
SILVAN: Estimating Betweenness Centralities
with Progressive Sampling and Non-uniform

Rademacher Bounds?

Leonardo Pellegrina[0000−0002−6601−5526] and Fabio Vandin[0000−0003−2244−2320]

University of Padova, Department of Information Engineering, Padova, Italy
{leonardo.pellegrina,fabio.vandin}@unipd.it

Abstract. Betweenness centrality is a popular centrality measure with
applications in several domains, and whose exact computation is imprac-
tical for modern-sized networks. We present SILVAN, a novel, efficient
algorithm to compute, with high probability, accurate estimates of the
betweenness centrality of all nodes of a graph and a high-quality ap-
proximation of the top-k betweenness centralities. SILVAN follows a
progressive sampling approach, and builds on novel bounds based on
Monte-Carlo Empirical Rademacher Averages, a powerful and flexible
tool from statistical learning theory. SILVAN relies on a novel estima-
tion scheme providing non-uniform bounds on the deviation of the es-
timates of the betweenness centrality of all the nodes from their true
values, and a refined characterisation of the number of samples required
to obtain a high-quality approximation. Our extensive experimental eval-
uation shows that SILVAN extracts high-quality approximations while
outperforming, in terms of number of samples and accuracy, the state-
of-the-art approximation algorithm with comparable quality guarantees.

Keywords: Betweenness Centrality · Rademacher Averages · Random
Sampling.

1 Introduction

The computation of node centrality measures, which are scores quantifying the
importance of nodes, is a fundamental task in graph analytics [18]. Betweenness
centrality is a popular centrality measure, defined first in sociology [1, 12], that
quantifies the importance of a node as the fraction of shortest paths in the graph
that go through the node.

The computation of the exact betweenness centrality for all nodes in a graph
G = (V,E) can be obtained with Brandes’ algorithm [8] in time O (|V ||E|) for
unweighted graphs and in time O

(
|V ||E|+ |V |2 log |V |

)
for graphs with posi-

tive weights, which is impractical for modern networks with up to hundreds of
millions of nodes and edges. Several works (e.g., [11, 32]) proposed heuristics to

? The extended version of this work is available online at [22].
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improve Brandes’ algorithm, but they do not improve on its worst-case com-
plexity. In fact, for unweighted graphs a corresponding lower bound (based on
the Strong Exponential Time Hypothesis) was proved in [5]. The impractical-
ity of the exact computation for modern networks, and the use of betweenness
centrality mostly in exploratory analyses of the data, have motivated the study
of efficient algorithms to compute approximations of the betweenness centrality,
trading precision for efficiency.

Several works [24, 27, 6, 9], have recently proposed sampling approaches to
approximate the betweenness centrality of all nodes in a graph. The main idea
is to sample shortest paths uniformly at random and use such paths to estimate
the betweenness centrality of the nodes. As for all sampling approaches, the
main difficulty is then to relate the estimates obtained from the samples with
the corresponding exact quantities, providing tight trade-offs between guaran-
tees on the quality of the estimates and the required computational work. To do
so, these methods rely on sophisticated probabilistic and statistical learning con-
cepts, such as the VC-dimension [35], the pseudodimension [23], or Rademacher
Averages [14, 2], which have been successfully used to obtain rigorous approxi-
mations for other data mining tasks (e.g., pattern mining [25, 26, 28, 20]).

We defer to the full version of this work [22] a more detailed introduction of
previous works to approximate the betweenness centrality and related problems
due to space constraints. However, despite all these contributions, computing
accurate approximations of the betweenness centrality on large graphs is still
expensive and demanding in practice. This is the challenge we tackle in our
work.

Our contributions In this work we study the problem of approximating the be-
tweenness centralities of nodes in a graph. We propose SILVAN (eStimatIng be-
tweenness centraLities with progressiVe sAmpling and Non-uniform rademacher
bounds), a novel, efficient, progressive sampling algorithm to approximate be-
tweenness centralities while providing rigorous guarantees on the quality of var-
ious approximations.

– Our first contribution is empirical peeling, a novel technique that we introduce
to obtain sharp non-uniform data-dependent bounds on the maximum devia-
tion of families of functions (Section 3.1). Empirical peeling is based on the
Monte Carlo Empirical Rademacher Average (MCERA, defined in Section 2.2)
and relies on an effective data-dependent approach to partition a family of
functions according to their empirically estimated variance; this allows to fully
exploit variance-dependent bounds at the core of the technique. Our algorithm
SILVAN (Section 3.2) relies on such novel bounds to provide guarantees on
the approximation of the betweenness centrality that are much sharper than
the ones obtained by previous works; these new contributions make SILVAN a
practical algorithm for obtaining different approximations of the betweenness
centrality. In fact, we show that combining the MCERA with empirical peeling
allows us to design flexible algorithms with different guarantees (e.g., additive
or relative) and for different tasks (e.g., estimating all betweenness centralities
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or the top-k ones). This is the first work that obtains different types of approx-
imation guarantees based on the MCERA. Most importantly, our approach is
general and of independent interest, as it may apply to other problems, even
outside of data mining applications.

– We derive a new bound on the sufficient number of samples to approximate
the betweenness centrality for all nodes (presented in the full version [22]),
that naturally combines with the progressive sampling strategy of SILVAN
by introducing an upper limit to the number of samples required to converge.
Our new bound is governed by key quantities of the underlying graph, not con-
sidered by previous works, such as the average shortest path length, and the
maximum variance of betweenness centrality estimators, significantly improv-
ing the state-of-the-art bounds for the task. Our proof combines techniques
from combinatorial optimization and key results from theory of concentration
inequalities. While previous results were tailored to analyse a specific estima-
tor of the betweenness centrality, our result is general, since it applies to all
available estimators of the betweenness centrality. Furthermore, we extend this
result to obtain sharper relative deviation bounds from a random sample.

– We perform an extensive experimental evaluation (Section 4), showing that
SILVAN improves the state-of-the-art by requiring a fraction of the sample
sizes and running times to achieve a given approximation quality or, equiva-
lently, sharper guarantees for the same amount of work. Our experimental eval-
uations shows that SILVAN’s guarantees, provided by our theoretical analysis,
hold with a true approximation error close to its probabilistic upper bound,
confirming the sharpness of our analysis. For the extraction of the top-k be-
tweenness centralities, our algorithm provides faster approximations, using less
samples, and with fewer false positives.

In this short version of the paper we mainly focus on an high-level presen-
tation and empirical evaluation of SILVAN. The full version of this work [22]
includes all details, theoretical results and proofs, and the presentation of SIL-
VAN-TopK, a variant of SILVAN to obtain a relative approximation of the k
nodes with highest betweenness centrality.

2 Preliminaries

In this section we introduce the basic notions used in the remaining of the paper.

2.1 Graphs and Betweenness Centrality

Let G = (V,E) be a graph. For ease of exposition, we focus on unweighted
graphs, however our algorithms can be easily adapted to weighted graphs. For
any pair (u, z) of different nodes (u 6= z), let σuz be the number of shortest paths
between u and z, and let σuz(v) be the number of shortest paths between u and
z that pass through (i.e., contain) v, with u 6= v 6= z. Equivalently, v is internal
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to such shortest paths. The (normalized) betweenness centrality b(v) of a node
v ∈ V is defined as

b(v) =
1

|V |(|V | − 1)

∑
u6=v 6=z

σuz(v)

σuz
. (1)

Intuitively, a node v has high betweenness centrality b(v) if it is traversed by a
large fraction of shortest paths of the graph G.

2.2 Rademacher Averages

Rademacher averages are a core concept in statistical learning theory [14] and
in the study of empirical processes [7]. We now present the main notions and
results used in our work, while additional details are given by [7, 34, 17]. Let X
be a finite domain and consider a probability distribution γ over the elements of
X . Let F be a family of functions from X to [0, 1], and let S = {τ1, . . . , τm} be
a collection of m independent and identically distributed samples from X taken
according to γ. Note that while we focus on functions ∈ [0, 1] for simplicity,
all the results of this paper applies to functions in a bounded codomain [a, b]
by scaling and shifting. For each function f ∈ F , define its average value over
the sample S as µS(f) = 1

m

∑m
i=1 f(τi) and its expectation, taken w.r.t. S, as

µγ(f) = ES [µS(f)]. Note that, by definition, µS(f) is an unbiased estimator of
µγ(f).

Given S, we are interested in bounding the supremum deviation D(F ,S) of
µS(f) from µγ(f) among all f ∈ F , that is

D(F ,S) = sup
f∈F
|µS(f)− µγ(f)|. (2)

For the task of betweenness centrality approximation, different estimators
can be defined with different notions of the domain X , the family F , and the
sampling distribution γ. The simplest example is the rk estimator [24], where X
is the set of shortest path of the graph, γ is the categorical distribution over X
(where a shortest path π ∈ X from u to z has weight (|V |(|V | − 1)σuz)

−1), and
the functions in F estimate the betweenness centrality b(v) of the node v ∈ V as
the fraction of shortest paths of S that traverse v. More formally, S is a collection
of m shortest paths taken independently at random from X according to γ (by
choosing uniformly at random a pair u, z of nodes, and a shortest path from
u to z), and the family F = {fv : v ∈ V } is composed of indicator functions
fv : X → {0, 1} with fv(τ) = 1 [v is internal to τ ], and Eτ [fv(τ)] = b(v) for
all v ∈ V . SILVAN employs a more refined estimator that we describe in more
details in Section 3.2.

The Empirical Rademacher Average (ERA) R̂ (F ,S) of F on S is a key
quantity to obtain a data-dependent upper bound to the supremum deviation
D(F ,S). Let σ = 〈σ1, . . . ,σm〉 be a collection of m i.i.d. Rademacher random
variables (r.v.’s), each taking value in {−1, 1} with equal probability. The ERA
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R̂ (F ,S) of F on S is

R̂ (F ,S) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(τi)

]
. (3)

Computing the ERA R̂ (F ,S) is usually intractable, since there are 2m possible
assignments for σ and for each such assignment a supremum over the functions in
F must be computed. A useful approach to obtain sharp probabilistic bounds on
the ERA is given by Monte-Carlo estimation [2]. For c ≥ 1, let σ ∈ {−1, 1}c×m
be a c×m matrix of i.i.d. Rademacher r.v.’s. The c-trials Monte-Carlo Empirical
Rademacher Average (c-MCERA) R̂cm(F ,S,σ) of F on S using σ is:

R̂cm(F ,S,σ) = 1

c

c∑
j=1

sup
f∈F

1

m

m∑
i=1

σj,if(τi). (4)

The c-MCERA allows to obtain sharp data-dependent probabilistic upper bounds
to the supremum deviation, as they directly estimate the expected supremum
deviation of sets of functions by taking into account their correlation. For this
reason, they are often significantly more accurate than other methods [20], such
as the ones based on often loose deterministic upper bounds to Rademacher
averages (e.g., Massart’s Lemma [16]), or other distribution-free notions of com-
plexity, such as the VC-dimension. In general, the c-MCERA may be hard to
compute, due to the supremums over F [2]. However, for the case of betweenness
centralities, we show that all quantities relevant to the c-MCERA can be effi-
ciently and incrementally updated by SILVAN as shortest paths are randomly
sampled.

3 SILVAN: Efficient Progressive Estimation of
Betweenness Centralities

In this section we introduce SILVAN (eStimatIng betweenness centraLities with
progressiVe sAmpling and Non-uniform rademacher bounds) and the techniques
at its core.

We start, in Section 3.1, by presenting the empirical peeling technique and
the related main technical results, which provide sharp data-dependent non-
uniform approximation bounds supporting our algorithms. We then describe, in
Section 3.2, our algorithm SILVAN that builds on such improved bounds to
obtain an approximation within additive error ε of the betweenness centrality
for all nodes via progressive sampling. In the full version of this work [22] we
present novel improved bounds on the number of sufficient samples to achieve
absolute approximations with high probability. These bounds are naturally com-
bined with the progressive sampling scheme of SILVAN. The full version also
includes SILVAN-TopK, the extension of SILVAN to obtain a relative approx-
imation of the k nodes with highest betweenness centrality.
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3.1 Non-uniform Bounds via Empirical Peeling

In this section we introduce empirical peeling, a new data-dependent scheme
based on the c-MCERA to obtain sharp non-uniform bounds to the supremum
deviation. The main idea behind empirical peeling is to partition the set of
functions F in order to obtain the sharp bounds for different subsets of F .

Classical concentration inequalities, such as Bernstein’s and Bennet’s [7], are
well suited to control the deviation D({f},S) of a single function f , and to de-
rive an approximation whose accuracy depends on its variance V ar(f). Instead,
when simultaneously bounding the deviation of multiple functions belonging to a
set of functions F , the accuracy of the probabilistic bound on the supremum de-
viation D(F ,S) has a strong but natural dependence on the maximum variance
supf∈F V ar(f). However, when the variances of the members of F are highly
heterogenous, this leads to a significant loss of accuracy in the approximation
of functions with variance much smaller than the maximum (i.e., we obtain a
“blurred” approximation of functions f ′ with V ar(f ′)� supf∈F V ar(f)).

We propose an intuitive solution to achieve a higher granularity in the ap-
proximation: we partition F into t ≥ 1 subsets {Fj , j ∈ [1, t]} with

⋃
j Fj = F ,

such that functions with similar variance belong to the same subset Fj ; this
allows to control the supremum deviations D(Fj ,S) for each Fj separately, ex-
ploiting the fact that the maximum variance is now computed on each subset
Fj instead on the entire set F . This idea leads to sharp non-uniform bounds
(Theorem 1) that are locally valid for each subset Fj of F , and it is the main
motivation and intuition behind empirical peeling. Define the empirical wimpy
variance wFj

(S) = supf∈Fj

1
m

∑m
i=1 (f(τi))

2. We state the following result, key
to derive the guarantees of SILVAN.

Theorem 1. Let F =
⋃t
j=1 Fj be a family of functions with codomain in [0, 1].

Let S be a sample of size m taken i.i.d. from a distribution γ. Denote νFj
such

that supf∈Fj
V ar(f) ≤ νFj

. For any δ ∈ (0, 1), define

R̃j
.
= R̂cm(Fj ,S,σ) +

√
4wFj

(S) ln
(
4t
δ

)
cm

,

Rj
.
= R̃j +

ln
(
4t
δ

)
m

+

√√√√( ln
(
4t
δ

)
m

)2

+
2 ln

(
4t
δ

)
R̃j

m
,

εFj

.
= 2Rj +

√
2 ln

(
4t
δ

) (
νFj

+ 4Rj
)

m
+

ln
(
4t
δ

)
3m

. (5)

With probability at least 1−δ over the choice of S and σ, it holds D(Fj ,S) ≤ εFj

for all j ∈ [1, t].

From Theorem 1 we observe that, since each νFj
strongly affects εFj

, as
it typically dominates (5), partitioning F according to different stratifications
of νFj

is very beneficial to obtain sharp non-uniform bounds. We remark that
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recent works based on Monte Carlo Rademacher Averages [20, 9] used bounds
that apply to the particular case t = 1 (without any partitioning of F) to obtain
a uniform variance-dependent bound that can be very loose for most functions
as it ignores any heterogeneity of variances within F (see Thereom 3.2 of [20]
and Theorem 3.1 of [9]).

We note that in many cases, appropriate values for variance upper bounds
νFj

are not known. The following result upper bounds every supremum variance
supf∈Fj

V ar(f) of all sets of functions {Fj} using the empirical wimpy variances
wF (S). This bound conveniently defines sharp data-dependent values of νFj that
we plug in (5).

Proposition 1. With probability at least 1− δ it holds, for all j ∈ [1, t],

sup
f∈Fj

V ar(f) ≤ νFj

.
= wFj (S) +

ln
(
t
δ

)
m

+

√√√√( ln
(
t
δ

)
m

)2

+
2wFj

(S) ln
(
t
δ

)
m

. (6)

Theorem 1 and Proposition 1 are easily combined by replacing 4/δ by 5/δ
in Theorem 1, and 1/δ by 5/δ in (6); with this adjustment we obtain that both
statements hold simultaneously with probability at least 1− δ.

3.2 SILVAN

In this Section we give an high-level description of SILVAN, our algorithm,
based on the contributions of Section 3.1, to compute rigorous approximations
of the betweenness centrality of all nodes in a graph.

Sampling Shortest Paths SILVAN works by sampling shortest paths in G
uniformly at random and using the fraction of shortest paths containing v as
an unbiased estimator of its betweenness centrality b(v). The first estimator
following this idea was introduced by [24] (the rk estimator). The idea is to
first samples two uniformly random nodes u, z, and then a uniformly distributed
shortest path π between u and z. A more refined approach was proposed by [25]
(the ab estimator), which considers all shortest paths between u and z instead
of only one, approximating the betweenness centrality b(v) as the fraction of
such shortest paths passing through v. The ab estimator has been shown to
have smaller variance and to provide higher quality approximations than the
rk in practice [9]; this is because, intuitively, it updates estimations among all
nodes involved in shortest paths between u and z, and thus, informally, provides
“more information per sample”. Computationally, the set Πuz of shortest paths
between u and z, required by both the rk and ab estimators, can be obtained in
time O(|E|) using a (truncated) BFS, initialized from u and expanded until z is
found. For the rk estimator, a faster approach based on a balanced bidirection
BFS was proposed and analysed by [6]: they show that all information required
to sample one shortest path between two vertices u and z can be obtained
in time O(|E| 12 ) with high probability on several random graph models, and
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experimentally on real-world instances. While this approach drastically speeds-
up betweenness centrality approximations via the rk estimator [6], an analogous
extension of this technique to the ab estimator is desirable but currently lacking.

Our sampling algorithm extends the balanced bidirection BFS to the ab
estimator; this allows to combine superior statistical properties of ab with the
much faster balanced bidirection BFS enjoyed by rk. Our main idea is that, once
the set of all shortest paths Πuz between u and z is implicitly computed by the
two BFSs, then it is very efficient to sample multiple shortest paths uniformly
at random from Πuz (while [6] only sampled one shortest path).

SILVAN samples shortest paths with the following procedure:

1. sample two uniformly random nodes u, z;
2. performs a balanced bidirection BFS starting from u and z, until the two

BFSs “meet”;
3. sample uniformly at random dασuze shortest paths from the set Πuz of

shortest paths between u and z, where σuz = |Πuz| is the number of shortest
paths between u and z and α ≥ 1 a positive constant.

It is easy to see that the expected fraction of shortest paths sampled using this
procedure containing v is equal to the betweenness centrality b(v) of v. In par-
ticular, for each node v ∈ V and a bag of shortest paths τ obtained from this
sampling procedure, define the function fv(τ), with fv(τ) = |τ |−1

∑
π∈τ 1 [v ∈ π]

where 1 [v ∈ π] = 1 if v is internal to the shortest path π ∈ τ , 0 otherwise. Con-
sequently, the set of functions we use for betweenness centrality approximation
contains all fv with v ∈ V , so that F = {fv, v ∈ V }. By considering a sample S
of size m taken as described above, we define the estimate b̃(v) of the between-
ness centrality b(v) of v as b̃(v) = µS(fv) =

1
m

∑
τ∈S fv(τ). We have that b̃(v) is

an unbiased estimator of µγ(fv) = b(v), so that ES [b̃(v)] = b(v). Regarding α,
from standard Poisson approximation to the balls and bins model [17], we obtain
that the expected fraction of shortest paths that are not sampled from the set
Πuz in step (3) is σuz(1 − 1/σuz)

ασuz ≈ e−α. Consequently, to ensure that the
set of sampled shortest paths well represents Πuz, we set α to ln 1

λ where λ is a
small value (e.g., in practice we use λ = 0.1).

SILVAN algorithm We now describe our algorithm SILVAN to compute an
accurate approximation of the betweenness centrality. The goal of SILVAN is to
achieve an ε-approximation (or ε absolute approximation) of the set BC(G) =
{b(v) : v ∈ V }, defined as follows.

Definition 1. A set B̃C(G) = {b̃(v) : v ∈ V } is an ε-approximation of BC(G) =
{b(v) : v ∈ V } if it holds, for all v ∈ V , that |b(v)− b̃(v)| ≤ ε.

Algorithm 1 describes the algorithm SILVAN to compute an ε-approximation
of BC(G) by employing the techniques introduced in Section 3.1. SILVAN can
be logically divided into two phases: in the first phase (lines 1-4), SILVAN gen-
erates a sample S ′ that is used for empirical peeling (Section 3.1) to partition F
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into t subsets {Fj , j ∈ [1, t]}. The second phase (lines 5-15) describes the main
operations of the algorithm to approximate the betweenness centrality.

The second phase of SILVAN is based on a progressive sampling approach.
At a high level, the algorithm works in iterations, and in iteration i SILVAN
extracts an approximation b̃(v) of the values b(v) for all v ∈ V from a sample
Si, which is a collection of mi = |Si| randomly sampled bags of shortest paths.
The progressive sampling scheme considers samples sizes {mi} that form an
increasing sequence, following a suitable sampling schedule. At the end of each
iteration, SILVAN checks whether a suitable stopping condition is satisfied. This
stopping condition is based on estimating the c-MCERA of each partition Fj
on the sample Si, and obtaining bounds to the supremum deviation D(Fj ,S)
for each Fj (via the empirical peeling technique of Theorem 1). When all the
deviations are small enough (i.e., all are ≤ ε), the stopping condition is satisfied
and the algorithm reports the achieved approximation. It is important that the
stopping condition is satisfied as soon as possible, as each sample is expensive
to compute, in particular for large graphs.

We leave to the full version (Section 4.2.2 of [22]) a detailed description of
the operations done by Algorithm 1. We prove that its output is an accurate
approximation of the betweenness centrality.

Proposition 2. With probability ≥ 1 − δ, the output b̃ of SILVAN is a ε-
approximation of BC(G).

We now describe a simple but effective criteria to partition F , implement-
ing the empiricalPeeling method, used in Algorithm 1. First, we denote with
w̃v the estimated wimpy variance of the function fv on sample S ′ as w̃v =
1
|S′|
∑
τ∈S′ (fv (τ))

2. We assign each function fv for each node v ∈ V to the set
Fj with index j = dloga(min{w̃−1v , |S ′|})e for a constant a > 1. Intuitively, this
allows to split F into (at most) t = dloga(|S ′|)e partitions, such that each set Fj
groups functions with variances in [1/aj+1, 1/aj ], therefore within a multiplica-
tive factor a. Our main intuition is that the empirical wimpy variances wFj

(S)
control the accuracy of the bounds on the supremum deviations D(Fj ,S) (as
it estimates νFj in Theorem 1); this partitioning scheme fully exploits the non-
uniform variance-dependent bounds at the core of SILVAN since the empirical
wimpy variances wFj

(S) are approximated by wFj
(S ′) and are wFj

(S ′) ≤ 1/aj ,
which decrease exponentially with j.

4 Experiments

We implemented SILVAN and tested it on several real-world graphs. In our
experimental evaluations we assess the effectiveness of the progressive sampling
approach of SILVAN to approximate the betweenness centrality of all nodes.

Experimental Setup We implemented SILVAN in C++. Our implementation of
SILVAN, with automated scripts to reproduce all experiments, is available on-



10 L. Pellegrina and F. Vandin.

line.1 We compare SILVAN with KADABRA [6]2, that has been shown to uni-
formly and significantly outperform previous methods, and with BAVARIAN [9]3,
the most recent method for betweenness centrality approximation. When refer-
ring to BAVARIAN, we consider its variant based on progressive sampling (denoted
BAVARIAN-P, see Alg. 2 and Sect. 5.2 of [9]) which addresses the same problem
solved by SILVAN and KADABRA, and we tested it using all different estimators
for the betweenness centrality described in [9] (called rk, ab, and bp). In this
short version we only show results for the ab estimators, while the complete
comparison is available in the extended version [22]. All the code was compiled
with GCC 8 and run on a machine with 2.30 GHz Intel Xeon CPU, 512 GB of
RAM, on Ubuntu 20.04, with a total of 64 cores. All experiments were performed
using multithreading on all threads.

Graphs. We tested SILVAN on 7 undirected and 11 directed real-world
graphs from SNAP4 and KONECT5, most of them previously analysed by
KADABRA [6] and other previous methods [24, 27, 9]. The characteristics of the
graphs are described in detail in Table 1 (in the Appendix).

For every graph, we ran all algorithms to compute an ε-approximation with
parameter ε ∈ {0.01, 0.005, 0.0025, 0.001, 0.0005}, chosen to have comparable
magnitude to the betweenness centrality of the most central nodes (i.e., see
col. ξ̂ of Table 1); this is required to compute meaningful approximations (i.e.,
an ε absolute approximation is useless when the centralities of the most central
nodes are much smaller than ε). We fix δ = 0.05, and use c = 25 Monte Carlo
Rademacher vectors for SILVAN and BAVARIAN (note that c = k in [9]).6 We
ran all algorithms 10 times and report averages ± stds. We limit the execution
time of each run to 6 hours; we terminate the algorithm when exceeding this
threshold.

For the empirical peeling scheme of SILVAN, we sample m′ = log(1/δ)/ε
shortest paths to generate S ′, always a very small fraction of the overall samples
analysed by SILVAN. Regarding the sampling schedule followed in the second
phase, we increase the sample size mi with a geometric progression, such that
mi+1 = θ · mi, with θ = 1.2. The empiricalPeeling procedure of SILVAN
follows the scheme described at the end of Section 3.2 using a = 2. For the pro-
gressive sampling schedule of BAVARIAN, we use the same geometric progression
parameter θ = 1.2 of SILVAN.

Figure 1 shows the results for this set of experiments comparing SILVAN to
KADABRA, while Figure 3 shows the results comparing SILVAN to BAVARIAN for
the estimator ab (Figures in the Appendix).

1 https://github.com/VandinLab/SILVAN
2 https://github.com/natema/kadabra
3 https://github.com/acdmammoths/Bavarian-code
4 http://snap.stanford.edu/data/index.html
5 http://konect.cc/networks/
6 We follow [20] and [9], that have shown that sharp bounds are obtained even with a
low number of Monte Carlo trials, and that there are minimal improvements using
c > 30.



SILVAN 11

10 3 10 2

104

105

106

107

Nu
m

be
r o

f s
am

pl
es

Number of samples for SILVAN vs 

actor-collaboration
ca-AstroPh
ca-GrQc

cit-HepPh
cit-HepTh
com-amazon

com-dblp
com-youtube
email-Enron

email-EuAll
p2p-Gnutella31
soc-Epinions1

soc-LiveJournal1
soc-pokec
wiki-Talk

wiki-Vote
wiki-topcats
wikipedia_link_en

10 25 10 32.5 10 310 35 10 4

2

4

6

8

10

Ra
tio

 o
f n

um
be

r o
f s

am
pl

es
 (K

AD
AB

RA
/S

IL
VA

N)

Ratio of number of samples (K/S, dir. graphs)

(a)

10 25 10 32.5 10 310 35 10 4
1

2

3

4

5

6

7

Ra
tio

 o
f n

um
be

r o
f s

am
pl

es
 (K

AD
AB

RA
/S

IL
VA

N)

Ratio of number of samples (K/S, undir. graphs)

(b)

100 200 300 400 500 600 700 800
Running time SILVAN (s)

500

1000

1500

2000

Ru
nn

in
g 

tim
e 

KA
DA

BR
A 

(s
)

Running time comparison (abs. -approximation)

(c)

10 1 100 101 102

Running time SILVAN (s)

10 1

100

101

102

103

Ru
nn

in
g 

tim
e 

KA
DA

BR
A 

(s
)

Running time comparison (abs. -approximation)

(d)

Fig. 1: Comparison between the performance of KADABRA and SILVAN for ob-
taining absolute approximations. (a): ratios of the number of samples required
by KADABRA and the number of samples required by SILVAN for directed graphs
(black line drawn at y = 1). (b): as (a) for undirected graphs. (c): comparison
of the running times of KADABRA (y axis) and SILVAN (x axis) for all graphs
(black line drawn at y = x). (d): as (c) with axes in log scale.
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Sample sizes In Figures 1 (a) and (b) we show the ratios between the num-
ber of samples required by KADABRA and SILVAN to converge (we sum the
number of samples of both phases, for both algorithms) for directed and undi-
rected graphs. We can see that the number of samples needed by SILVAN is
always smaller than KADABRA, by at least 20%; for 14 out of 18 graphs, SILVAN
finished after processing less than half of the samples considered by KADABRA,
and may require up to an order of magnitude less samples. By inspecting the
graphs’ statistics (Table 1), the largest improvements are obtained for graphs
with smallest supv∈V b(v) ≤ ξ̂ (a simple bound to the maximum variance). In
fact, the number of samples required by SILVAN (Figure 2 (a), in the Ap-
pendix) varies significantly among graphs, with strong dependence on ξ̂. Notice
that supv∈V b(v) upper bounds the maximum variance supv∈V V ar(fv). A po-
tential cause of the gap between SILVAN and KADABRA may depend on the use
of the VC-dimension based bound in the adaptive sampling analysis of KADABRA;
such bound is indeed required for its correctness, but it is agnostic to any prop-
erty of the underlying graph (apart from the vertex diameter) and thus results
in overly conservative guarantees in such cases. This confirms the significance of
SILVAN’s sharp variance-adaptive bounds. In addition, the fact that SILVAN
obtains simultaneous and non-uniform data-dependent approximations for sets
of nodes, exploting correlations among nodes through the use of the c-MCERA,
leads to refined guarantees.

We now compare SILVAN with BAVARIAN in terms of sample sizes. We re-
mark that the plots for sample sizes only show the results for cases in which
BAVARIAN terminates in reasonable time (i.e, in less than 6 hours), while figures
for running times show a lower bound for such cases. From Figures 3 (a) and (b)
(in the Appendix), we can see that SILVAN always requires a fraction of the
samples needed by BAVARIAN: at most half of the samples for all graphs, up to
1/4 of the samples.

Overall, SILVAN obtains high-quality approximations at a fraction of the
samples required by state-of-the-art methods; this highlights the significance of
SILVAN’s non-uniform approximation approach via empirical peeling and its
novel improved bounds on the number of sufficient samples (presented in the
full version [22]).

Running times We now discuss how the reduction in the number of samples
impacts the overall running times. We observed that, generally, the running
time roughly increases linearly with the sample size (Figure 2 (b) shows that
the relationship between the sample sizes and the running times of SILVAN is
essentialy linear). In fact, the time spent on sampling shortest paths is usually
the dominating cost of the algorithms.

In Figure 1 (c) we compare the running times of SILVAN (x axis) and
KADABRA (y axis). While for smaller graphs both SILVAN and KADABRA terminate
very quickly (e.g., in < 10 seconds), for the largest and most demanding graphs
the reduction on the number of samples achieved by SILVAN has a sensible and
significant impact on the running times, as clearly shown in Figure 1 (c). For
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instance, SILVAN analyses the most demanding graph (wikipedia-link-en)
in less than 1/3 of the time required by KADABRA when ε ≤ 10−3. This is a
consequence of significantly reducing the required samples, and also reflects the
capability of SILVAN to compute the c-MCERA incrementally as shortest paths
are sampled, incurring in a negligible computational overhead.

In Figure 3 (c)-(d) we compare the running times of SILVAN (x axis) and
BAVARIAN using the ab estimator (y axis). Note that we report a lower bound
to the running time of BAVARIAN when exceeding 6 hours (= 2.16 · 104 seconds);
BAVARIAN exceeded this threshold on most large graphs and for smaller values
of ε, while SILVAN never required more than 17 minutes (= 103 seconds).
Overall, we observed SILVAN to be at least one order of magnitude faster than
BAVARIAN, up to 3 orders of magnitude. We observed very similar results for other
estimators. SILVAN’s improvements are due to both the significant reduction
in the number of samples (as discussed previously) thanks to its non-uniform
approximation scheme, and from the fact that SILVAN leverages a more efficient
algorithm for sampling shortest paths, based on the balanced bidirectional BFS,
drastically reducing the computational requirement for the task.

We conclude that SILVAN requires much fewer resources to obtain rigorous
approximations of the betweenness centrality of all nodes of the same quality,
or, equivalently, sharper guarantees for the same amount of work.

5 Conclusions

We introduced SILVAN, a novel progressive sampling algorithm to estimate the
betweenness centrality of all nodes in a graph. SILVAN relies on new bounds
on supremum deviation of functions, based on the c-MCERA and non-uniform
approximation scheme via empirical peeling. We present variants of SILVAN to
obtain additive approximations, and relative approximations for the top-k be-
tweenness centrality. Our experimental results show that SILVAN significantly
outperforms state-of-the-art approaches for approximating betweenness central-
ity with the same guarantees.

There are multiple interesting directions for future work. While in this work
we considered various approximations of the betweenness centrality in a static
setting, recent works considered extending the problem to dynamic [4, 3, 13],
temporal [30], and uncertain graphs [29], or different types of centralities [15,
19], all settings in which we believe the ideas behind our algorithm SILVAN
could lead to improved approximations.

Furthermore, the empirical peeling scheme we introduced in this work is
general: it can be applied to sets of functions with arbitrary domains, so it
can potentially benefit randomized approximation algorithms in other settings,
such as interesting [28, 31, 33] and significant pattern mining [21], and sequential
hypothesis testing [10].
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A Appendix

Algorithm 1: SILVAN
Input: Graph G = (V,E); c,m′ ≥ 1; ε, δ ∈ (0, 1).
Output: ε-approximation of BC(G) with probability ≥ 1− δ

1 S ′ ← sampleSPs(m′);
2 {Fj , j ∈ [1, t]} ← empiricalPeeling(F ,S ′);
3 m̂← sufficientSamples(F ,S ′, δ/2);
4 {mi}, {δi} ← samplingSchedule(F ,S ′);
5 forall j ∈ [1, t] do εFj ← 1;
6 i← 0; S0 ← ∅; σ ← empty matrix;
7 while not stoppingCond(ε, {εFj}, m̂,mi) do
8 i← i+ 1; dm ← mi −mi−1;
9 Si ← Si−1∪ sampleSPs(dm);

10 σ ← add columns {sampleRrvs(dm, c)} to σ;
11 b̃, r̃, {νFj} ← updateEstimates(Si,σ, {Fj});
12 forall j ∈ [1, t] do
13 R̂c

mi
(Fj ,Si,σ)← 1

c

∑c
x=1 maxv∈V,fv∈Fj{r̃(v, x)};

14 εFj ← epsBound(R̂c
mi

(Fj ,Si,σ), νFj , δi);

15 return b̃;
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Table 1: Statistics of undirected (top section) and directed (bottom section)
graphs. D is the vertex diameter, ρ̂ is an upper bound of the average shortest
path lenth ρ, and ξ̂ is an upper bound of maxv{b(v)}.

G |V | |E| D ρ̂ ξ̂

actor-collaboration 3.82e5 3.31e7 13 2.87 0.0090
ca-AstroPh 1.87e4 1.98e5 14 3.20 0.0285
ca-GrQc 5.24e3 1.44e4 17 3.51 0.0450
com-amazon 3.34e5 9.25e5 44 11.97 0.0450
com-dblp 3.17e5 1.04e6 21 6.27 0.0162
com-youtube 1.13e6 2.98e6 20 4.68 0.2573
email-Enron 3.66e4 1.83e5 11 2.78 0.0749

cit-HepPh 3.45e4 4.21e5 12 5.35 0.1817
cit-HepTh 2.77e4 3.52e5 13 2.10 0.1237
email-EuAll 2.65e5 4.20e5 14 0.56 0.0121
p2p-Gnutella31 6.25e4 1.47e5 11 2.16 0.0071
soc-Epinions1 7.58e4 5.08e5 14 2.11 0.0210
soc-LiveJournal1 4.84e6 6.90e7 16 4.58 0.0270
soc-pokec 1.63e6 3.06e7 16 3.94 0.0802
wiki-Talk 2.39e6 5.02e6 9 0.26 0.0037
wiki-topcats 1.79e6 2.85e7 9 5.87 0.0985
wiki-Vote 7.11e3 1.03e5 7 0.66 0.0240
wikipedia-link-en 1.35e7 4.37e8 10 3.21 0.0300
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Fig. 2: Resources required by SILVAN for obtaining absolute ε approximations.
(a): Number of samples for SILVAN vs. ε. (b): Running times of SILVAN vs.
Number of samples. (c): Running times of SILVAN vs. ε.
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Fig. 3: Comparison between the performance of BAVARIAN (ab estimator) and
SILVAN for obtaining absolute approximations. (a): ratios of the number of
samples required by BAVARIAN and the number of samples required by SILVAN
for directed graphs (black line drawn at y = 1). (b): as (a) for undirected graphs.
(c): comparison of the running times of BAVARIAN (y axis) and SILVAN (x axis)
for directed graphs (axes in logarithmic scale) (black line drawn at y = x). (d):
as (c) for undirected graphs.


