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Abstract. In many scientific fields, accurately representing the hetero-
geneous relationships that may characterize a complex system, has con-
tributed to the success of multilayer graph models. However, modeling
such complex information can be challenging in real-world cases. On one
hand, including all relationships may lead to noisy or computationally
intensive graphs. On the other hand, selecting a limited number of re-
lationships can result in boundary specification problems. To address
these challenges thus improving and optimizing analysis and visualiza-
tion tasks, only task-agnostic preprocessing techniques that depend on
unsupervised heuristics are presently used. However, from task to task,
there can be substantial differences in the graph features that should
be preserved. A task-agnostic strategy risks failing because it cannot
adapt. Deep learning methods for single-layer graphs have recently been
introduced, demonstrating how effectively the simplification task can be
included in the overall training process. In this work, we propose the
Task Aware MultilAyer gRaph simplificAtion (TAMARA) framework, a
GNN-based approach designed to simplify multilayer graphs based on
the downstream task. TAMARA generates node embeddings for a spe-
cific task by training jointly two main components: i) an edge simplifi-
cation module and ii) a (multilayer) graph neural network. We tested
TAMARA on different real-world multilayer graphs for node classifica-
tion tasks. Experimental results show the effectiveness of the proposed
approach: TAMARA reduces the dimension of the input graph while keep-
ing and even improving the performance of node classification tasks in
different domains and across graphs characterized by different structures.
Moreover, deep learning-based simplification allows TAMARA to preserve
and enhance graph properties important for the task. To our knowledge,
TAMARA represents the first simplification framework for machine learn-
ing on multilayer graphs.

Keywords: graph neural network · graph simplification · Multilayer
graph
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1 Introduction

The graph analysis and mining research field has raised in popularity in the last
two decades, thanks to the ability of graphs to model a wide range of real-life
phenomena from physical [1] to biological [22] and social systems [18], from sci-
entific [19] to financial data [31,4], transportation routes [6], and many others [5].
In this regard, the multilayer graph model [13] is widely used as a powerful tool to
represent the organization and relationships of complex systems covering many
different domains. Multilayer graphs are designed to provide a more realistic
representation of the different and heterogeneous relationships that may char-
acterize an entity in the graph-structured system, using the rich data available
from complex systems [10].

However, collecting a wide set of different relationships among a large set
of entities can easily result in a significant amount of noise (e.g., incomplete,
imprecise or redundant information) caused by the choice regarding which en-
tities and relations should be included in the data. Single-layer graphs already
have this issue, known as the boundary specification problem [7], which is ex-
acerbated in multilayer ones. While for the simplification of single-layer graphs,
several machine learning techniques have already been proposed in the litera-
ture and have proved to be effective [32,25], for multilayer graphs there are only
unsupervised heuristics of preprocessing [10], while cutting-edge techniques such
as graph neural networks have not yet been exploited. Furthermore, work on
multilayer graph neural networks [21,28] demonstrated how crucial it is to con-
ceive approaches specially tailored for these complex structures, i.e., to produce
embeddings that convey the rich information present in the input graph. As
a matter of fact, the direct application of single-layer approaches to multilayer
graphs is not trivial: while a single-layer approach could be applied on each layer
separately, the important interplay among the various layers would be lost. The
same holds for the simplification task at the heart of this work: a framework able
to thoroughly leverage the multilayer structure is of paramount importance to
obtain a simplified object properly optimized for a given downstream task.

In this work, we propose the Task Aware MultilAyer gRaph simplificAtion
(TAMARA) framework, a GNN-based framework designed to simplify multilayer
graphs based on the downstream task. TAMARA generates node embeddings for
a specific task by training end-to-end two main components: i) an edge simplifi-
cation module and ii) a (multilayer) graph neural network. We tested TAMARA
under node classification on real-world multilayer graphs from different domains.
Experimental results show the effectiveness of the proposed approach: TAMARA
dramatically reduces the dimension of the input graph not only maintaining but
also improving the performance. In addition, TAMARA provides different ap-
proaches allowing us to provide insights on the most effective simplification strat-
egy depending on the domain of the downstream task. In fact, with TAMARA,
we enable simplification approaches that leverage single-layer simplification tech-
niques on multilayer graphs but we also extend existing methods to work directly
on multilayer graphs. Thus, TAMARA can select the appropriate simplification
approach depending on the task. Moreover, we observe that deep learning driven
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simplification with TAMARA can influence and enhance important graph proper-
ties, such as label assortativity: as the selection of task-irrelevant edges is refined
during the training, TAMARA is guided in the selection of the most important
properties to preserve or enhance. To our knowledge, TAMARA represents the
first GNN-based simplification framework for multilayer graphs.

Due to the wide range of data that can be modelled as a multilayer graph, the
proposed framework can have a large application room covering different fields
like biology, physics, and health/medical analysis, where increased robustness is
needed to address noise from data acquisition. Furthermore, data quality, com-
putational performances and information visualization are also crucial aspects
of any process dealing with massive amounts of graph-structured data, such
as social media mining, communication, biological, transportation and financial
systems.

2 Background

In this section, we provide background knowledge regarding the formal definition
of the multilayer graph model adopted in this paper, the use of graph neural net-
works for the analysis of multilayer graphs, and graph simplification approaches
based on deep learning.

Multilayer graph model. Since in this work we will use ML-GCN (Multilayer
Graph Convolutional Neural Network) to instantiate TAMARA, for ease of ref-
erence we adopt the same definition of multilayer graph as in the work where it
was originally proposed [28]:

Definition 1 (Multilayer graph). Given a set V of entities, and a set of lay-
ers L = {L1, ...Ll} with | L |= L >= 2, a multilayer graph is GL = (VL, EL,V,L),
where VL ⊆ V × L is the set of entity-layer pairings or nodes (i.e., to denote
which entities are present in which layers), and EL = VL × VL is the set of
directed edges between nodes within and across layers.

Definition 2 (Within-layer edges/links). Links connecting nodes in the same
graph layer ((i, l), (j.m)) | (i, l), (j.m) ∈ EL, l = m

Within-layer edges can be described by a set of adjacency matrices A =
{A1, ..., Aℓ}. These adjacency matrices describe layer-by-layer connections. But,
in multilayer, we also have cross-layer connections.

Definition 3 (Cross-layer edges/links). Links connecting nodes in different
layers ((i, l), (j.m)) | (i, l), (j.m) ∈ EL, l ̸= m

Definition 4 (Pillar edges/links). Cross-layer links connecting nodes with
the same index but in different layers ((i, l), (j.m)) | (i, l), (j.m) ∈ EL, i = j, l ̸= m

Hence, we can define a Supra adjacency matrix
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Definition 5 (Supra adjacency matrix). The supra adjacency matrix Asup

is:

Asup =

{
Al if diagonal block

Al,m otherwise (i.e., off the diagonal block).
(1)

where Al,m is an inter-layer adjacency matrix built upon the inter-layer con-
nections between layer l and layer m (i.e., 1 if there exists an edge between (i, l)
and (u,m) with l = m, and 0 otherwise).

Graph neural networks. In the field of deep learning for graph-structured
data, graph neural networks (GNNs) have emerged as the state-of-the-art ap-
proach in many different tasks, such as node classification [8], link prediction
[29], community detection [27] and graph classification[30]. GNNs redefine basic
deep learning operations, such as convolution, for graph-structured data. In the
Graph Convolutional Network (GCN) model proposed by [12], the operation of
convolution on graphs is performed through an aggregation of the values of each
node’s features along with its neighbors’ features. The graph attention network
model (GAT) [23] learns weights between each pair of connected nodes; a self-
attention mechanism is used to discover the most representative parts of the
input. Starting from these, we have seen the proposal of many architectures, to
cover different tasks and types of graph data such as signed graphs, temporal
graphs, and more recently multilayer graphs.

Graph neural networks for multilayer graphs. Deep learning tasks are
more challenging on these graphs because of the presence of intra-layer and inter-
layer relations, different layer characteristics, as well as node features. There have
been some attempts to design methods and frameworks for deep learning for
multilayer graphs. State-of-the-art results have been obtained by the framework
presented in [28]. The framework reformulates the propagation rule of the GNN
component (i.e. GCN or GAT) to aggregate topological neighborhood informa-
tion from different layers. While in GCN, aggregation involves a node’s features
and its neighbors’ features, in the ML-GCN the aggregation is performed with
both its neighbors in that layer (dubbed within-layer neighborhood) and on its
neighbors located in other layers where the entity occurs (referred to as outside-
layer neighborhood). More formally:

h
(k+1)
(i,l) = σ

 ∑
(j,m)∈Γ (i,l)∪Ψ(i,l)

1√
D̃iiD̃jj

h
(k)
(j,m)W

(k+1)

 (2)

Deep learning for graph simplification. Graph simplification consists in re-
moving uninformative or redundant edges while keeping almost all information
of the input graph [20]. While there are many works on simplification [15], only
a few are focused on simplification for deep learning on graphs. Dropedge [20]
simplifies the graph for a GNN model (e.g. GCN, GAT) by randomly removing a
fraction of the edges from the input graph during the training phase. The evalua-
tion of Dropedge shows that even a random removal can lead to an improvement
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of performance across different tasks, such as node classification and link predic-
tion. In NeuralSparse [32], the simplification process is done through the deep
neural network: during the training phase, the deep neural network learns a
simplification strategy that favors downstream tasks. In the testing phase, that
neural network is used to select the edges to remove from the input graph, based
on the learned strategy. Other works rely on similar principles. In AdaptiveGCN
[14] simplification process is led by a deep neural network like in NeuralSparse,
but a simplification step is performed before each graph convolution step. In
PTDnet [16] additional constraints on the simplification process are introduced,
encouraging the removal of more edges or prioritizing the simplification of edges
connecting different node clusters. Other works such as [24] and [25] have de-
signed frameworks for simplification with reinforcement learning. While there
are several works on single-layer graph simplification, there is a lack of work
relying on deep learning for the simplification of multilayer graphs.

3 The TAMARA framework

Problem definition. In this work, we want to provide a framework for the
simplification of multilayer graphs and evaluate the impact of a simplification
approach on a machine learning task. We want to evaluate the impact of graph
simplification approaches on a typical machine learning task, i.e., node clas-
sification. The graph simplification problem on single-layer graphs can be de-
fined as follows: given a graph G(V,E,XE , XV ), where V is a set of n nodes,
E ⊂ V × V is the set of edges; XV is a set of node attributes, XE is a set
of edge attributes. simplification tries to obtain a subgraph of G, that would
be G′ = G(V ′, E′, XE , XV ), where V ′ ⊂ V ∨ E′ ⊂ E. Whereas on a multi-
layer graph, simplification can be defined as the problem of obtaining a graph
fθS (GL) = GL

′ = (VL
′, EL′,V ′,L′) such that the following disjunction of condi-

tions holds: | V |<| V ′ | ∨ | L |<| L′ | ∨ | VL |<| VL
′ | ∨ | EL |<| EL′ |.

Simplification approaches. In order to perform graph simplification on a
multilayer graph, we propose two approaches: i) Layer by layer graph simplifi-
cation and ii) Multilayer graph simplification. We now present the two concepts
behind them.
Layer by layer graph simplification. To perform graph simplification on
a multilayer graph by exploiting methods for single-layer graphs, we can use
a layer-by-layer approach. In the layer-by-layer simplification, methods are ap-
plied to each layer before recomposing the supra-adjacency matrix: cross-layer
links are not involved. We can define a layer graph as G[ℓ] where every edge
connects nodes in the same layer ℓ. Therefore, at each layer ℓ a simplification
neural network fθℓ

S
detects noisy links over the layer-graph G[ℓ], generating a

new version of the graph that we can define as G[ℓ]′. The simplified graphs are
used to update A′sup, which will be used to train the graph neural network.

It’s important to note that simplification can be applied at a different stages
of the process: we can simplify once or before each graph convolutional layer.



6 Ba et al.

(a) Layer by layer graph simplification with multilayer GNN. A simplification module
(simplification neural network fθℓ

S
) detects the links to remove at each layer ℓ of the

input multilayer graph, while a GNN (multilayer graph neural network fW ) generates
embeddings for a downstream task.

(b) Multilayer graph simplification with multilayer GNN. A multilayer simplification
module (simplification neural network fθ) detects the links to remove by taking into
account the whole input multilayer graph, while a GNN (multilayer graph neural
network fW ) is used to generate node embeddings for a downstream task.

Fig. 1: Overview of the proposed approaches for multilayer graph simplification:
(a) layer-by-layer and (b) multilayer. Note that the difference between the two
approaches lies in the simplification process, while the use of the GNN is the
same.

In the first case, a simplification module detects noisy elements while a graph
neural network model is used to generate node embeddings for a downstream
task. Here, simplification occurs only once, so that the graph is the same at each
GNN layer. In the other case, at each GNN layer, a simplification module detects
noisy elements while a graph neural network model generates node embeddings
for a downstream task. The simplification is performed multiple times so that
before each GNN layer, we are working on different versions of the graph.

TAMARA allows training with both simplification stages. The training phase
for layer-by-layer graph simplification is summarized in algorithm 1.

Multilayer graph simplification. To define a simplification methodology con-
ceived explicitly for a multilayer graph, able to properly take into account the
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complex structure of such models, we propose to use a simplification neural net-
work fθ that detects noisy edges and a graph neural network fW to generate
node embeddings for a downstream task (cf. Fig. 1b). The key difference with re-
spect to the single-layer counterpart is that the simplification module is unique,
and acts directly on the supra-adjacency matrix Asup to generate the simplified
A′sup. Working directly on the supra-adjacency matrix also has an additional
advantage: the simplification module can remove noisy or redundant cross-layer
links as well. Even in the multilayer simplification case, simplification can be
applied at different stages: we can simplify once (i.e., the graph is the same at
each GNN layer) or before each graph convolutional layer (i.e., the simplifica-
tion is performed multiple times, so that each GNN layer works on a different
version of the graph). The training phase for multilayer graph simplification is
summarized in algorithm 2.

Algorithm 1 Training algorithm for layer-by-layer simplification with ML GNN

1: Input: training graph G(V,E,XE , XV ), L multilayer graph layers, simplification
neural network fθS , simplification stage stage, number of GNN hidden layers K

2: Output: Embeddings for downstream task
3: if stage = ”once” then ▷ Simplify graph just once
4: for layer ℓ ∈ 1...L do
5: A′

ℓ ← fθℓ
S
(Aℓ) simplification function applied on G[ℓ]

6: end for
7: A′sup ← Combine A′

ℓ in supra adjacency matrix
8: end if
9: for k = 1...K do
10: if stage = ”each” then ▷ Different graph every time
11: for layer ℓ ∈ 1...L do
12: A′

ℓ ← fθℓ
S
(Aℓ) simplification function applied on G[ℓ]

13: end for
14: A′sup ← Combine A′

ℓ in supra adjacency matrix
15: end if
16: Hk ← f

(k−1)
W (H(k−1), A′sup) ▷ hidden representations update

17: end for
18: Backpropagation to update θW , θℓS

4 Experimental evaluation

Data. For the experimental evaluation, we selected datasets from different do-
mains showing different structural characteristics, summarized in Table 1. All of
them correspond to multilayer graphs with associated real-world node features,
a characteristic that is crucial for the proposed task-aware simplification process.
The um-econ and um-socioeco [2] multilayer graphs describe user interactions
in a decentralized social media platform (Steemit) [3]. In these graphs nodes are
users, and layers are interactions of different types. User features are graph-based
metrics. User labels describe their migration to another social media platform,
called Hive (4 cases: inactive, stay, leave, active on both). In um-econ is a sub-
graph composed of 2 layers of economic interactions, while um-socioeco considers
interaction on 4 layers, 2 social and 2 economic. IMDb-mlh [17] is a multilayer
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Algorithm 2 Training algorithm for multilayer simplification with ML GNN

1: Input: training graph G(V,E,XE , XV ), L multilayer graph layers, simplification
neural network fθS , simplification stage stage, number of GNN hidden layers K

2: Output: Embeddings for downstream task
3: if stage= ”once” then ▷ Simplify graph just once
4: A′sup ← fθS (A

sup) ▷ Simplify
5: end if
6: for k = 1...K do
7: if stage = ”each” then ▷ Different graph every time
8: A′sup ← fθS (A

sup) ▷ Simplify
9: end if
10: Hk ← f

(k−1)
W (H(k−1), A′sup) ▷ hidden representations update

11: end for
12: Backpropagation to update θW , θS

graph constructed from the IMDb movie database, where nodes are movies, and
two movies are connected if they share either an actor or a director. Movie fea-
tures encode text from the plots, while the labels describe the movie type (action,
comedy, drama). Finally Koumbia 2 and Koumbia 5 [9,28] are multilayer
graphs extracted from a time series of Sentinel-24 optical satellite images, cov-
ering the agricultural landscape of Koumbia in Burkina Faso. Nodes represent
segments of the satellite image, and labels correspond to either crop (cultivated
areas) or no-crop (uncultivated areas, such as forests) segments. Layers corre-
spond to functional classes (e.g., temporal radiometric profiles). The network
includes inter-layer edges and real-world attributes, corresponding to time se-
ries of radiometric statistics for each segment. The graphs are generated with
the geo2net framework5, which allows the production of multilayer graphs from
satellite images with an arbitrary number of layers: in this work, we consider 2
and 5 layers.

Table 1: Summary of structural characteristics of the graph datasets: type of
the graph, number of layers (L), number of nodes (|V |), number of edges (|E|),
density (mean/SD) over the layers (d), and number of classes (C)

dataset L |V | |E| d C

imdb-mlh 2 5614 23208 0.0007 ± 0.0000 3
um-econ 2 15414 224855 0.0018 ± 0.0012 4

um-socioeco 4 18212 1199863 0.0138 ± 0.0118 4
Koumbia 2 2 4492 18783 0.0010 ± 0.0001 2
Koumbia 5 5 11230 91938 0.0010 ± 0.0002 2

Experimental setting. In this work, we focus on node classification tasks, i.e.,
we learn the embeddings required to predict the label associated to each node
in the graph. As GNN for TAMARA we select the GCN, but note that other
GNNs could be employed. As a baseline, we consider a multilayer GNN without

4 https://sentinel.esa.int/web/sentinel/missions/sentinel-2
5 https://gitlab.irstea.fr/raffaele.gaetano/geo2net

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://gitlab.irstea.fr/raffaele.gaetano/geo2net


TAMARA: a task-aware multilayer graph simplification framework 9

simplification (GNN ). As previously discussed, TAMARA is flexible and can be
equipped with different simplification strategies as well. In this work, we selected
i) DropEdge [20] (TAMARA(DE)), a single-layer graph simplification method
that randomly removes edges with probability p, and ii) NeuralSparse [32] (
TAMARA(NS)), which is able to leverage node features to select a subset of
edges to keep (a subgraph-based selection process is performed where for each
node only k of its neighbors are kept and their connecting edges). Note that
both approaches were originally designed for single-layer simplification, hence
for this work, we implemented extended versions in order to perform multilayer
(multi) and layer-by-layer (l-b-l) simplification (cf. Section 3). Moreover, each
implementation can be applied at different stages: we can simplify once or be-
fore each graph convolution layer (cf. Section 3). For TAMARA(DE), we test
different drop rate probabilities p = {0.1, 0.3, 0.5, 0.7}, while for TAMARA(NS),
we test different k = {5, 10.15}, with τ varying during training as in [32]. We
perform all the experiments with a transductive learning setting like in [28]. In
a transductive setting, all node attributes and topological information can be
used for training, while only a subset of labels is visible to the GNN model. All
models were trained using the Adam optimization algorithm [11] with full batch
training [12], L2 weight regularization set to 0.0005. For each graph and method,
the average accuracy was computed over N = 3 independent runs, where each
run corresponded to a different train-validation-test split, with 25% of training
entities as previously done in [28] and the rest split in validation (25%) and
test entities (50%). The combination of hyperparameters with the best average
validation metric is selected, and we report the final test metric. Since we are
working on a huge number of possible combinations, we rely on early stopping,
training for 250 epochs with 10 epochs of patience (reloading the best model).
As an evaluation metric, we select AUC (Area under the ROC Curve) evalu-
ated like in [32], because it is well suited for datasets showing unbalanced label
distribution, such as Imdb, um-econ and um-socioeco.

5 Results

Framework evaluation. Table 2 reports the average AUC scores on the test
set. We can observe how TAMARA generally improves upon the GNN baseline,
and always corresponds to the best performances. Note that TAMARA(NS) al-
most consistently outperforms TAMARA(DE), demonstrating the importance of
exploiting node features for the simplification task. The only exception is repre-
sented by imdb-mlh, where features information improves the performance, but
the TAMARA(DE) variant obtains even better performance. Additional insights
can be obtained by comparing the multilayer (multi) vs layer-by-layer (l-b-l) and
the once vs each approaches. Regarding TAMARA(DE), we note that multi tends
to be more effective on 2-layer graphs (i.e., um-econ, um-socioeco and Koumbia-
2 ) while l-b-l seems to be more effective in presence of a greater number of
layers. Note also that, with the (DE) variant, simplifying once tends to be the
winning choice. This is consistent with the stochastic nature of this approach,
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i.e., repeating a random process at each layer may negatively impact the result.
As concerns TAMARA(NS), l-b-l tends to be the best choice in most cases: it may
be because the NeuralSparse simplification is based around a single-layer notion
of a node’s neighborhood. Devising an advanced strategy to properly take into
account the multilayer neighborhood is left as future work. In terms of when
to simplify (stage), for the task-aware (NS) variant, we can see that simplifying
once brings better results for datasets showing an unbalanced distribution of
the labels (i.e., um-econ, um-socioeco and imdb-mlh), while simplifying before
each convolution layer seems the best approach for the more balanced Koumbia
graphs.

Overall, TAMARA leads to significant performance improvements, while the
variety of proposed approaches allows TAMARA to find the most suitable sim-
plification approach for tasks of different domains.

Table 2: AUC (mean and standard deviation over 3 random seeds [26]) obtained
by the baseline and TAMARA.
data um-econ um-socioeco imdb-mlh Koumbia 2 Koumbia 5

model simp stage

GNN - - 0.7420 ± 0.0022 0.6939 ± 0.0234 0.8035 ± 0.0218 0.9056 ± 0.0049 0.9237 ± 0.0033

TAMARA multi once 0.7451 ± 0.0128 0.6936 ± 0.0279 0.8135 ± 0.0351 0.9068 ± 0.0007 0.9228 ± 0.0041
(DE) each 0.7487 ± 0.0150 0.6905 ± 0.0233 0.8122 ± 0.0324 0.9042 ± 0.0075 0.9246 ± 0.0069

l-b-l once 0.7407 ± 0.0083 0.6939 ± 0.0234 0.8005 ± 0.0253 0.9059 ± 0.0059 0.9252 ± 0.0063
each 0.7418 ± 0.0102 0.6988 ± 0.0130 0.8079 ± 0.0280 0.9022 ± 0.0045 0.9238 ± 0.0051

TAMARA multi once 0.7522 ± 0.0084 0.6924 ± 0.0208 0.8011 ± 0.0299 0.9023 ± 0.0042 0.9223 ± 0.0138
(NS) each 0.7458 ± 0.0107 0.6817 ± 0.0347 0.7987 ± 0.0257 0.9080 ± 0.0023 0.9244 ± 0.0093

l-b-l once 0.7438 ± 0.0113 0.7199 ± 0.0099 0.8077 ± 0.0260 0.9087 ± 0.0045 0.9205 ± 0.0022
each 0.7457 ± 0.0008 0.7076 ± 0.0423 0.8046 ± 0.0249 0.9103 ± 0.0052 0.9281 ± 0.0067

Analysis of simplified graphs. In this section, we discuss how the simplifi-
cation impacts the structural characteristics of the multilayer graphs. For each
dataset, we compare structural characteristics before and after the simplification
with TAMARA is performed. We show results for one of the prediction sub-tasks,
user migration prediction on um-econ (Table 3 ) while the others can be con-
sulted in the Appendix. It can be noted how the impact of TAMARA(NS) can
be different on each layer of a specific graph, while the action of TAMARA(DE)
seems to be more uniform over a given graph. Once again, this is consistent with
the fact that we are comparing a task-aware and a random approach. The clearest
impact is observed on the number of intra-edges, TAMARA drastically reduces
the number of edges while still improving the performance: this is extremely im-
portant as the computation cost of graph convolution is linear in the number of
graph edges [12], making a reduced number edges an ideal property. In addition,
some interesting observations can be drawn about label assortativity, i.e., the
similarity of connections in the graph with respect to node labels (high label
assortativity means that a node is more likely to connect with a node with the
same label). We can see how TAMARA(NS) tends to increase label assortativity
across layers: this makes sense as TAMARA(NS) can leverage node features, so it
would be able to preserve the connections between similar nodes. Such behavior
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cannot be replicated by the random procedure behind TAMARA(DE). Similarly,
as regards transitivity (i.e., the fraction of all possible triangles present in a
graph), we can observe a general decrease, since the number of triangles is nec-
essarily reduced as we remove edges. However, on layers with lower transitivity
(< 0.1), only TAMARA(NS) increases transitivity values: this can be observed in
um-econ and um-socioeco (Supporting Information).

The relevance of training jointly simplification and graph neural network
is, therefore, the most important observation: during the training, TAMARA
improves its capacity to recognize edges that are unrelated to the task at hand,
allowing it to determine which graph characteristics are most crucial to maintain
or enhance. Additionally, TAMARA demonstrates the capability of significantly
reducing the number of edges while improving or at least keeping performance.

Table 3: Statistics for each graph layer before and after the simplification on
um-econ dataset.

ℓ Intra edges
Label
assortativity

Transitivity
Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

TAMARA
(NS)

L0
174381.00
6207.00
(-96.44%)

0.08
0.35
(+320.57%)

0.01
0.02
(+86.70%)

23.63
1.17
(-95.06%)

3610.00
328.00
(-90.91%)

23.63
1.02
(-95.69%)

6021.00
3.00
(-99.95%)

L1
35060.00
5038.00
(-85.63%)

0.27
0.62
(+127.57%)

0.00
0.02
(+2947.23%)

5.55
0.87
(-84.39%)

937.00
145.00
(-84.53%)

5.55
1.02
(-81.71%)

4769.00
3.00
(-99.94%)

TAMARA
(DE)

L0
174381.00
121999.00
(-30.04%)

0.08
0.08
(+2.17%)

0.01
0.01
(-31.27%)

23.63
16.53
(-30.03%)

3610.00
2552.00
(-29.31%)

23.63
16.53
(-30.03%)

6021.00
4230.00
(-29.75%)

L1
35060.00
24578.00
(-29.90%)

0.27
0.27
(-1.44%)

0.00
0.00
(-31.29%)

5.55
3.89
(-29.87%)

937.00
642.00
(-31.48%)

5.55
3.89
(-29.89%)

4769.00
3349.00
(-29.78%)

Hyperparameters sensitivity analysis. As a last analysis step, we study the
impact of varying the main hyperparameters, i.e., the drop rate p for TAMARA(DE)
and k for TAMARA(NS). In Figure 2 we report a sensitivity analysis for p and
k, where the other hyperparameters are set to the best performing combination.
We can see that for um-econ, low k values lead to lower performance. Similarly,
a high drop rate p seems to lead to worse performance. For imdb-mlh, we can
draw similar observations for p (i.e., a high drop worsens the performance), while
variations of k seem to have a minor impact on the process. Similarly, the im-
pact of k is minor also for Koumbia-2. In this case, the impact of p seems to be
reduced too.

Overall, the takeaway is that both TAMARA(NS) and TAMARA(DE) are not
very sensitive to variations of their respective main hyperparameters k and p.
This makes their use more solid and easy, by making hyperparameter tuning
relatively unimportant.
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Fig. 2: Sensitivity analysis based on AUC, for the 2-layer graphs. We compare
the AUC for the baseline ( in red), with the AUC (average, standard deviation)
for the best simplification method (in blue). The remaining ones can be found
in the appendix.

6 Conclusions

The findings presented in this work show the significance of the proposed frame-
work: TAMARA leads to significant performance improvements, by selecting the
best available simplification strategies. These advances in performance are even
more noteworthy when we take into account that TAMARA achieves them while
drastically reducing the number of edges. Most importantly, TAMARA shows the
importance of training jointly for the simplification and node classification tasks:
as the ability to identify task-irrelevant edges increases, TAMARA is guided in
discovering the most important graph properties to preserve or enhance.

Future research will focus on analyzing how multilayer simplification can be
beneficial for a variety of tasks, including link prediction (removing unimpor-
tant or ”spam” links to improve prediction performance), clustering (removing
redundant links should improve boundaries between clusters, thus improving
cluster quality), and graph classification (removing noisy links should help in
the identification of similar graphs). Finally, additional future works will focus
on the interaction between graph properties and downstream tasks to support
multilayer simplification. A better understanding of graph properties can be ben-
eficial in the development of simplification algorithms and overall it could lead
to a better understanding of complex systems in different domains.
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A Appendix

Notation table

Table 4: Summary of notations used in the paper and their description.
Notations Description

GL Multilayer graph
V Set of N entities (e.g., users)
L, ℓ, Ll Set of layers, number of layers, l-th layer
VL Set of nodes in GL
EL Set of edges GL
A,Aℓ Adjacency matrix in G, Adjacency matrix of the l-th layer of GL
Asup Supra-adjacency matrix

Ã, Ãsup Adjacency matrix and supra-adjacency matrix with self loops
vi, i Index i of a node Vi ∈ VL
Γ (i) Neighborhood of node Vi

Γ (i, l) Within-layer neighborhood of node Vi

Ψ(i, l) Outside-layer neighborhood of node Vi

X,Xl Attribute (input feature) matrix, resp. in the l-th layer of GL
x, x(i,l) Attribute (input feature) vector for node vi, resp. node vi in the l-th

layer of GL
f Number of attributes (input features)
E Edge attribute matrix
fE Number of edge attributes
G(L,X ,E) Attributed multilayer graph
d Size of the embedding
Z,Zl Embedding (output feature) matrix, resp. in the l-th layer of GL
zi, z(i,l) Embedding (output feature) vector for node vi, resp. node vi in the

l-th layer of GL
W,W k Weight matrix of a generic, resp. weights of l-th GNN layers

fW , f
(k)
W GNN module, GNN at the k-th GNN layers

K, k Number of GNN layers, index of a layer of the GNN

H(k+1) =
f
(k)
W (H(k), A)

A GNN layer computation

fθS , f
k
θS

simplification neural network and its parameters, resp. simplification
neural network for a certain GNN layer

hi Hidden layer vector for node vi

h
(k)

(i,l) Hidden layer vector at the k-th layer of the GNN for entity vi in layer
Ll of GL

Y , Ŷ Ground truth, predictions

Analysis of simplified graphs - datasets not included in the paper
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Table 5: Statistics for each graph layer before and after the simplification on
imdb-mlh dataset.

ℓ Intra edges
Label
assortativity

Transitivity
Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

TAMARA
(NS)

L0
6121.00
2818.00
(-53.96%)

0.70
0.87
(+23.27%)

0.40
0.29
(-28.36%)

4.27
3.09
(-27.55%)

79.00
42.00
(-46.84%)

4.27
3.09
(-27.55%)

79.00
40.00
(-49.37%)

L1
5355.00
2816.00
(-47.41%)

0.72
0.90
(+24.60%)

0.38
0.00
(-100.00%)

4.00
3.09
(-22.63%)

69.00
42.00
(-39.13%)

4.00
3.09
(-22.63%)

69.00
38.00
(-44.93%)

TAMARA
(DE)

L0
6121.00
4277.00
(-30.13%)

0.70
0.71
(+1.44%)

0.40
0.26
(-34.14%)

4.27
3.00
(-29.80%)

79.00
55.00
(-30.38%)

4.27
2.98
(-30.27%)

79.00
53.00
(-32.91%)

L1
5355.00
3749.00
(-29.99%)

0.72
0.73
(+0.47%)

0.38
0.26
(-29.83%)

4.00
2.79
(-30.22%)

69.00
46.00
(-33.33%)

4.00
2.81
(-29.71%)

69.00
49.00
(-28.99%)

Table 6: Statistics for each graph layer before and after the simplification on
Koumbia 2 dataset.

ℓ Intra edges
Label
assortativity

Transitivity
Indeg
mean

Indegree
max

Outdegree
mean

Outdegree
max

TAMARA
(NS)

L0
5724.00
2254.00
(-60.62%)

0.72
0.90
(+24.26%)

0.16
0.00
(-100.00%)

4.39
2.85
(-35.18%)

20.00
11.00
(-45.00%)

4.39
2.85
(-35.18%)

24.00
11.00
(-54.17%)

L1
4779.00
2253.00
(-52.86%)

0.79
0.91
(+15.07%)

0.20
0.00
(-100.00%)

3.97
2.85
(-28.32%)

25.00
22.00
(-12.00%)

3.97
2.85
(-28.32%)

27.00
20.00
(-25.93%)

TAMARA
(DE)

L0
5724.00
2909.00
(-49.18%)

0.72
0.72
(-0.67%)

0.16
0.08
(-52.59%)

4.39
2.21
(-49.64%)

20.00
13.00
(-35.00%)

4.39
2.22
(-49.55%)

24.00
15.00
(-37.50%)

L1
4779.00
2356.00
(-50.70%)

0.79
0.79
(+0.24%)

0.20
0.09
(-53.31%)

3.97
1.97
(-50.41%)

25.00
13.00
(-48.00%)

3.97
1.97
(-50.50%)

27.00
17.00
(-37.04%)
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Table 7: Statistics for each graph layer before and after the simplification on
um-socioeco dataset.

Intra edges
Label
Assortativity

Transitivity
Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

TAMARA
(NS)

L0
579352.00
4624.00
(-99.20%)

0.06
0.14
(+146.19%)

0.20
0.00
(-100.00%)

130.25
4.02
(-96.92%)

1875.00
31.00
(-98.35%)

130.25
4.02
(-96.92%)

2990.00
5.00
(-99.83%)

L1
476439.00
4652.00
(-99.02%)

0.05
0.15
(+181.36%)

0.11
0.01
(-95.09%)

107.64
4.02
(-96.26%)

1759.00
34.00
(-98.07%)

107.64
4.02
(-96.26%)

4262.00
6.00
(-99.86%)

L2
74580.00
4603.00
(-93.83%)

0.12
0.44
(+277.44%)

0.01
0.03
(+287.20%)

19.38
4.01
(-79.30%)

2543.00
331.00
(-86.98%)

19.38
4.01
(-79.30%)

3753.00
5.00
(-99.87%)

L3
14856.00
4586.00
(-69.13%)

0.39
0.73
(+85.09%)

0.01
0.00
(-100.00%)

6.26
4.01
(-36.02%)

276.00
66.00
(-76.09%)

6.26
4.01
(-36.02%)

701.00
5.00
(-99.29%)

TAMARA
(DE)

L0
579352.00
492450.00
(-15.00%)

0.06
0.06
(+0.84%)

0.20
0.17
(-15.26%)

130.25
111.16
(-14.65%)

1875.00
1601.00
(-14.61%)

130.25
111.16
(-14.65%)

2990.00
2543.00
(-14.95%)

L1
476439.00
404974.00
(-15.00%)

0.05
0.05
(+0.57%)

0.11
0.09
(-15.12%)

107.64
91.95
(-14.58%)

1759.00
1493.00
(-15.12%)

107.64
91.95
(-14.58%)

4262.00
3623.00
(-14.99%)

L2
74580.00
63393.00
(-15.00%)

0.12
0.12
(-0.89%)

0.01
0.01
(-14.71%)

19.38
16.92
(-12.68%)

2543.00
2173.00
(-14.55%)

19.38
16.92
(-12.68%)

3753.00
3201.00
(-14.71%)

L3
14856.00
12628.00
(-15.00%)

0.39
0.39
(+0.24%)

0.01
0.01
(-14.64%)

6.26
5.77
(-7.81%)

276.00
229.00
(-17.03%)

6.26
5.77
(-7.81%)

701.00
604.00
(-13.84%)
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Table 8: Statitistics for each graph layer before and after the simplification on
Koumbia 5 dataset.

Intra edges
Label
Assortativity

Transitivity
Indegree
mean

Indegree
max

Outdegree
mean

Outdegree
max

TAMARA
(NS)

L0
4157.00
2252.00
(-45.83%)

0.84
0.95
(+12.85%)

0.25
0.00
(-100.00%)

7.15
6.30
(-11.87%)

33.00
28.00
(-15.15%)

7.15
6.30
(-11.87%)

38.00
28.00
(-26.32%)

L1
5752.00
2249.00
(-60.90%)

0.70
0.90
(+28.24%)

0.22
0.00
(-100.00%)

9.03
7.47
(-17.27%)

39.00
27.00
(-30.77%)

9.03
7.47
(-17.27%)

36.00
25.00
(-30.56%)

L2
4951.00
2252.00
(-54.51%)

0.70
0.88
(+25.94%)

0.22
0.00
(-100.00%)

8.64
7.44
(-13.91%)

47.00
41.00
(-12.77%)

8.64
7.44
(-13.91%)

53.00
41.00
(-22.64%)

L3
3635.00
2252.00
(-38.05%)

0.98
1.00
(+1.36%)

0.24
0.00
(-100.00%)

6.82
6.21
(-9.02%)

39.00
37.00
(-5.13%)

6.82
6.21
(-9.02%)

42.00
36.00
(-14.29%)

L4
5605.00
2266.00
(-59.57%)

0.68
0.87
(+28.12%)

0.20
0.04
(-79.11%)

9.29
7.80
(-16.00%)

48.00
41.00
(-14.58%)

9.29
7.80
(-16.00%)

50.00
41.00
(-18.00%)

TAMARA
(DE)

L0
4157.00
3534.00
(-14.99%)

0.84
0.85
(+0.65%)

0.25
0.20
(-18.32%)

7.15
6.87
(-3.88%)

33.00
33.00
(-)

7.15
6.87
(-3.88%)

38.00
37.00
(-2.63%)

L1
5752.00
4890.00
(-14.99%)

0.70
0.70
(+0.28%)

0.22
0.19
(-16.06%)

9.03
8.65
(-4.25%)

39.00
36.00
(-7.69%)

9.03
8.65
(-4.25%)

36.00
35.00
(-2.78%)

L2
4951.00
4209.00
(-14.99%)

0.70
0.69
(-1.12%)

0.22
0.19
(-13.45%)

8.64
8.31
(-3.82%)

47.00
46.00
(-2.13%)

8.64
8.31
(-3.82%)

53.00
52.00
(-1.89%)

L3
3635.00
3090.00
(-14.99%)

0.98
0.98
(+0.18%)

0.24
0.20
(-14.39%)

6.82
6.58
(-3.56%)

39.00
39.00
(-)

6.82
6.58
(-3.56%)

42.00
40.00
(-4.76%)

L4
5605.00
4765.00
(-14.99%)

0.68
0.68
(-0.38%)

0.20
0.17
(-14.34%)

9.29
8.92
(-4.03%)

48.00
47.00
(-2.08%)

9.29
8.92
(-4.03%)

50.00
48.00
(-4.00%)
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Hyperparameters sensitivity analysis - all datasets
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Fig. 3: Sensitivity test auc.
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Hyperparameter tuning - parameter space

{'datasets': [('um-econ', 'features'),

('um-socioeco', 'features'),

('imdb-mlh', 'features'),

('Koumbia_2', 'features'),

('Koumbia_5', 'features')],

'architecture': ['multi'],

'architecture_simp': ['multi', 'single'],

'model': ['gcn', 'gcn-de', 'gcn-ns'],

'gnn_level': [True, False],

'drop_rate_p': [0.1, 0.3, 0.5, 0.7],

'k': [5, 10, 15],

'tau': [0.001],

'standardize': [True],

'feat-variability': ['fixed'],

'split': ['25 50 25'],

'plots': [True],

'early-stop': [True],

'fastmode': [True],

'gpu': [1],

'run': [1],

'debugging': [False],

'dropout': [0.3],

'hidden': [16, 32],

'lr': [0.002],

'num-layers': [2],

'ns_num_hidden': [32],

'epochs': [250],

'patience': [10]}
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