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Abstract Last decade has seen the emergence of numerous methods for learning on graphs,
particularly Graph Neural Networks (GNNs). These methods, however, are often not directly
applicable to more complex structures like bipartite graphs (equivalent to hypergraphs), which
represent interactions among two entity types (e.g. a user liking a movie). This paper
proposes Convolutional Signal Propagation (CSP), a non-parametric simple and scalable
method that natively operates on bipartite graphs (hypergraphs) and can be implemented
with just a few lines of code. After defining CSP, we demonstrate its relationship with
well-established methods like label propagation, Naive Bayes, and Hypergraph Convolutional
Networks. We evaluate CSP against several reference methods on real-world datasets from
multiple domains, focusing on retrieval and classification tasks. Our results show that CSP
offers competitive performance while maintaining low computational complexity, making it
an ideal first choice as a baseline for hypergraph node classification and retrieval. Moreover,
despite operating on hypergraphs, CSP achieves good results in tasks typically not associated
with hypergraphs, such as natural language processing.

Keywords: Hypergraph representation learning · Hypergraph convolution · Label Propa-
gation · Model complexity · Naive Bayes

1 Introduction

In the modern world, an overwhelming amount of data has an internal structure, oftentimes forming
complex networks that can be represented as graphs. Efficiently mining information from this
data is crucial for a wide range of applications spanning various domains such as social networks,
biology, physics or cybersecurity. Graph Neural Networks (GNNs) have emerged as the dominant
tool for handling such data due to their ability to leverage the graph structure for predictive and
analytical tasks. However, despite their success, GNNs come with notable challenges, including high
computational complexity during training, numerous hyperparameters that require fine-tuning, lack
of straightforward interpretability, and the necessity of dedicated computational infrastructure such
as GPUs.

Given these limitations, baseline algorithms play a vital role as complementary tools to GNNs.
These baselines, often much less complex, provide an efficient way of generating preliminary results.
In many cases, these simpler methods are even sufficiently effective to be used as-is for the problem
at hand.

Section 2 introduces the problem being solved in this work and Section 3 provides an overview
of other related works. Section 4 is the most substantive part of this paper, introducing the CSP
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method (Section 4.1). In Section 4.5, we show CSP to be a straightforward extension of the well-
known label propagation method to hypergraphs. Also provided is a comparison of CSP to other
methods, such as hypergraph convolutional networks (Section 4.4) and the naive Bayes classifier
(Section 4.6). Finally, Section 5 provides an experimental evaluation and comparison of CSP and
several alternative methods.

2 Problem Statement

Assume that we have structured data with relationships that can be translated into a hypergraph
or a bipartite graph. These structures can represent various scenarios such as users rating movies,
users accessing web domains, emails containing attachments, authors writing papers, papers being
co-cited, and tokens being contained in texts. Some data might also come with constraints such
as large volume or privacy restrictions, like those found in emails. These structures inherently
provide a relationship between entities, enabling many applications to leverage these relationships,
such as movie recommendations, mining malicious web content (like emails or domains), or text
classification.

Our goal is to find a flexible method that can be applied to tasks involving structured data.
This flexibility is sought in terms of performance, numerical complexity, and adaptability. We aim
to develop a method that can efficiently handle and extract meaningful information from these
complex relationships. Whether we are looking to extract interesting entities, which aligns with a
retrieval scenario, or view the task as a simple classification problem, the method should be versatile
enough to adapt to these needs.

We can formalize this problem using either a bipartite graph or a hypergraph. By representing
the data in these graph structures, we can better understand and utilize the inherent relationships
between entities. This formalization allows for the application of graph-based algorithms, which
can improve the effectiveness of tasks like classification and retrieval.

2.1 Notations and Definitions

We consider a finite set of items of interest V = {v1, . . . , vn}, referred to as nodes. A family of
subsets of V denoted by E = {e1, . . . , em} ⊆ 2V is referred to as hyperedges. The nodes and
hyperedges togerher form a hypergraph H = (V,E). The structure of the hypergraph can also
be described by an incidence matrix H ∈ {0, 1}n×m, where Hi,j = 1 if vi ∈ ej , and 0 otherwise.
Every hypergraph can alternatively be described by a bipartite incidence graph, also called the
Levi graph [22]. This bipartite graph Gbip = (V ∪ E,Ebip) has as its two partitions the nodes
and hyperedges of H, and its edges represent a node in V belonging to an edge in E, formally
Ebip = {(vi, ej) ∈ V × E|vi ∈ ej}.

The degree d (v) of node v is defined as the number of edges that contain the node, that is
d (v) = |{ei ∈ E|v ∈ ei}|. Similarly, the degree δ (e) of the edge e is defined as the number of nodes
it contains, i.e. δ (e) = |e|. We also establish a diagonal node-degree matrix Dv ∈ Nn×n with
(Dv)i,i = d (vi) and (Dv)i,j = 0 for i 6= j. Analogously, the hyperedge-degree matrix is a diagonal
matrix De ∈ Nm×m with (De)i,i = δ (ei) and (De)i,j = 0 for i 6= j.

We consider for each node in the hypergraph some kind of signal that is to be propagated
through the hyperedges. Let the signal be a d-dimensional vector xi for each node, giving for the
whole hypergraph a matrix X ∈ Rn×d. In the following parts of this paper, we will explore several
ways of defining such a signal, with an overview provided in Section 4.3.
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Within this work, we are interested in two transductive tasks on hypergraphs: classification on
V and retrieval of positive nodes from V . Both tasks assume a training set of nodes Vtrain ⊂ V
where the labels of nodes are known. In case of classification, the goal is to predict the label for
all nodes in V . The retrieval task aims to sort the nodes in the testing set V \ Vtrain such that the
number of positive nodes in top K positions is maximized.

3 Related work

Mining information from structured (graph-like) data is one of the central problems in machine
learning. The most straightforward way to handle this is to translate the structure into features
and apply traditional machine learning techniques, such as logistic regression, random forests, and
naive Bayes, to these features. Naive Bayes [26], in particular, provides a bridge to a second large
family of learning methods on graphs: Bayesian methods, where the graph forms a structure for
modelling random variables. A critical problem associated with Bayesian methods is inference,
which is often intractable. The sum product algorithm [18] combats the tractability of a system by
its decomposition to a product of local functions. One instance of this framework is probabilistic
threat propagation [4], which is used for spreading information about malicious actors through the
network.

The translation of structured data into features is also a non-trivial problem. While some meth-
ods can handle sparse, high-dimensional feature vectors, the majority cannot. Several methods are
suited for finding low-dimensional representations of structured data. For example, non-negative
matrix factorization [20] (NMF) decomposes a large sparse matrix into the product of two low-
dimensional matrices. Node2vec [10] applies contrastive learning to find node representations where
neighboring nodes are close in feature space. Spectral positional encodings [6] provide represen-
tations given by eigenvectors of the Laplacian matrix, and distance encodings [23,2] offer global
information about where a node is located in the graph. However, except for NMF, these methods
are suited for graphs and cannot be directly applied to hypergraphs.

There are many papers on learning algorithms for graphs, such as GraphSAGE [11], graph
convolutional networks [16], and graph attention networks [32]. Nevertheless, their application
to hypergraphs is not straightforward. The origins of learning transductive tasks stretch back to
the seminal work [34]. More recently, Hypergraph neural networks [7], Dynamic HGNNs [15], and
HyperGCN [33] build upon the convolutional learning schema introduced in [17] while works such as
[1] aim to bring both convolutional as well as attention to the context of hypergraphs. The proposed
method can also be viewed as an extension of label propagation [35,14] or feature propagation [31].
While there do exists algorithm for label propagation in hypergraphs [13,21], the proposed method
aims to be comparatively simpler to understand, implement and calculate. The proposed method
is an extension of our previous work in the specific domain of computer network security [30].

4 Convolutional Signal Propagation

We present Convolutional Signal Propagation (CSP), a method for signal propagation on hyper-
graphs. In the following subsections, CSP is first introduced in the general setting, followed by
a comparison to established approaches and a discussion of possible variants inspired by them.
Finally, applications of CSP to different kinds of signals in hypergraph tasks are discussed.
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4.1 Method overview

The proposed algorithm propagates a node signal X (see Section 4.3 for a discussion of possible
signal types) through the hypergraph H. The basic version of CSP consists in a simple averaging of
X across the hyperedges and nodes of the graph. This averaging can be repeated to obtain smoother
final representations, resulting in a multi-step CSP process generating a sequence of representations
X(l), where X(0) = X.

In each step, the representation X(l) of the nodes is first propagated to the hyperedges to obtain
their representations

r
(l)
j =

1

δ (ej)

∑
i

vi∈ej

x
(l)
i (1)

that is the average of the representation of the individual nodes contained in the hyperedge. In the
second step, this hyperedge representation is propagated again into nodes:

x
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The steps 1 and 2 constitute the proposed Convolutional Signal Propagation algorithm, which
can be summarily written as
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Using notation established in Section 2.1, Equation 3 can be rewritten into the matrix form

X(l+1) = D−1
v HD−1

e HT X(l). (4)

Equation 4 describes a basic variant of the proposed algorithm. In Section 4.7, various modifi-
cations of CSP are discussed.

4.2 On Efficient Implementation of Convolutional Signal Propagation

While Equation 4 shows an efficient way of mathematically expressing the CSP algorithm, the
algorithm itself is also efficient when it comes to its implementation and computational complexity.
Algorithm 1 shows an implementation of CSP in a single SQL query and Algorithm 2 shows a
simple implementation in Python using the Pandas [24] library. These implementations essentially
materialize Equations 1 and 2.

4.3 Application of CSP to different signals in hypergraphs

The construction of Convolutional Signal Propagation in Section 4.1 was a general one, assuming
a signal matrix X ∈ Rn×d. In practice, one can use CSP to propagate various kinds of “signals” in
the hypergraph. Namely, the matrix X may represent actual features as provided in the underlying
graph dataset. This setting leads to a method similar to feature propagation [31] or hypergraph
convolution [7]. Such an approach is elaborated further in Section 4.4. Alternatively, an approach
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Algorithm 1 An SQL implementation of CSP (3), where graph is a table with columns nodeId,
edgeId and property. While nodeId and edgeId desribe the hypergraph, property defines the task.

1 SELECT nodeId, AVG(edgeProperty) AS updatedProperty
2 FROM (
3 SELECT nodeId, AVG(property) OVER (PARTITION BY edgeId) AS edgeProperty
4 FROM graph
5 )
6 GROUP BY nodeId;

Algorithm 2 A Pandas implementation of CSP (3), where df is a DataFrame with columns nodeId,
edgeId and property. While nodeId and edgeId desribe the hypergraph, property defines the task.

1 import pandas as pd
2 def CSP_layer(df: pd.DataFrame) -> pd.DataFrame:
3 return df.assign(edgeProperty=df.groupby('edgeId')['property'].transform('mean')) \
4 .groupby('nodeId')['edgeProperty'].mean() \
5 .reset_index().rename(columns={'edgeProperty': 'updatedProperty'})

based on label propagation [35] may be obtained by taking as X a version of the label matrix Y
masked by the training set, a setting described in Section 4.5. Finally, the hyperedges of H may be
used as the signal, essentially representing indicators of node similarity based on their presence in
a common hyperedge. Such an approach corresponds to setting X = H and is described in Section
4.6.

4.4 Comparison with Hypergraph Convolution

A single layer of the Hyper-Conv hypergraph neural network by [1] is defined as

X(l+1) = σ(D−1
v HWD−1

e HT X(l)Θ), (5)

where W and Θ are weight matrices that need to be optimized.
Comparing Equations 4 and 5, it can be seen that CSP is a simplified special case of Hyper-Conv

with the matrices W and Θ realized as non-learnable identity matrics. As the proposed method
runs only the “forward pass” of Hyper-Conv, we do not use the non-linearity σ in the basic variant
of CSP.

4.5 Comparison with Label Propagation

The label propagation algorithm as intruduced in [35] is expressed for an ordinary graph (with
edges connecting exactly 2 nodes) as

Y(l+1) = αD−1
v AY(l) + (1− α)Y(l), (6)

where Dv denotes the diagonal matrix of degrees of a graph and A stands for its adjacency matrix.
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To compare Label propagation with CSP, let us first express the value of HD−1
e HT as(

HD−1
e HT

)
i,j

=
∑
k

1

δ (ek)
Hi,kHj,k, (7)

which represents for each pair of nodes the number of hyperedges connecting them, normalized by
their degrees. Specifically, for an ordinary graph, this becomes

HD−1
e HT =

1

2
(A + Dv) . (8)

With this simplification for ordinary graphs, equation 4 becomes

X(l+1) =
1

2
D−1

v AX(l) +
1

2
X(l). (9)

which is equivalent to equation 6 with X = Y (or a masked version thereof) and α = 1
2 . CSP

is in this instance therefore a generalization of label propagation with this particular value of α
to hypergraphs (for generalization with arbitrary values of α, see Section 4.7). There is, however,
another compelling reason to use CSP over Label propagation as presented in equation 6. The
matrix multiplication HD−1

e HT does not preserve the sparsity of H, which is typical for large
datasets. Therefore the proposed implementation can be significantly more efficient than Equation
6, despite them being mathematically equivalent.

4.6 Comparison with the naive Bayes classifier

The naive Bayes classifier is a well know classification method which calculates posterior probability
on y with a feature vector ξ as p(y|ξ) using Bayes rule as p(y|ξ) = p(ξ|y)p(y)

p(ξ) with the “naive”
assumption that p(ξ|y) =

∏
i p(ξi|y), where p(ξi|y) is estimated on training set for all pairs of

features and labels.
In the case of a multinomial Naive Bayes, the term p(ξi|Y) is given by the empirical distribution

observed on the training set. In the CSP setup, we therefore consider the hyperedges of H to
represent the features ξ, that is X = H. In the binary case, the empirical distribution p(ξi|Y)
is equal to averaging the node signal across each hyperedge as described in Equation 1. The
aggregation (product) then nicely demonstrates the difference between the filtering (convolutional)
approach of CSP and the Bayesian (Maximum a posteriori) approach.

4.7 Convolutional Signal Propagation Variants

The comparison with the methods presented in Sections 4.4, 4.5 and 4.6 naturally suggests several
alternative variants and generalizations of the basic CSP scheme.

Alternative normalizations of the adjacency matrix In graph neural networks, the adjacency
matrix A is normalized by multiplying it with the inverse of the node degree matrix Dv. While
the DeepWalk algorithm [29] corresponds to the row-wise normalization D−1

v A, newer methods also
consider the column-wise normalization AD−1

v and most predominantly the symmetric normaliza-
tion D−1/2

v AD−1/2
v introduced in [17]. Because the matrix HD−1

e HT plays in CSP a role similar to
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the adjacency matrix A in GCN (see Equation 7), we can also consider the alternative column-wise
normalized version of CSP:

X(l+1) = HD−1
e HT D−1

v X(l) (10)

and the symmetrically normalized version

X(l+1) = D−1/2
v HD−1

e HT D−1/2
v X(l). (11)

Generalization of label propagation with general values of α While Section 4.5 shows that
CSP is generalization of label propagation with α = 1

2 to hypergraphs, a more general variant of
CSP allowing for α ∈ (0, 1) can be defined as

X(l+1) = 2αD−1
v HD−1

e HT X(l) + (1− 2α)X(l). (12)

This version is a full generalization of label propagation as described in Equation 6 to hypergraphs
(equivalence can be proved by applying Equation 7).

All of the above variants of CSP can be implemented in a straightforward way by modifying
Algorithms 1 and 2, without requiring full matrix multiplication.

5 Experimental evaluation

The goal of our experiments is to compare performance and execution time of the proposed Convo-
lutional Signal Propagation (CSP) method with several well established baseline methods as well as
with a simple Hypergraph Neural Network (HGCN) on a variety of real-world datasets from mul-
tiple domains. In this section, we introduce the considered datasets, reference methods, and tasks
used for evaluation. Our aim is to validate the comparable performance of the proposed method
while highlighting its low execution time. While we discuss the various variants of the proposed
method in Section 4.7, a comprehensive evaluation of these variants will be conducted in a future
work.

5.1 Datasets

We evaluated our methods on datasets from three distinct areas:

– Citation datasets: This category includes the PubMed, Cora, and DBLP datasets in their
hypergraph variants, as introduced in [5]. In these datasets, the hyperedges may be defined in
two distinct ways - either by a common author, or by co-citation, yielding two variants of the
dataset. Each publication is labeled based on its topic.

– Natural Language Processing (NLP): We used the Coronavirus tweets NLP dataset [25],
which contains Twitter posts about COVID-19. The tweets were tokenized, with each tweet
representing a node, labeled by its sentiment. Hyperedges are formed by tokens appearing
in multiple tweets. The tokens are trained on the whole corpus with given number of tokens3

(1000) using Sentencepiece algorithm [19]. Note that we can control the graph size with (number
of hyperedges) by the parameter of tokenization.

3 The number differs to the number of hyperedges from Table 1, due to special reserved tokens that are
not used in corpus.
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Table 1. Overview of datasets with their basic characteristics. ΣE =
∑

e∈E δ (e) or equivalently the
number of non-zero elements in the incidence matrix H. Isolated nodes are nodes that are not connected
by any hyperedge. Percentage of isolated nodes is their fraction related to the overall number of nodes.

Dataset CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA

Nodes 3312 2708 2708 41302 19717 44955 62423 62423
Isolated nodes 1854 320 1274 0 15877 0 3376 17172
Isolated node ratio 56% 12% 47% 0% 81% 0% 5% 28%
Hyperedges 1079 1072 1579 22363 7963 998 162541 14592
ΣE 3453 4585 4786 99561 34629 3455918 25000095 1093360
Average d (v) 2.37 1.92 3.34 2.41 9.02 76.88 423.39 24.16
Average δ (e) 3.20 4.28 3.03 4.45 4.35 3463 153.8 74.9
Classes 6 7 7 6 3 5 20 20

– Recommender Systems: We used the MovieLens 25M dataset [12], which contains 25 million
movie ratings and one million tag applications. The nodes are individual movies labeled by their
genres (allowing for multiple labels for one node). The hyperedges correspond to users and may
again be defined in two ways, giving us two versions of the dataset: Either by a user rating
multiple movies, or by a user assigning tags to multiple movies.

An overview of datasets including their basic characteristics is shown in Table 1. Due to the
interpolative nature of CSP, each multiclass dataset is transformed into a series of binary datasets,
where each class is treated as the positive class, and all other classes are treated as negative. The
results are then averaged over all such obtained binary datasets.

We consider only structural information that is available in the hypergraph. No other informa-
tion (such as node or hyperedge features) is included.

5.2 Tasks

We address two primary tasks in our experiments: transductive node classification and retrieval.

Classification Task

– Aim: Prediction of binary labels on the testing set
– Method: We use leave-one-out cross-validation with 10 folds, where nodes are randomly as-

signed to folds. One fold is hidden for testing, and the method is trained on the remaining nine
folds. For each dataset, we generate test predictions for each node (when it is in the testing set).
For each class, we calculate the ROC-AUC and average these scores. This average is reported
as the classification score for each method on the given dataset.

Retrieval Task

– Aim: Ranking of nodes in the testing set maximizing the precision in the top positions
– Method: Folds are assigned in the same way as in the classification task, with one fold being

used for training and the other 9 used as the testing dataset. The training set consists of all
nodes in the graph, with the positive nodes in the training fold labeled as positive and all other
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nodes labeled as unknown. The model is trained on this training set. For models that require
negative training examples, we randomly sample a set of the same size as the testing set and
consider these labels as negative. Although this introduces some label noise, we assume that the
negative class is dominant, making the noise acceptable. The model then ranks the nodes from
the testing folds, and we evaluate precision at the top 100 positions (P@100). This evaluation
is performed for each fold and class, and the average P@100 over folds and classes is reported
as the retrieval score for each method on the given dataset.

5.3 Evaluated Methods

We compare the following methods in our experiments. The variants of the CSP mentioned in
Section 4.7 are not reported in this work. In future, we would like also to compare multiple choices
of feature representation for reference methods on top of NMF. Nevertheless as our goal is just to
show a competitive performance of CSP, we believe that it is sufficient to compare it with baseline
methods without their fine-tuning.

– The proposed CSP method: Evaluated with 1, 2, and 3 layers, where we consider binary
training labels as X0. After application of a given number of CSP layers (see Equation 4), the
yielded (score) vector Xl, l ∈ {1, 2, 3} is used for both retrieval (top-100 scored test nodes) and
for binary classification (with a given threshold on score).

– Multinomial Naive Bayes: Operates on one-hot feature vectors derived from hyperedges.
– Random Forest, Logistic Regression, and HGCN: These methods operate on feature

vectors obtained from non-negative matrix factorization (NMF) of the incidence matrix[20]4 H,
with 10 iterations and a dimension of 60.

– Method Settings:
• Random Forest, Logistic Regression, and Naive Bayes are used with their default settings.
• A single layer HGCN implements Equation (5) with an output layer of dimension 2 and

sigmoid non-linearity. We use logistic loss and train all datasets for 15,000 epochs using the
Adam optimizer with default settings.

– Random Baseline: Included for comparison.

The results of these methods are evaluated and compared based on their performance on the
classification and retrieval tasks across the datasets.

5.4 Classification Result

Table 2 lists the ROC-AUC for all methods on all datasets. Due to the numerical intensity of
HGCN, only 5 folds were evaluated, and for the Movies dataset, only 4 out of 20 classes were con-
sidered. Prediction on isolated nodes was nearly random as only structural information was used,
likely contributing to the relatively weak performance of all methods on the PubMed dataset. Since
CSP handles only binary labels, reference methods were translated to a one-vs-other scenario, even
though they can handle multi-class classification directly. Feature extraction using Non-negative
Matrix Factorization (NMF) was not fine-tuned for each dataset, potentially impacting the per-
formance of NMF-based baselines. Naive Bayes emerged as the strongest baseline, as it does not
4 As an alternative to the NMF, we evaluated also representation generated by Laplacian positional en-

coding [6]. As the results were worse compared to NMF, we decided to not include them in the results.
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require any feature preprocessing and works directly with the one-hot encoded incidence matrix.
CSP was evaluated in three variants based on the number of layers, with the best choice varying
by dataset. On the largest datasets (Corona and Movies), the best variant of CSP achieved per-
formance comparable to the strongest competing baseline. Overall, CSP demonstrated comparable
results with reference baselines. In larger datasets, where parameter tuning of baselines is more
challenging, CSP proved to be one of the best-performing methods. Overall, CSP with fewer layers
fared comparatively better than a version with multiple layers. We attribute this at first glance
counter-intuitive result to the fact that the training set is fairly dense in the graph, which ensures
sufficient information for all nodes even with fewer layers, while at the same time multiple layers
may contribute to oversmoothing of the signal. CSP’s simplicity and parameter-free nature confirm
its suitability as a first-choice baseline method for classification tasks.

Table 2. The ROC-AUC for the classification task, averaged over all classes and all folds. The best method
for each dataset is denoted by bold text, with methods within 0.05 underlined.

Method CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA

CSP 1-layer 0.646 0.882 0.716 0.968 0.537 0.704 0.789 0.717
CSP 2-layer 0.630 0.872 0.686 0.972 0.518 0.618 0.700 0.697
CSP 3-layer 0.613 0.862 0.655 0.972 0.516 0.580 0.640 0.673
Naive Bayes 0.686 0.913 0.775 0.974 0.633 0.704 0.753 0.557
HGCN-NMF 0.659 0.832 0.786 0.775 0.624 0.622 0.794 0.724
LR-NMF 0.604 0.794 0.703 0.705 0.556 0.647 0.754 0.675
RF-NMF 0.667 0.897 0.772 0.905 0.623 0.617 0.797 0.691
Random 0.499 0.505 0.489 0.501 0.502 0.503 0.499 0.487

5.5 Retrieval Results

Table 3 lists the P@100 for all methods on all datasets. The evaluation of HGCN and the Movies
dataset in the retrieval task is restricted similarly to the classification task. Isolated nodes no longer
cause a performance drop as long as there are sufficient number of non-isolated nodes in each class.
Naive Bayes’ performance is not as superior in this scenario as in classification task since the training
set contains only positive nodes, preventing it from leveraging prior distribution knowledge about
the target class. CSP, which does not use prior knowledge about the target class distribution, works
very well on small datasets with lower average degree of the nodes and edges. In case of datasets
with higher average degree of nodes (Movies), CSP does not extract the structural information as
well as NMF and therefore the methods utilizing the features from NMF (mainly logistic regression)
work much better excepting HGCN, which suffers from over-smoothing. In summary, CSP achieves
superior performance for 4 of 8 datasets on retrieval task.

5.6 Complexity Evaluation

To evaluate the complexity of the studied methods, two approaches were taken – theoretical analysis
of asymptotic complexity, and direct measurement of wall clock time to compute the methods
on the available datasets. The asymptotic computational complexities of the used methods are
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Table 3. The P@100 for the retrieval task, averaged over all classes and all folds. The best method for
each dataset is denoted by bold text, with methods within 0.05 underlined.

Method CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA

CSP 1-layer 0.494 0.703 0.530 0.869 0.798 0.530 0.334 0.156
CSP 2-layer 0.558 0.718 0.681 0.865 0.826 0.440 0.336 0.186
CSP 3-layer 0.568 0.721 0.707 0.869 0.850 0.332 0.238 0.186
Naive Bayes 0.471 0.686 0.491 0.951 0.860 0.446 0.216 0.153
HGCN-NMF 0.482 0.671 0.607 0.794 0.871 0.392 0.257 0.148
LR-NMF 0.329 0.603 0.372 0.602 0.735 0.397 0.580 0.356
RF-NMF 0.303 0.474 0.482 0.843 0.794 0.381 0.470 0.131
Random 0.153 0.132 0.129 0.155 0.308 0.180 0.040 0.055

Table 4. Asymptotic complexity of the compared algorithms. For algorithms with multiple layers, only one
layer is considered. n is the number of nodes, m is the number of hyperedges d is the signal dimensionality,
T is the number of epochs, h is the number of hidden units, ΣV is the sum of node degrees and ΣE is the
sum of hyperedge degrees.

CSP Naive Bayes HGCN LR RF

O (d (ΣV +ΣE)) O (nm |Vtrain|) [9] O (TΣEhd) [33] O (d |Vtrain|) [27] O (d log d |Vtrain|) [3]

Table 5. The execution time of a single retrieval task in miliseconds, averaged over all classes and all folds.
The non-negative matrix factorization was excluded from the execution time.

Method CiteSeer Cora-CA Cora-CC DBLP PubMed Corona movie-RA movie-TA

CSP 1-layer 1.35 1.23 1.24 3.51 4.01 22.83 170.63 12.07
CSP 2-layer 2.41 2.25 2.24 7.46 7.35 47.39 349.67 25.88
CSP 3-layer 3.31 3.09 3.08 9.65 9.1 70.98 506.1 35.75
Naive Bayes 2.59 2.73 2.54 11.16 5.35 89.3 1 051.53 35.61
HGCN-NMF 23 714 23 690 23 709 29 123 23 879 112 314 620 717 70 778
LR-NMF 44.45 51.59 49.54 64.96 44.69 56 61.82 74.07
RF-NMF 140.76 143.85 134.52 1 148.83 323.6 1 608.58 697.85 716.68
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listed in Table 4. Note that the non-negative matrix factorization is excluded from the table and
has on its own a complexity of O

(
n4m4

)
, dominating the methods themselves. The execution

time for individual methods is presented in Table 5. We evaluated the methods using standard
implementations that would be widely used by practitioners. In particular, we used the Scikit-
Learn [28] implementation with default settings for logistic regression, Naive Bayes and random
forest. A Polars variant of Algorithm 2 was applied for the proposed CSP method. All these
methods were executed on a GPU (Amazon EC2 G4 instance). The HGCN was executed using
PyTorch-geometric [8].

Comparing the execution times in Table 5, HGCN is the most numerically complex method.
Although methods to improve training efficiency, such as batching, are available, they were not
considered in this work. Logistic regression and random forest exhibit comparable or shorter ex-
ecution times in Corona and Movies datasets compared to CSP and Naive Bayes, largely because
the most challenging part—extraction of structural information—is handled by nonnegative matrix
factorization, which is not included in the reported times. The proposed CSP excels particularly in
graphs with a low average degree of nodes, similar to Naive Bayes. The measured execution time
of CSP aligns with its expected asymptotic complexity 4 and appears to be linear with the number
of CSP layers, as anticipated.

In summary, HGCN is by far the most numerically intensive method and shows potential in
some examples; however, there is still a significant amount of fine-tuning needed to achieve superior
performance across datasets. NMF-based methods work exceptionally well on the Movies dataset
for the retrieval task, though further tuning is required to properly extract structural information.
Compared to Naive Bayes, CSP is even slightly simpler and parameter-free. In some problems,
CSP outperformed Naive Bayes, and vice versa. Thus, it is definitely a good idea to consider both
CSP and Naive Bayes when establishing baselines for tasks on structural data.

6 Conclusion
This paper presents a signal propagation algorithm for hypergraphs, termed Convolutional Signal
Propagation (CSP). We formally describe the CSP algorithm and demonstrate its simplicity and
efficiency of implementation. This formal description allows us to show clear relationships between
CSP and well-known algorithms such as Naive Bayes, label propagation, and hypergraph convolu-
tional networks. These relationships suggest various algorithmic variants, which we left for detailed
future exploration.

We discuss the application of CSP to different types of signals. Our primary focus is propagating
binary labels, which is used for classification and retrieval tasks, positioning CSP as a hypergraph
variant of traditional label propagation. Additionally, propagating node features instead of labels
as signals leads to feature propagation. This dual functionality showcases the versatility of CSP in
handling various tasks on hypergraphs.

Our evaluation of CSP on several real-world datasets from multiple domains demonstrates its
competitive performance in node classification and retrieval tasks compared to a range of reference
methods. Furthermore, we compare the numerical complexity of these methods by examining their
execution times, highlighting the simplicity and efficiency of CSP. This combination of competitive
performance and low computational complexity makes CSP a promising approach for applications
involving hypergraph-based data.
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