and distancing dissimilar ones in
a static context, Random Walk methods struggle with alignment in the embed-
ding space across multiple snapshots for structurally identical or similar graphs
[31]. This is due to the stochastic nature of the algorithm and its focus on op-
timizing relative distances between nodes based on their connectivity patterns.
As a consequence, such methods cannot ensure that nodes with similar roles in
different graphs are mapped to close points in vector space, directly affecting
their availability for DTDGs. An example is shown in Fig. 2 (c).

Despite the fact that several approaches have emerged for DTDG representa-
tion learning, such as the "Sequentially Encoding" paradigm [38], and methods
based on "Node Index Embedding" or Random Walk, DTDG inductive learning
remains an open problem. A solution to this problem is crucial, especially given
that in practice, anomaly detection in social networks and trading systems needs
to be able to react to newly added nodes.

2.2 Anomaly Detection in Dynamic Graphs

Due to the scarcity of anomaly data, "fully supervised anomaly detection is of-
ten impractical", as stated in the survey in the field of Deep Learning Anomaly
Detection [27]. Instead, anomaly detection is tackled using either one-class strate-
gies (one-class SVM [30], SVDD [32]), which uses only positive data to model
the regularity, either the generation of synthetic anomalies for casting anomaly
detection into a binary classification problem. In practice, the latter strategy is
widely adopted since it is more suitable for discriminant models such as neu-
ral networks. The methods used to detect edge anomalies in DTDGs [42,4,19]
rely on the generation of synthetic anomalies associated with neural networks. A
model learns the representation from real edges and synthetic anomalous edges
from the first Ttrain snapshots. The remaining Ttest snapshots are reserved for
testing the model’s performance.

To address the anomaly detection problem in DTDGs, the early model Ad-
dGraph [42] proposed to use GCN [16] as a static graph encoder followed by a
GRU [5] as a temporal encoder. However, this approach requires the entire node
set as input and cannot effectively handle newly added nodes [13], as mentioned
in section 2.1. Focusing on the structure of the target edge, StrGNN [4] takes
as input the h-hop enclosing subgraphs of the latest τ time steps of each target
edge. It reserves the most relevant K nodes by Sortpooling [41], then encodes
the node embedding matrix of shape K × d across τ snapshots by GRU [5], and
apply a readout function to obtain the edge representation.

The state-of-the-art approach TADDY [19] is also based on subgraph en-
coding, but makes many improvements in its implementation. Specifically, it
computes the most related K nodes of an edge by the Personalized PageRank
(PPR) [26]. Through this operation in the τ latest snapshots, a spatio-temporal
subgraph is then formed with a total of τ×K nodes. For each node in this spatio-
temporal subgraph, TADDY uses three encodings based on PPR diffusion, graph

6 L. Yang et al.

distance and relative time encoding. It then propagates the information through
a Transformer Encoder structure [34]. Finally, the mean-pooled representation
of these τ ×K nodes is used as the edge representation.

By focusing on subgraphs, both TADDY and StrGNN avoid the difficult
problem of computing a node embedding for the whole snapshot, i.e., a graph-
level node embedding. However, such a strategy disallows long-range propagation
on the snapshot. In particular, StrGNN [4] performs similarly at 1-hop, 2-hop,
and 3-hop subgraph scopes. Likewise, the performance of TADDY is not im-
proved when the number of subgraph nodes is greater than 7 and the number of
snapshots is greater than 2 [19]. This phenomenon suggests a potential weakness
of these models in capturing long-range interactions, which is essential to better
understand complex interdependencies between nodes [11,33], especially when
several distant subgraphs in the network show similar evolutionary trends.

Besides challenges in capturing long-range topological interactions, recent
studies [29] highlight the importance of memory mechanisms for encoding his-
torical information and temporal long-range dependencies. Therefore, efficient
dynamic graph encoding must consider both short-range and long-range depen-
dencies in time and space. This article presents an approach that balances infor-
mation propagation in long-range and local subgraphs in the inductive setting.

3 Proposed Approach

This section introduces our contributions to edge anomaly detection in DTDGs.
It first describes our novel method ACWA for inductive graph-level node em-
bedding. Then we propose the overall structure of our model DCIDGT which
addresses global and local propagation problems in both spatial and temporal
dimensions. Finally, we introduce the overall inference procedure of the model.

3.1 Accumulative Causal Walk Alignment for inductive embedding

In this subsection, we propose the Accumulative Causal Walk Alignment
(ACWA) method to address both the problems of RW embedding misalignment
and the need for long-range temporal information. Our proposal relies on solving
the orthogonal procruste problem for embeddings of accumulative causal walks.

As mentioned before, a difficulty of random walk-based approaches applied
on DGs is the alignment of embedding across snapshots. To our knowledge, the
only existing studies propose some variants of Orthogonal Procruste to solve this
problem [31]. The Orthogonal Procruste problem [12], mathematically defined in
Def. 4, seeks an orthogonal matrix Ω that most closely maps one set of vectors
to another, and is thus theoretically suitable for semantic alignment.

Definition 4 (Orthogonal Procruste). The Orthogonal Procruste problem
solves for Ω in the equation minΩ ∥A−BΩ∥F , subject to ΩTΩ = I, where I is
the identity matrix, ∥ · ∥F is the Frobenius norm, A and B are matrices of the
same size. Specifically, in our case, A and B are the embedding matrices of the
reference nodes of snapshots at t− 1 and t respectively.

Inductive Anomaly Detection in Dynamic Graphs 7

Fig. 3. The Accumulative Causal Walk Alignment approach: 1) For a given mo-
ment t, an edge set in chronological order up to moment t is constructed, forming the
"Accumulative Snapshot". e.g., accumulative snapshot at t2, denoted as G∼t2 , contains
all edges from moment t1 and t2. 2) Random walks considering causality are sampled
on each accumulative snapshot. 3) Node-level primitive embedding H̃ for each accumu-
lative snapshot can be obtained based on causal random walks, e.g., H̃∼t1 and H̃∼t2 .
The nodes in the two snapshots whose structure has not changed, those shaded in blue
in the figure, will be used as the reference node set for alignment. 4) Alignment process:
For instance with G∼t1 as the reference, thus its graph-level node embedding equals
to its primitive embedding: H∼t1 = H̃∼t1 . A linear transformation Ωt1,t2 is found by
Orthogonal Procruste (OP) to minimise the embedding of these reference nodes H∼t1

ref

and H̃∼t2
ref between the two accumulative snapshots. The final globally available node

embedding for G∼t2 is obtained through the OP transformation of its primitive em-
bedding: H∼t2 = H̃∼t2Ωt1,t2 .

Intuitively, if a node has no structural changes between two adjacent snap-
shots, its embedding should also remain almost identical. These nodes are thus
considered reference nodes for alignment purposes [31]. However, following the
predecessors’ task modelling, one cannot know the structurally invariant nodes
at t without using historical information. An example is shown in Fig. 1 where
a snapshot at t is represented by a list of edges occurring at time step t.

As the foundation to overcome this problem, we propose the "Accumulative
Snapshot", which accumulates all previous edges. In particular, an edge set in
chronological order up to moment t is constructed, forming the "Accumulative
Snapshot" at t, denoted as G∼t. As shown in Fig. 3 (1), accumulative snapshot
at t2, denoted as G∼t2 , contains all edges in time steps t1 and t2.

Meanwhile, RW methods have the shortcoming of focusing only on structural
information, but not on temporal information. Therefore, random walks consid-
ering causality have been proposed in recent studies [25,36], as defined in Def.
5. Drawing inspiration from this, we consider the chronological order as causal-
ity, sample Causal Walks from Accumulative Snapshots, as shown in Fig. 3 (2),
and compute the primitive embeddings H̃∼t and reference node set. Owing to

8 L. Yang et al.

the "Accumulative Snapshot", all seen nodes that are not currently participat-
ing in the edges can be used as references and learn the embedding under the
current structure, which provides a more solid reference node set for orthogonal
procruste, see Fig. 3 (3).

Definition 5 (Causal Random Walk). A Causal Random Walk, (simplified
as "Causal Walk"), is a random walk ⟨v1, v2, . . . , vL⟩ such that the timestamp of
the edge between nodes vi and vi+1 is less than or equals to the timestamp of the
edge between nodes vi+1 and vi+2, denoted as tevivi+1

≤ tevi+1,vi+2
.

Finally, using a particular accumulative snapshot as a reference snapshot,
e.g., G∼t1 , the initial embedding of that snapshot will be used as the final em-
bedding, i.e., H∼t1 = H̃∼t1 . All the nodes that remain structurally unchanged
in it and its neighbouring snapshot (G∼t2), are used to find a matrix Ωt1,t2

with Orthogonal Procruste (OP) by minimising the embedding of these refer-
ence nodes, see Eq. 1. The final graph-level node embedding for G∼t2 is obtained
through the OP transformation of its primitive embedding, as shown in Fig. 3
(4) and Eq. 2. By chaining this operation, Ωt,t+1 can be found based on H∼t

ref

and H̃∼t+1
ref such that nodes in all snapshots are embedded in the same space.

min
Ωt1,t2

∥H∼t1
ref − H̃∼t2

refΩ
t1,t2∥F (1)

H∼t2 = H̃∼t2Ωt1,t2 (2)

The ACWA method, drawing inspiration from causal walk and incorporating
orthogonal procruste between snapshots, allows for graph-level node embedding
over longer paths considering all historical information. This lays the foundation
for capturing long-range interaction which will be presented in the next section.

3.2 Dual-Contextual Inductive Dynamic Graph Transformer

The graph-level node embedding from ACWA enables long-range propagation
of the spatio-temporal information. In this subsection, we present the over-
all structure of our model: Dual-Contextual Inductive Dynamic Graph
Transformer (DCIDGT). It employs two Transformer modules for graph-
level (global context) and subgraph-level (local context) encoding respectively.
Their concatenated outputs form the final edge embedding, as shown in Fig. 4.

Global Contextual Transformer As a module for propagating long-range in-
formation, compared to the cubic complexity of spectral convolution [2], Trans-
formers has the advantages of a quadratic complexity and the ability to capture
long-range interactions.

Once the ACWA graph-level node embedding computed, such embedding can
be used simultaneously as node representation and positional encoding. Infor-
mation propagation on a snapshot is then implemented through a Global Con-
textual Transformer (GCT). The input of this Transformer is the d-dimensional

Inductive Anomaly Detection in Dynamic Graphs 9

Fig. 4. Overall Architect of Dual-Contextual Inductive Dynamic Graph Transformer
(DCIDGT): Left: The graph-level node embedding is computed by the Accumulative
Causal Walk Alignment module, then sent to a Transformer for global context encoding.
Right: The subgraph-level node embedding is computed by the Subgraph Embedding
module, and then encoded by a Local Contextual Transformer. The concatenation of
these embeddings serves as the edge embedding for downstream tasks.

embedding of N t nodes of the snapshot Gt, denoted as Ht
global ∈ RNt×d. The

Transformer Encoder maps Ht
global to Query, Key, and Value matrices through

three learnable weight matrices WQ, WK, and WV, see Eq. 3.

Qt = Ht
globalW

Q, Kt = Ht
globalW

K, Vt = Ht
globalW

V (3)

Zt
global = Attention(Qt,Kt,Vt) = softmax

(
QtKtT

√
d

)
Vt (4)

Then, the similarity between each query and all the keys is computed, scaled,
and normalised to obtain the attention weights, see Eq. 4. This self-attention
matrix can be represented as in Fig. 4 (left). Through self-attention, the repre-
sentation zti,global of each node i is dynamically adapted based on the relationship
with other nodes by aggregating information from the entire snapshot.

Local Contextual Transformer To propagate local information, node repre-
sentations need to be valid only within the subgraph. To this end, we adopt the
TADDY model [19] as a key part of our Local Contextual Transformer.

As presented in section 2, for each target edge, a subgraph is formed by
the τ × K most relevant nodes computed by Personalised PageRank (PPR)
(see appendix. A.2). Each node in the subgraph is then embedded using the
PPR diffusion-based, the shortest path distance-based, and the relative time-
based encodings. These three encodings are summed up to subgraph-level node
embedding ht′

i,local using Eq. 5. These components are detailed in appendix. A.3.

ht′

i,local = W1(rank(s
t′

i [idx(v
t′

i)])) +W2(dist(v
t′

i , e
t′

target)) +W3(∥t− t′∥) (5)

10 L. Yang et al.

The Local Contextual Transformer (LCT) has the same structure as the
GCT. It takes the subgraph-level node embeddings Ht

local ∈ RτK×d as input. A
pooler averages the output subgraph representation as the edge embedding.

Finally, the concatenation of the outputs of the two Transformers serves as
the edge embedding, as shown in Fig. 4.

3.3 Overall Inference Procedure

The overall inference procedure of the model DCIDGT is depicted in Algo. A.4.
For the input snapshot Gt and its history information, ACWA and Subgraph
Embedding modules obtain the graph-level and subgraph-level node embeddings,
respectively. Then, the Global Contextual Transformer computes the graph-level
node representation Zt

global ∈ N t × d. For each of the M t edges, the Local
Contextual Transformer computes subgraph-level node representation of shape
τK × d, and pooled to 1× d.

Finally, for an edge etm consists of nodes vi and vj , the outputs from these
three modules, zti,global, z

t
j,global and ztm,local are concatenated as the final em-

bedding of the edge, as shown in Fig. 4. A linear projection layer then outputs
the anomaly score based on this embedding.

4 Experimental evaluation

4.1 Datasets and Baselines

For evaluating the performance of the model, experiments are conducted on the
publicly available cryptocurrency transactions datasets: Bitcoin-Alpha [18] and
Bitcoin-OTC [18]. The task is to predict the anomaly score of the edges in a
snapshot, given the ordered edge lists from the previous snapshot(s) as input.
The statistics of the datasets are presented in table 1. The Bitcoin datasets
capture the interactions of Bitcoin users in an anonymous transaction network.
Nodes model users while edges represent trustworthiness ratings between users.

Table 1. Dataset Statistics. The numbers of nodes and edges are based on the original
datasets. The numbers of non-duplicated edges and unseen nodes (in the training phase)
are statistics after pre-processing based on the protocols in preceding studies [4,19].

Name # Nodes # Edges # Non-duplicated Edges # Unseen Nodes

Bitcoin-Alpha 3,783 24,173 14,124 998 (26%)
Bitcoin-OTC 5,881 35,588 21,492 2,218 (38%)

We compare our model against the state-of-the-art TADDY model and other
influential models for the dynamic graph anomaly detection task. Since DCIDGT
fully retains TADDY’s subgraph embedding and Local Contextual Transformer,
TADDY can be viewed as an ablation study variant of DCIDGT without ACWA

Inductive Anomaly Detection in Dynamic Graphs 11

and GCT. In addition to the models AddGraph [42], StrGNN [4], and TADDY
[19] presented in section 2, we also include NetWalk [40] in the baseline mod-
els. NetWalk [40] first uses an autoencoder to learn embeddings from random
walks. Then the model updates node representations and sampled walks when
new edges emerge. The anomaly score of an edge is then computed through the
Hadamard product of the embeddings of two nodes.

Each of these models offers insights into the evolving landscape of anomaly
detection in dynamic graphs, serving as a solid foundation upon which our pro-
posed method, DCIDGT, seeks to innovate.

4.2 Experimental settings

To ensure the fairness of our experiments, we follow exactly the experimental set-
tings and snapshot splitting protocol outlined in TADDY [19], and experimented
on the two bitcoin datasets referred to in its code4. This section describes the
general settings, while appendix A.5 introduces the hyperparameters and other
details of the experiments.

The dataset is segmented into two subsets: the initial 50% of snapshots form
the training set, while the subsequent 50% of snapshots constitute the test set.
The data were processed in the same way as in [19], i.e., after removing duplicate
edges, the Bitcoin-OTC and Bitcoin-Alpha datasets have been aggregated to
1,000 and 2,000 edges per snapshot, respectively.

The experimental framework sets up the anomaly detection task with three
different percentages of anomalies pA: 1%, 5%, and 10%, and randomly injects
anomalous edges in each test snapshot. Following the settings of the baseline
models, the "Area Under the Receiver Operating Characteristic Curve" (AUC
ROC) serves as a metric. However, the "Area Under the Precision-Recall Curve"
(PR AUC) is considered more suitable for unbalanced datasets and is often used
for anomaly detection tasks [7]. Therefore, we use both metrics for the evaluation.
They range from 0 to 1, with higher values indicating better performance.

4.3 Experiment results

The results for TADDY and our DCIDGT model are averaged over five runs with
seeds 1-5 for the generation of anomalous edges and the initialisation of model
parameters. AUC ROC Results for all the baseline methods are taken directly
from their publications [42,40,4,19]. Given the space constraints, the standard
deviations of experiments are reported in A.6.

Tables 2 and 3 show the results for each anomaly percentage configuration
of the Bitcoin datasets. Regarding the PR AUC metric, which is more appropri-
ate for anomaly detection tasks, DCIDGT significantly outperforms TADDY by
capturing long-term dependencies. While gaining a higher precision, DCIDGT
still achieves a high AUC ROC metric, mostly outperforming TADDY’s results.

4 https://github.com/yuetan031/TADDY_pytorch/tree/main

12 L. Yang et al.

Table 2. Performance of edge anomaly detection with anomaly percentages pA =
1%, 5%, and 10%, showing the mean of the PR AUC values for seeds 1-5, with the best
results highlighted in bold.

Bitcoin-Alpha Bitcoin-OTC

Methods 1% 5% 10% 1% 5% 10%

TADDY 0.127 0.417 0.562 0.093 0.334 0.502
DCIDGT (ours) 0.274 0.565 0.722 0.196 0.472 0.593

Table 3. Performance of edge anomaly detection with anomaly percentages pA =
1%, 5%, and 10%, showing the mean of the AUC ROC values for seeds 1-5, with the
best results highlighted in bold.

Bitcoin-Alpha Bitcoin-OTC

Methods 1% 5% 10% 1% 5% 10%

NetWalk 0.839 0.836 0.835 0.779 0.769 0.753
AddGraph 0.867 0.840 0.850 0.835 0.846 0.859
StrGNN 0.857 0.867 0.863 0.901 0.878 0.884
TADDY 0.945 0.934 0.942 0.946 0.934 0.943
DCIDGT (ours) 0.954 0.951 0.953 0.946 0.937 0.936

Despite the performance improvement, DCIDGT does not have a significant in-
crease in computation over TADDY, see the complexity analysis in appendix
A.7. Additional experiments in A.8 show that ACWA module exhibits stronger
representation learning than the commonly used node index embedding, high-
lighting its potential and effectiveness in dynamic graph representation learning.

5 Conclusion

In this work, we presented the DCIDGT model, an architecture for dynamic
graph edge anomaly detection that focuses on the integration of both global and
local spatio-temporal information. We achieved new state-of-the-art results in
most experiments on two publicly available Bitcoin datasets.

Different from existing state-of-the-art algorithms that are limited to sub-
graph information, ACWA proposes a novel solution for embedding and aligning
unseen nodes in dynamic graphs. Empirical results demonstrate the potential of
our approach, which opens the door to future research on more optimised align-
ment and random walk sampling, pushing the boundaries of anomaly detection
in dynamic graphs. In future research, other alignment methods besides OP
could be explored for ACWA. Furthermore, extending ACWA to other dynamic
graph encoders and applying it to a broader range of tasks could provide valuable
insights.

Acknowledgments. This work was financially supported by the ANR Labcom Lisa
ANR-20-LCV1-0009.

Disclosure of Interests. All authors disclosed no relevant relationships.

Inductive Anomaly Detection in Dynamic Graphs 13

References

1. Alon, U., Yahav, E.: On the bottleneck of graph neural networks and its practical
implications. arXiv preprint arXiv:2006.05205 (2020)

2. Balcilar, M., Guillaume, R., Héroux, P., Gaüzère, B., Adam, S., Honeine, P.: Ana-
lyzing the expressive power of graph neural networks in a spectral perspective. In:
Proceedings of the International Conference on Learning Representations (ICLR)
(2021)

3. Cai, D., Qian, S., Fang, Q., Hu, J., Xu, C.: User cold-start recommendation via
inductive heterogeneous graph neural network. ACM Transactions on Information
Systems 41(3), 1–27 (2023)

4. Cai, L., Chen, Z., Luo, C., Gui, J., Ni, J., Li, D., Chen, H.: Structural temporal
graph neural networks for anomaly detection in dynamic graphs. In: Proceedings of
the 30th ACM international conference on Information & Knowledge Management.
pp. 3747–3756 (2021)

5. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in neural information
processing systems 29 (2016)

7. Gaudreault, J.G., Branco, P., Gama, J.: An analysis of performance metrics for
imbalanced classification. In: International Conference on Discovery Science. pp.
67–77. Springer (2021)

8. Goldberg, Y., Levy, O.: word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)

9. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864 (2016)

10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Advances in neural information processing systems 30 (2017)

11. Hamilton, W.L.: Graph representation learning. Morgan & Claypool Publishers
(2020)

12. Hurley, J.R., Cattell, R.B.: The procrustes program: Producing direct rotation to
test a hypothesized factor structure. Behavioral science 7(2), 258 (1962)

13. Kim, H., Lee, B.S., Shin, W.Y., Lim, S.: Graph anomaly detection with graph
neural networks: Current status and challenges. IEEE Access 10, 111820–111829
(2022)

14. Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee, H., Hong, S.: Pure transformers
are powerful graph learners. Advances in Neural Information Processing Systems
35, 14582–14595 (2022)

15. King, I.J., Huang, H.H.: Euler: Detecting network lateral movement via scalable
temporal link prediction. ACM Transactions on Privacy and Security 26(3), 1–36
(2023)

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

17. Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian,
V.: Rev2: Fraudulent user prediction in rating platforms. In: Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining. pp.
333–341. ACM (2018)

14 L. Yang et al.

18. Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction
in weighted signed networks. In: Data Mining (ICDM), 2016 IEEE 16th Interna-
tional Conference on. pp. 221–230. IEEE (2016)

19. Liu, Y., Pan, S., Wang, Y.G., Xiong, F., Wang, L., Chen, Q., Lee, V.C.: Anomaly
detection in dynamic graphs via transformer. IEEE Transactions on Knowledge
and Data Engineering (2021)

20. Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q.Z., Xiong, H., Akoglu, L.:
A comprehensive survey on graph anomaly detection with deep learning. IEEE
Transactions on Knowledge and Data Engineering 35(12), 12012–12038 (2021)

21. Manessi, F., Rozza, A., Manzo, M.: Dynamic graph convolutional networks. Pat-
tern Recognition 97, 107000 (2020)

22. Meyer, D.: How exactly does word2vec work. Uoregon. Edu, Brocade. Com pp.
1–18 (2016)

23. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

24. Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W., Zhao, P., Huang, J.,
Ananiadou, S., Rong, Y.: Transformer for graphs: An overview from architecture
perspective. arXiv preprint arXiv:2202.08455 (2022)

25. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-
time dynamic network embeddings. In: Companion proceedings of the the web
conference 2018. pp. 969–976 (2018)

26. Page, L., Brin, S., Motwani, R., Winograd, T., et al.: The pagerank citation rank-
ing: Bringing order to the web (1999)

27. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection:
A review. ACM computing surveys (CSUR) 54(2), 1–38 (2021)

28. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710 (2014)

29. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.:
Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637 (2020)

30. Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support
vector method for novelty detection. Advances in neural information processing
systems 12 (1999)

31. Tagowski, K., Bielak, P., Kajdanowicz, T.: Embedding alignment methods in dy-
namic networks. In: International Conference on Computational Science. pp. 599–
613. Springer (2021)

32. Tax, D.M., Duin, R.P.: Support vector data description. Machine learning 54,
45–66 (2004)

33. Topping, J., Di Giovanni, F., Chamberlain, B.P., Dong, X., Bronstein, M.M.: Un-
derstanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522 (2021)

34. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

35. Wang, D., Zhang, Z., Ma, Y., Zhao, T., Jiang, T., Chawla, N.V., Jiang, M.:
Learning attribute-structure co-evolutions in dynamic graphs. arXiv preprint
arXiv:2007.13004 (2020)

36. Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J., Li, P.: Inductive representa-
tion learning in temporal networks via causal anonymous walks. arXiv preprint
arXiv:2101.05974 (2021)

Inductive Anomaly Detection in Dynamic Graphs 15

37. Wu, Q., Yang, C., Yan, J.: Towards open-world feature extrapolation: An inductive
graph learning approach. Advances in Neural Information Processing Systems 34,
19435–19447 (2021)

38. Yang, L., Chatelain, C., Adam, S.: Dynamic graph representation learning with
neural networks: A survey. IEEE Access pp. 1–1 (2024). https://doi.org/10.
1109/ACCESS.2024.3378111

39. Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.Y.: Do
transformers really perform badly for graph representation? Advances in neural
information processing systems 34, 28877–28888 (2021)

40. Yu, W., Cheng, W., Aggarwal, C.C., Zhang, K., Chen, H., Wang, W.: Netwalk:
A flexible deep embedding approach for anomaly detection in dynamic networks.
In: Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining. pp. 2672–2681 (2018)

41. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architec-
ture for graph classification. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 32 (2018)

42. Zheng, L., Li, Z., Li, J., Li, Z., Gao, J.: Addgraph: Anomaly detection in dynamic
graph using attention-based temporal gcn. In: IJCAI. vol. 3, p. 7 (2019)

A Appendices

A.1 Graph Convolution

A foundational concept of Graph Neural Network (GNN) is Graph Convolution,
which can be classified into two main categories: spatial-based and spectral-based
[2].

Spatial convolution is analogous to image convolution in that they both fo-
cus on local neighbourhoods and can be extended to k-hop neighbourhoods by
stacking k layers. However, spatial convolutions [10,16] lead to problems such as
over-smoothing and over-squashing [1] and are therefore weaker in capturing the
global structure.

On the other hand, spectral convolutions [6] are grounded in spectral graph
theory. They transform the graph signal to the spectral domain and convert it
back to the original space after filtering it with learnable parameters. Although
spectral convolution can capture global structure, the projection in the spectral
domain is computationally expensive (of cubic complexity) [2].

A.2 Personalised PageRank

Personalised PageRank (PPR) is an algorithm for finding the nodes in a graph
that are most relevant to a given node. It can be computed using the equation 6
and represented by the diffusion matrix S, where the i-th row si represents the
connectivity of the i-th node to all other nodes. The matrix In is the identity
matrix, A is the adjacency matrix, D is the degree matrix, and α is a hyperpa-
rameter for the teleport probability.

SPPR = α(In − (1− α)D−1/2AD−1/2)−1 (6)

https://doi.org/10.1109/ACCESS.2024.3378111
https://doi.org/10.1109/ACCESS.2024.3378111
https://doi.org/10.1109/ACCESS.2024.3378111
https://doi.org/10.1109/ACCESS.2024.3378111

16 L. Yang et al.

A.3 TADDY Model Details

In the TADDY model [19], for each snapshot, a PPR diffusion matrix St is first
computed. For the edges eta,b consisting of nodes a, b at moment t, the vectors
s[a] and s[b] in the PPR diffusion matrix are summed up, denoted as sedge. The
K n odes having the largest values in sedge are selected as relevant nodes of the
edge eta,b. Then, for each of the time step t′ ∈ [t − τ + 1, t], the same following
operations is performed:

For each node i of the K relevant nodes at moment t′, three statistical values
are calculated: (1) the value of the ranking of node i sedge; (2) the smaller
value of the shortest path from node i to node a or node b; (3) the difference
between the moment t′ and the target moment t. Each of these three values is
embedded through a linear layer, denoted as W1, W2, and W3. The output
vectors are called PPR diffusion-based encoding, shortest path distance-based
encoding, and relative time-based encoding, respectively, as shown in equation
5. They are summed and used as subgraph-level node embeddings for input to
the Transformer Encoder. Thus for each eta,b, the input to this Transformer is
the encoding of K nodes for a total of τ time steps.

A.4 Algorithm of DCIDGT

Algorithm 1 Inference Procedure of the DCIDGT Model for Snapshot Gt

1: Input: Snapshots until time t: Gt = {G1, . . . , Gt}
2: Output: Anomaly Score scoretm for each edge m in Gt

3: Ht
global ∈ RNt×d/2 ← ACWA(Gt)

4: Zt
global ∈ RNt×d/2 ← Global Transformer(Ht

global)
5: Ht

local ∈ RMt×K×τ×d ← Subgraph Embedding(Gt)
6: For m = 1 to M t do
7: Let edge etm connect nodes vi and vj
8: ztm,local ∈ Rd ← Pooler(Local Transformer(ht

m,local)), h
t
m,local ∈ RK×τ×d

9: ztm ← Concatenate(zti,global, z
t
j,global, z

t
m,local)

10: scoretm ← ztmWs + bs

11: end for

A.5 Parameter Settings

For results on the bitcoin datasets, we used exactly the same model structure,
as presented below:

For the hyperparameters of the two Transformer Encoders, we use a relatively
small number of parameters, namely number of attention layers = 2 and number
of attention heads = 2. The embedding dimension d is set to 32 for the Local

Inductive Anomaly Detection in Dynamic Graphs 17

Transformer and d = 16 for the Global Transformer. For the subgraph embedding
module, we retain the settings in TADDY with K = 5, τ = 2.

For sampling and training in ACWA, we follow the approach in [25] and set
the walk length L = 30 and the number of walks per node = 200. For Global
Contextual Transformer and Local Contextual Transformer, d is set to 32, so
the concatenated edge embedding size is dedge = 64.

By strictly following the data splitting in TADDY, the total number of snap-
shots T , for Bitcoin Alpha and Bitcoin OTC are 8 and 22, respectively. Due to
anomalous edges injected in a chaotic order, the total number of edges increases,
and the number of snapshots may increase by 1.

All models were trained for 100 epochs using the Adam optimiser with a
constant learning rate 1e-5. The weight decay for the Transformer models is set
to 5e-4. The validation ratio is set to 10% of the training edges and the patience
of early stopping is set to 10 epochs.

For the Orthogonal Procruste alignment, the primitive embedding of the last
snapshot in the training set was chosen as the reference, with its front and back
neighbouring snapshots aligned towards it by chaining.

A.6 Standard Deviation of Experiments

Table 4. Standard Deviation of the anomaly edge detection task.

AUC ROC PR AUC

Bitcoin Alpha Bitcoin OTC Bitcoin Alpha Bitcoin OTC

Anomaly% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

DCIDGT 0.007 0.004 0.005 0.008 0.005 0.005 0.095 0.078 0.028 0.050 0.029 0.022
TADDY 0.007 0.005 0.008 0.009 0.005 0.006 0.019 0.041 0.044 0.007 0.011 0.012

A.7 Complexity Analysis

The complexity of DCIDGT can be divided into two parts: preprocessing and
inference. For a given snapshot, preprocessing needs to be executed only once,
while forward propagation is executed once per epoch during training and only
once during testing. Preprocessing includes the Accumulative Causal Walk Align-
ment (ACWA) for the Global Contextual Transformer (GCT) and Subgraph
Embedding for the Local Contextual Transformer (LCT). The main complexity
of inference comes from GCT (our proposed global transformer) and LCT (the
main structure of TADDY).

18 L. Yang et al.

Preprocessing Complexity As a preprocessing step, the ACWA algorithm
essentially acts as an optimized Node2Vec for DTDG with linear complexity
[9]. Specifically, this algorithm generates random walks for all nodes up to time
t for each snapshot, followed by Word2Vec [23] training method implemented
with Gensim 5. The complexity of generating random walks is O(Ñ t × R × L),
where Ñ t denotes the number of all seen nodes up to time t, R represents the
number of random walks, and L represents the length of each random walk. The
training complexity of Word2Vec is O(n × d) [22], where n denotes the total
vocabulary size of the corpus, i.e., the cumulative number of nodes Ñ t, and d is
the dimension of the generated vectors. In practice, generating random walks is
performed only once and the time can be considered negligible, and the word2vec
training complexity is linear.

In our experiments, conducted on Google Colab using an Intel Xeon CPU
with 13GB of RAM, we set the hyperparameters as follows: d = 16, L = 30,
R = 200, and the number of Word2Vec training epochs = 100. The preprocessing
time per node per snapshot was 0.141 seconds on average for the bitcoin-alpha
dataset and 0.145 seconds on average for the bitcoin-OTC dataset.

Subgraph Embedding, as proposed in TADDY [19], primarily derives its com-
plexity from spectral decomposition used for selecting subgraph nodes, resulting
in at least O(Ñ t3) complexity, which is cubic. Although this preprocessing is
less scalable, the number of nodes per snapshot in the bitcoin datasets ranges
from 102 to 103. Thus, the total preprocessing time is not excessive. Using an
Intel Xeon CPU, the preprocessing for all snapshots of a single dataset can be
completed in under 5 minutes.

Inference Complexity Both GCT and LCT utilise two-layer, two-head Trans-
former Encoder layers [34]. The main complexity of these layers arises from the
self-attention mechanism and the multi-layer perceptron. The computational
load of the self-attention mechanism is 3×n× d2 +2×n2 × d per head, and the
complexity of the two-layer perceptron in the Transformer is O(n × d2). Here,
n represents the number of input elements to the Transformer, and d represents
the embedding dimension.

In our GCT, global nodes need to be processed only once, so nGCT cor-
responds to N t. In LCT, the Transformer Encoder computation needs to be
performed for each edge, making its complexity M t times higher. Correspond-
ingly, n in this case corresponds to the number of nodes in the subgraph, i.e., the
number of windows times the number of nodes per snapshot, which according
to TADDY’s hyperparameters is nLCT = 7× 2 = 14.

In summary, the inference complexity of GCT arises from its quadratic com-
plexity with respect to N t, while LCT, although having a smaller number of
subgraph nodes, derives its complexity from being executed M t times. For ref-
erences, the average N t for the Bitcoin-Alpha dataset is 845 and M t = 2000,
and the average N t for the Bitcoin-OTC is 595 with M t = 1000. It can be seen

5 https://radimrehurek.com/gensim/models/word2vec.html

Inductive Anomaly Detection in Dynamic Graphs 19

that the ACWA and GCT modules improve the performance of TADDY without
significant additional time complexity.

A.8 Effectiveness of ACWA in learning unseen nodes

Fig. 5. Edge anomaly detection AUC ROC values for edges consisting only of nodes
not seen during training.

In order to better capture the dynamics of the graph, recent studies [15]
started to focus on the classification task for unseen edges. Inspired by this, we
propose an additional experiment to evaluate the expressiveness of ACWA for
globally available unseen node embedding.

Specifically, instead of basing the AUC ROC on all edges, in this experi-
ment, it is computed only on edges consisting entirely of nodes that were not
seen during training. This is a more difficult problem due to the complete lack
of information about these nodes in the training data, e.g., edges et3F,G and et4F,H

in Fig. 1. To avoid the influence of the model structure, we propose to use a sim-
ple structure with only a linear layer with learnable parameters Ws and bs for
anomalous score prediction, denoted as scoreti,j = [zti∥ztj]Ws+bs. For compari-
son, we also examined the commonly used Index Embedding and Accumulative
Random Walks without alignment as node embedding methods.

The mean of AUC ROC value under seeds 1-3 is shown in Fig. 5. Index
Embedding achieves a score of around 0.5 as it is based on random initialisation
of the predictions, which is in line with our expectations. The unaligned ACW
method performs at similar levels on the digg and UCI datasets but performs
better on the bitcoin datasets. This may be due to the fact that, despite the lack
of alignment, it has a certain expressive capacity. ACWA generally outperforms
the unaligned ACW, showing its viability for unseen node embedding.

	Inductive Anomaly Detection in Dynamic Graphs with Accumulative Causal Walk Alignment

