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Abstract. Message passing graph neural networks iteratively compute
node embeddings by aggregating messages from all neighbors. This proce-
dure can be viewed as a neural variant of the Weisfeiler-Leman method,
which naturally limits their expressive power. Moreover, oversmooth-
ing and oversquashing limit the number of layers effectively utilized by
these networks, restricting their expressive power further. We identify
the repeated exchange and encoding of identical information as a weak
point and propose a non-redundant aggregation scheme to alleviate the
problem. We develop a neural tree canonization technique and apply it
to neighborhood trees, which represent node neighborhoods similarly to
Weisfeiler-Leman unfolding trees, but restrict the repetition of nodes. Our
method is provably more powerful than the Weisfeiler-Leman method,
potentially less susceptible to oversquashing and oversmoothing than mes-
sage passing neural networks, and provides high classification accuracy
on widely-used benchmark datasets.

Keywords: Graph neural networks · Message passing · Weisfeiler-Leman.

1 Introduction

Graph neural networks have recently emerged as the dominant technique for
machine learning with graphs. The class of message passing neural networks [5]
is widely-used and updates node embeddings layer-wise by combining the current
embedding of a node with the embeddings of its neighbors involving learnable
parameters. Suitable neural architectures admit a parametrization such that each
layer represents an injective function encoding its input uniquely by the new
embedding [16]. In this case the message passing neural network has the same
expressive power as the Weisfeiler-Leman algorithm [16]. The Weisfeiler-Leman
algorithm can distinguish two nodes if and only if the unfolding trees representing
their neighborhoods are non-isomorphic. This unfolding tree corresponds to the
computational tree of message passing neural networks [15,6]. These results prove
the existence of parameters such that two nodes obtain different embeddings
after layer n if they are distinguished after n iterations of the Weisfeiler-Leman
algorithm meaning their unfolding trees of height n are non-isomorphic. However,
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in practice typically shallow message passing neural networks are employed.
Two phenomena have been identified explaining the poor performance of deep
message passing neural networks. First, node representations are observed to
converge to the same values for deep architecture instead of being able to
distinguish more vertices, a phenomenon referred to as oversmoothing [9,10].
Second, oversquashing [4] refers to the problem that the neighborhood of a
node grows exponentially with the number of layers and aggregation steps and,
therefore, cannot be supposed to be accurately represented by a fixed-sized
embedding. We argue that oversquashing can be alleviated by removing the
encoding of repeated information. Consider a node u with an edge e = {u, v} in
an undirected graph. In a first step, u will send information to v over the edge
e. In the next step, u will receive a message form v via e that incorporates the
information that u has previously sent to v. Clearly, this information is redundant.
In the context of walk-based graph learning method this problem is well-known
and referred to as tottering [11].

Our Contribution. We systematically investigate the information redundancy
in message passing neural networks and develop principled techniques to avoid
superfluous messages. Fundamental to our consideration is the tree representation
implicitly used by message passing neural networks and the Weisfeiler-Leman
method. First, we develop a neural tree canonization approach processing trees
systematically in a bottom-up fashion. The method leads to a message passing
neural network encoding unfolding trees, but achieves this without redundancy.
Second, we apply the canonization technique to neighborhood trees, which are
obtained from unfolding trees by deleting nodes that appear multiple times.
We show that the neighborhood trees allow to distinguish nodes and graphs
that cannot be distinguished by the Weisfeiler-Leman method, rendering our
technique more expressive than message passing neural networks. While our
approach removes information redundancy on a node level, the structure of
subtrees now depends on the selected root leading to computational challenges.
We address these by compact representations of neighborhood trees using directed
acyclic graphs allowing to reuse canonical representations of subtrees. Our method
is shown to achieve high accuracy on several graph classification tasks.

2 Related Work

The graph isomorphism network (GIN) [16] is a graph neural network that
generalizes the Weisfeiler-Leman algorithm and reaches its expressive power. The
embedding of a vertex v in layer i of GIN is defined as follows:

xi(v) = MLPi

(1 + ϵi) · xi−1(v) +
∑

u∈N(v)

xi−1(u)

 , (1)

and the first representation x0(v) is usually acquired by applying a multi-layer
perceptron (MLP) to the vertex features. The limited expressiveness of simple
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message passing neural networks has lead to an increased interest in researching
the expressiveness of GNNs and finding more powerful architectures, for example
by encoding graph structure as additional features or altering the message passing
procedure. Shortest Path Networks [1] are closely related to our approach. This
method uses multiple aggregation functions for different shortest path lengths:
One for each k for the k-hop neighbors. While this allows the target node to
directly communicate with nodes further away and in turn possibly might help
mitigate oversquashing, some information about the structure of the neighborhood
can still not be represented adequately and the gain in expressiveness is limited.
In Distance Encoding GNNs [8], the distances of the nodes to a set of target
nodes are encoded. While this approach also is provably more expressive than the
standard WL method, it is limited to solving node-level tasks, since the encoding
depends on a fixed set of target nodes, and has not been employed for graph-level
tasks. MixHop [2] employs an activation function for each neighborhood and
concatenates their results. However, in contrast to [1], the aggregation is based on
normalized powers of the adjacency matrix, not shortest paths, which does not
solve the problem of redundant messages. SPAGAN [17] proposes a path-based
attention mechanism. Although the idea is very similar, shortest paths are only
sampled and the feature aggregation differs. Only one layer is used and the
paths are used as features. This approach has not been investigated theoretically.
IDGNN [18] keeps track of the identity of the root node in the unfolding tree,
which allows for more expressiveness than 1-WL. Their variant ID-GNN-Fast
works by using cycles lengths as additional node features. Both variants however,
do not reduce the amount of redundant information that is aggregated over
multiple layers.

For many of these architectures no thorough investigation on their expressive-
ness and connections to other approaches is provided. Moreover, these works do
not explicitly investigate redundancy in message passing neural networks.

3 Fundamental Techniques

In this section, we give an overview of the necessary definitions and the notation
used throughout the article and introduce fundamental techniques.

Graph Theory. A graph G = (V,E, µ, ν) consists of a set of vertices V , a set
of edges E ⊆ V × V between them and functions µ : V → X and ν : E → X
assigning arbitrary attributes to the vertices and edges, respectively. We refer to
an edge from u to v by uv, and in case of undirected graphs uv = vu. The vertices
and edges of a graph G are denoted by V (G) and E(G), respectively, and the
neighbors (or in-neighbors) of a vertex u ∈ V are denoted by N(u) = {v | vu ∈ E}.
The out-neighbors of a vertex u ∈ V are denoted by No(u) = {v | uv ∈ E}.
Two graphs G and H are isomorphic, denoted by G ≃ H, if there exists a
bijection ϕ : V (G) → V (H), so that ∀u, v ∈ V (G) : µ(v) = µ(ϕ(v)) ∧ uv ∈
E(G) ⇔ ϕ(u)ϕ(v) ∈ E(H) ∧ ∀uv ∈ E(G) : ν(uv) = ν(ϕ(u)ϕ(v)). We call ϕ an
isomorphism between G and H.
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Fig. 1: Example of an in-tree (left) and a DAG (right).

An in-tree T is a connected, directed, acyclic graph with a distinct vertex
r ∈ V (T ) with no outgoing edges referred to as root, denoted by r(T ), in which
∀v ∈ V (T )\r(T ) : |No(v)| = 1. For v ∈ V (T )\r(T ) the parent p(v) is defined
as the unique vertex u ∈ No(v), and ∀v ∈ V (T ) the children are defined as
chi(v) = N(v). We refer to all vertices with no incoming edges as leaves denoted
by l(T ) = {v ∈ V (T ) | chi(v) = ∅}. Conceptually it is a directed tree, in which
there is a unique directed path from each vertex to the root [12]. In our paper,
we only cover in-trees and will thereby just refer to them as trees. In-trees are
generalized by directed, acyclic graphs (DAGs). The leaves of a DAG D and
the children of a vertex are defined as in trees. However, there can be multiple
roots and a vertex may have more than one parent. We refer to all vertices in
D with no outgoing edges as roots denoted by r(D) = {v ∈ V (D) | No(v) = ∅}
and define the parents p(v) of a vertex v as p(v) = No(v). For clarity we refer to
the vertices of a DAG as nodes to distinguish them from the graphs that are the
input of a graph neural network.

Weisfeiler-Leman Unfolding Trees. The 1-dimensional Weisfeiler-Leman
(WL) algorithm or color refinement starts with all vertices having a color repre-
senting their label (or a uniform coloring in case of unlabeled vertices). In each
iteration the color of a vertex is updated based on the multiset of colors of its
neighbors according to

ci+1(v) = h (ci(v), {{ci(u) | u ∈ N(v)}}) ∀v ∈ V (G),

where h is an injective function.
The color of a vertex of G encodes its neighborhood by a tree T that may

contain multiple representatives of each vertex in G. Let ϕ : V (T ) → V (G) be
a mapping such that ϕ(n) = v if the node n in V (T ) represents the vertex v
in V (G). The unfolding tree F v

i with height i of the vertex v ∈ V (G) consists
of a root nv with ϕ(nv) = v and child subtrees Fu

i−1 for all u ∈ N(v), where
F v
0 = ({nv}, ∅). The attributes of the original graph are preserved, see Figure 2

for an example. The unfolding trees F v
i and Fw

i of two vertices v and w are
isomorphic if and only if ci(v) = ci(w).

Fig. 2: Graph G and its unfolding trees F v
2 for all v ∈ V (G).
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(a) Graph G (b) F v
2 (c) T v

2,0 (d) T v
2,1

Fig. 3: Graph G and the unfolding, 0- and 1-redundant neighborhood trees of
height 2 of vertex v (vertex in the upper left of G).

k-redundant Neighborhood Trees. A k-redundant neighborhood tree (k-NT)
T v
i,k can be constructed from the unfolding tree F v

i by deleting all subtrees with
its roots, that already occurred more than k levels before (seen from root to
leaves). Let depth(v) denote the length of the path from v to the root and ϕ(v)
again denote the original vertex in V (G) represented by v in the unfolding or
neighborhood tree.

Definition 1 (k-redundant Neighborhood Tree). For k ≥ 0, the k-redundant
neighborhood tree (k-NT) of a vertex v ∈ V (G) with height i, denoted by T v

i,k, is
defined as the subtree of the unfolding tree F v

i induced by the nodes u ∈ V (F v
i )

satisfying

∀w ∈ V (F v
i ) : ϕ(u) = ϕ(w) ⇒ depth(u) ≤ depth(w) + k.

Figure 3 shows an example of unfolding and neighborhood trees. Note that for
k ≥ i the k-redundant neighborhood tree is equivalent to the WL unfolding tree.

4 Non-Redundant Graph Neural Networks

We propose to restrict the information flow in message passing to control re-
dundancy using k-redundant neighborhood trees. We first develop a neural tree
canonization technique and obtain an MPNN via its application to unfolding trees.
Then we investigate computational methods on a graph-level reusing information
computed for subtrees and derive a customized GNN architecture. Finally, we
prove that 1-redundant neighborhood trees are strictly more expressive than
unfolding trees on both node- and graph-level.

4.1 A Tree Canonization Perspective on GNNs

It is well-known that two nodes obtain the same WL color if and only if their
unfolding trees are isomorphic and this concept directly carries over to message
passing neural networks and their computational tree [15,6]. However, unfolding
trees were mainly used as a tool in expressivity analysis and as a concept
explaining mathematical properties in graph learning [7,14]. We develop a tree
canonization perspective on MPNNs which will extend to a novel non-redundant
GNN architecture in the following.
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The AHU Algorithm for Tree Isomorphism and Canonization. Aho,
Hopcroft and Ullman describe a linear time isomorphism test for rooted unordered
trees in their classical text book [3, Section 3.2] based on radix sort. We describe
the general procedure of the algorithm abstractly in order to lay the foundations
for our neural variant without focusing on the running time. The algorithm
proceeds in a bottom-up fashion and assigns integers c(v) to each node v of the
two trees. Initially, c(v) = 0 for all leaves. Then, the internal nodes are processed
level-wise in a bottom-up fashion guaranteeing that for every considered node all
its children have been processed. In step i, we assign c(v) = fi({{c(u) | u ∈ chi(v)}})
to each internal node v on level i. Here, the function fi assigns integers starting
with 1 to the sorted list of multisets of level i using the next integer whenever
it differs from the one processed before. The algorithm identifies the trees as
non-isomorphic whenever the integers on some level of the two trees differ; they
are isomorphic when eventually their roots are assigned the same integer. The
multisets on the same level are sorted efficiently by maintaining and scanning
sorted lists of lower-level nodes for both trees, sorting tuples using radix sort. In
this case, the overall algorithm achieves linear running time. As noted in [3], the
algorithm can be extended to labeled trees by adding node labels as first element
to the tuples, assuming that the node label µ(v) is in {1, . . . , n} for all nodes v.

The idea easily extends to tree canonization assuming that a function f is
computable that assigns a pair consisting of an integer and a multiset of integers
injectively to a new (unused) integer. In this case, we have

c(v) =

{
f(µ(v), ∅) if v is a leaf,
f(µ(v), {{c(u) | u ∈ chi(v)}}) otherwise.

(2)

Here, we ignore the running time allowing us to discard the requirements regarding
the initial labels µ(v), and neglect the fact that such a function f is non-trivial
to realize for the sake of illustrating the overall concept and linking to neural
approaches.

Canonization of Unfolding Trees. We combine Eq. (2) with the definition of
unfolding trees and denote the root of an unfolding tree of height i of a vertex v
by niv. Then, we obtain

c(niv) = f(µ(niv), {{c(ni−1
u ) | ni−1

u ∈ chi(niv)}}) = f(µ(v), {{c(ni−1
u ) | u ∈ N(v)}}).

(3)
Realizing f using a suitable neural architecture and replacing integers by em-
beddings in Rd we immediately obtain a GNN from our canonization approach.
The only notable difference to standard GNNs is that the first component of
the pair in Eq. (3) is µ(v) instead of xi−1(v). We can derive a GNN based on
unfolding tree canonization from Eq. (1) by replacing the first addend with the
initial embedding according to

xi(v) = MLPi

(1 + ϵi) · x0(v) +
∑

u∈N(v)

xi−1(u)

 . (4)
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We refer to the above equation as unfolding tree canonization MPNN. It is
known that MPNNs cannot distinguish two nodes with the same WL color or
unfolding tree. Since the function c(niv) uniquely represents the unfolding tree
for an injective function f which is realized by Eq. (4) using the same technique
as GIN [16], we conclude the following.

Proposition 1. Unfolding tree canonization MPNNs given by Eq. (4) are as
expressive as GIN given by Eq. (1).

However, since c(ni−1
v ) or xi−1(v) may represent the whole unfolding tree rooted

at v of height i − 1, it clearly may contain redundant information to a large
extent, which is avoided by the canonization-based approach. We proceed by
investigating redundancy in unfolding trees themselves.

4.2 Removing Redundancy in Unfolding Trees

The computation DAG of an MPNN can be represented by merging all isomorphic
substructures of the unfolding trees of the vertices. We will first describe, how to
merge trees in general and then look at the consequences for the computation
DAG in case of using unfolding trees, as well as neighborhood trees.

Merge DAGs. The neural tree canonization approach developed in the last
section can directly be applied to DAGs. Given a DAG D, it computes an
embedding for each node n inD that represents the tree Fn obtained by recursively
following its children similar as in unfolding trees, cf. Section 3. Since D is acyclic
the height of Fn is bounded. Given a set of trees T = {T1, . . . , Tn}, a merge DAG
of T is a pair (D, ξ), where D is a DAG, ξ : {1, . . . n} → V (D) is a mapping
and for all i ∈ {1, . . . , n} we have Ti ≃ Fξ(i). The definition guarantees that
the neural tree canonization approach applied to the merge DAG produces the
same result for the nodes in the DAG as for the nodes in the original trees. A
trivial merge DAG is the disjoint union of the trees with ξ(i) = r(Ti). However,
depending on the structure of the given trees, we can identify the subtrees they
have in common and represent them only once, such that two nodes of different
trees share the same child, resulting in a DAG.

We can identify the shared substructures by adapting the AHU algorithm,
cf. Section 4.1. For this work, we used a straightforward algorithm that inserts
the nodes of a tree in a bottom-up fashion into a DAG and identifies common
substructures in passing, see Algorithm 1 in the appendix. When two siblings
that are the roots of isomorphic subtrees are merged this leads to parallel edges
in the DAG. We avoid this by introducing a node labeling function extending the
original labels of the tree. Let VT =

⋃
i∈{1,...,n} V (Ti), then a suitable labeling

function L : VT → O with O some arbitrary labeling satisfies ∀u, v ∈ VT : L(u) =
L(v) =⇒ µ(u) = µ(v) ∧ p(u) ̸= p(v). The algorithm extends to the case where
the input is a set of DAGs allowing parallel pairwise merging, see Section C.
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(a) Merged unfolding trees (b) Merged 0-NTs

Fig. 4: Computation DAGs for unfolding and neighborhood trees of height 2.

Merging Unfolding Trees. Merging the Weisfeiler-Leman unfolding trees
of a graph with the labeling L = ϕ leads to the computation DAG of GNNs.
Figure 4a shows the computation DAG for the example graph from Figure 2.
The roots in this DAG correspond to the representation of the vertices after
aggregating information from the lower layers. Every node occurs once at every
layer of the DAG and the links between any two consecutive layers are given
by the adjacency matrix of the original graph. While this makes computation
based on the adjacency matrix widely used for MPNNs simple, a lot of redundant
information is incorporated which can be avoided using neighborhood trees.

Merging Neighborhood Trees. Merging the k-redundant neighborhood trees
in the same way using the labeling L = ϕ leads to a computation DAG having
a less regular structure, see Figure 4b for an example. First, there might be
multiple nodes on the same level representing the same original vertex. Second,
the adjacency matrix of the original graph cannot be used to propagate the
information. We apply the neural tree canonization approach to the merge DAG
it in a bottom-up fashion from the leaves to the roots. Each edge is used exactly
once in this computation. Let G = (V, E) be the computation DAG of the
graph G = (V,E). The edge set E is partitioned into subsets {E1, . . . , En}, with⋃

i∈{1,n} Ei = E and ∀i ̸= j : Ei∩Ej = ∅, where subset Ei represents layer i. Edges
are assigned to the layers, so that

En = {uv ∈ E | No(v) = ∅}
Ei = {uv ∈ E | i = min{j | ∃vw ∈ Ej} − 1}

This results in a unique partition, in which all edges with the same end node v
are in the same layer and all edges pointing to children of the starting node u
are in some previous layer. The pseudocode of the algorithm can be found in the
appendix.

Fig. 5: Graph G and its 0-NTs T v
2,0 for all v ∈ V (G).
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(a) First layer (b) Second layer

Fig. 6: Edges in the different layers of the merge DAG based on 0-NTs.

Let {E1, . . . , En} be the resulting edge partition. All incoming edges of a node
v ∈ V are in the same edge set Ei and, thus, the edge partition induces the
partition {L0,L1, . . . ,Ln} of the nodes V as follows:

L0 = {v ∈ V | N(v) = ∅}
Li = {v ∈ V | ∃u ∈ V : uv ∈ Ei}

4.3 Non-Redundant Neural Architecture (DAG-MLP)

We use the k-redundant computation DAG and develop a neural canonization
technique that is suitable for implementations accelerated by standard deep
learning frameworks and hardware. In a pre-processing step we transform the
node labels using MLP0 to a embedding space of a fixed dimension. We use an
MLPi to processes the nodes on the DAG layer Li.

µ′(v) = MLP0 (µ(v)) ∀v ∈ V
x(v) = µ′(v) ∀v ∈ L0 (5)

x(v) = MLPi

(
(1 + ϵi) · µ′(v) +

∑
∀u : uv∈Ei

x(u)

)
∀v ∈ Li, i ∈ {1, . . . , n}

The DAG-MLP can be computed through iterated matrix vector multiplication,
similar to the standard GNNs. Let Li be the square matrix with ones on the
diagonal at position j if vj ∈ Li, and zeros elsewhere. Let Ei be the adjacency
matrix of (V, Ei), and F the node features of V corresponding to the initial labels
of V . The transformed features F′ are obtained using the pre-processing MLP,
and X[i] represents the updated embeddings at layer i of the DAG.

F′ = MLP0 (F)

X[0] = L0F
′ (6)

X[i] = MLPi

(
(1 + ϵi) · LiF

′ +EiX
[i−1]

)
+X[i−1] ,

where MLPi is applied to the rows associated with nodes in Li. Here, X[i] are
the embeddings of the nodes of the DAG, which are initially all zero for the inner
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nodes and computed level-wise. To preserve the embeddings of all previous layers
X[i−1] is added in the computation of X[i]. The final embeddings are the rows of
X[n] associated with the roots of the DAG.

4.4 Expressiveness of 1-NTs

Let φ be an isomorphism between G and H. We call two nodes u and v (or
edges uw and vx) corresponding in an isomorphism φ, if φ(u) = v (for edges
φ(u)φ(w) = vx). We denote two nodes u and v (or edges uw and vx) by u ∼= v
(uw ∼= vx, respectively), if there exists an isomorphism in which u and v (uw
and vx) are corresponding.

For isomorphism testing the (multi-)sets of unfolding trees of two graphs
(and k-redundant neighborhood trees, respectively) can be compared. The sets
are denoted with wli(G) and nti,k(G) for iteration i and defined as wli(G) =
{{F v

i |v ∈ V (G)}} and nti,k(G) = {{T v
i,k|v ∈ V (G)}}.

If two graphs G and H are isomorphic, then by definition of the trees, we can
find a bijection ψ between their tree sets wl∞(G) and wl∞(H) (and nt∞,k(H)
and nt∞,k(G), respectively), with ∀T : T ≃ ψ(T ), which we denote by wl∞(G) =
wl∞(H) (nt∞,k(G) = nt∞,k(H)). However, wl∞(G) = wl∞(H) ̸⇒ G ≃ H (and
also nt∞,k(G) = nt∞,k(H) ̸⇒ G ≃ H). We focus on 1-redundant neighborhood
trees from now on.

Theorem 1. The 1-NT isomorphism test is more powerful than the Weisfeiler-
Leman isomorphism test, i.e.,

1. ∀G,H : wl∞(G) ̸= wl∞(H) ⇒ nt∞,1(G) ̸= nt∞,1(H)

2. ∃G,H : G ̸≃ H ∧ wl∞(G) = wl∞(H) ∧ nt∞,1(G) ̸= nt∞,1(H).

Proof. 1. We proof the first statement by contradiction. Assume u ∈ V (G), v ∈
V (H), two nodes with u ≇ v, and let i be the first iteration in which Fu

i ̸≃ F v
i ,

but Tu
i,1 ≃ T v

i,1. It is easy to see that ∀v : F v
0 ≃ T v

0,1, and also ∀v : F v
1 ≃ T v

1,1, so
i ≥ 2.

Since i is the first iteration they differed, Fu
i−1 ≃ F v

i−1. Any isomorphism
between Fu

i and F v
i can only be generated from extending an isomorphism

between Fu
i−1 and F v

i−1. Let φ be an arbitrary isomorphism between Fu
i−1 and

F v
i−1, then, no matter how we extend it, there exists an edge in the last layer of
Fu
i , that has no corresponding edge in the last layer of F v

i (or vice versa).
If this edge is in Tu

i,1 in the last layer, then (since Tu
i,1 ≃ T v

i,1) there is also
a corresponding edge in T v

i,1, which implies it is also in F v
i . This would imply

Fu
i ≃ F v

i , contradicting the assumption.
If this edge is not in Tu

i,1 in the last layer, the same edge must have already
occurred in a previous layer in Tu

i,1. Let l be the layer that this edge first occurred.
Then, l ≤ i − 2 must hold (because k = 1), and this edge must also occur in
Fu
i , with a corresponding edge in T v

i,1 and most importantly in F v
i in that layer

(since the trees up to i− 1 were the same). But in unfolding trees, an edge from
the original graph will be present in every layer after its first occurrence. If the
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(a) Hexagon (b) Two triangles (c) Unfolding trees (d) 1-NTs

Fig. 7: Two graphs (a), (b) that cannot be distinguished by unfolding trees, but by
1-NTs. Figure (c) shows the unfolding tree F3, which is the same for all vertices
of both graphs, while (d) shows the 1-NTs of the vertices in the hexagon (left)
and the triangle (right).

corresponding edge occurs in F v
i in layer l, it also has to occur in layer i again

(implying Fu
i ≃ F v

i ), which implies Tu
i,1 ̸≃ T v

i,1 and thereby contradicts the initial
assumption. So ∀G,H : wl∞(G) ̸= wl∞(H) ⇒ nt∞,1(G) ̸= nt∞,1(H).

2. For two triangles and a hexagon the unfolding trees look the same, but the
1-NTs do not (see Figure 7), therefore

∃G,H.G ̸≃ H ∧ wl∞(G) = wl∞(H) ∧ nt∞,1(G) ̸= nt∞,1(H). ⊓⊔

The 1-NTs can also distinguish the molecules decalin and bicyclopentyl, which WL
cannot distinguish. We investigate the expressiveness of 0-NTs in Appendix D.

5 Experimental Evaluation

This section provides an overview of the methods, their setup, and the datasets
used in our experimental evaluation. All results were obtained using cross-
validation with 10-folds. The reported accuracy and confidence intervals are
averaged over three runs. We compare our method with GIN [16], ensuring fair
evaluation with consistent setups and diverse datasets.

Setup. According to Equation (6), the DAG-MLP architecture is similar to GIN.
The primary distinction between them is that DAG-MLP operates over DAG
levels, allowing control over k-redundancy, and includes a pre-processing step for
the initial feature. To ensure a fair comparison, the GIN architecture employed
in our experiments will also incorporate the same pre-processing layer for the
initial feature. However, it will operate directly on the original graph.

Implementation. Python was used for compatibility and implementing the ap-
proach. PyTorch and PyTorch Geometric were employed for DAG-MLP and GIN
architectures respectively, with a pre-processing layer for initial node feature.
The construction of the DAG was performed in a parallel manner as described
in Algorithm 3, and using the hardware mentioned in Appendix I within a time
range of 10 to 1500 seconds, as depicted in Figures 10 and 11.
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Table 1: The accuracy and confidence interval on MUTAG for different numbers
of layers and redundancy parameters k (best accuracy for each layer in bold).

k-Redundancy
0 1 2 3 4 5 6 7 8

L
ay

er
s

2 90.99±3.3 90.99±3.3 87.23±2.9 - - - - - -
3 93.22±3.9 92.91±3.7 90.71±3.4 90.71±3.4 - - - - -
4 92.51±5.6 92.44±5.0 92.91±3.7 92.91±3.7 92.91±3.7 - - - -
5 93.13±4.6 94.16±5.1 93.42±3.6 93.64±3.5 91.89±3.5 92.40±3.5 - - -
6 94.14±4.5 94.18±5.1 93.46±5.0 92.20±4.8 92.64±3.3 92.12±3.4 92.34±3.5 - -
7 92.97±5.2 93.70±4.7 93.92±4.5 94.45±5.4 93.64±3.7 94.10±3.1 93.35±3.1 93.35±3.1 -
8 94.43±5.5 93.11±5.0 94.38±4.3 93.19±5.9 92.91±4.7 92.91±4.7 93.13±3.5 92.86±3.4 93.33±3.4

Results. The redundancy parameter k and the number of layers l on accuracy
are systematically investigated to obtain insights of their impact on the proposed
method’s performance.

Influence of Parameters. As shown in Table 1, the influence of k and l on accuracy
is investigated through a case study on the MUTAG dataset. Combinations where
k > l can be disregarded, as the computation DAG remains the same as when
k = l. The results reveal that 0 and 1-redundancy empirically provide the highest
accuracy, except for cases where the number of layers is 4 and 7. In these instances,
a negligible drop in accuracy, less than 1%, was observed compared to the highest
accuracy achieved in each layer. This observation supports our expressivity results
discussed in Section 4.4 and Appendix D.

Discussion. Table 2 presents a comparison between GIN and DAG-MLP archi-
tectures with 0-redundancy, spanning across [2, 8] layers. A notable distinction
between the two architectures becomes apparent as the number of layers increases
for the NCI1, ENZYMES, and MUTAG datasets. In the case of IMDB-MULTI,
PROTEINS and IMDB-BINARY, both architectures exhibit similar performance,
except that DAG-MLP is better as the number of layers increases.

6 Conclusion

We proposed a neural tree canonization technique and apply it to neighborhood
trees, which are pruned and more expressive versions of unfolding trees used by
standard MPNNs. By merging trees in a DAG, we derive compact representations
that form the basis for our neural architecture DAG-MLP, which learns across
DAG levels. It inherits the properties of the GIN architecture, but is provably
more expressive than 1-WL when based on neighborhood trees.

Future Work. The merging of trees can be accelerated by using more refined al-
gorithms and more compact representations can be achieved using less restrictive
labeling functions. Our approach uses techniques proposed for the GIN architec-
ture. However, other existing GNNs can be modified accordingly to operate on
neighborhood trees using the concepts and algorithms established in this work.
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Table 2: The accuracy and confidence intervals of GIN and DAG-MLP with
0-redundancy on graph-level classification tasks (best accuracy for each dataset
in bold).

Layers Architecture NCI1 IMDB-MULTI PROTEINS IMDB-BINARY ENZYMES MUTAG

2 GIN 79.60±1.2 54.73±1.5 79.34±1.8 78.84±2.2 49.37±3.3 83.04±4.1

DAG-MLP 79.18±1.1 53.93±2.3 79.40±1.8 77.20±1.5 49.33±3.9 90.99±3.3

3 GIN 80.17±1.1 54.62±1.6 79.16±1.7 78.72±2.2 51.03±2.9 85.97±4.2

DAG-MLP 82.705±0.95 54.31±1.9 79.16±1.9 76.93±2.3 53.67±3.0 93.22±3.9

4 GIN 80.94±1.2 54.53±1.6 79.07±1.5 77.96±2.0 50.90±3.2 86.45±4.2

DAG-MLP 83.91±0.8 54.36±2.2 78.71±1.8 77.47±2.0 56.50±4.0 92.51±5.6

5 GIN 81.38±1.1 54.07±1.7 79.07±1.7 77.26±2.0 50.93±3.5 86.43±4.6

DAG-MLP 83.09±1.1 54.73±3.4 78.86±1.9 77.00±1.9 57.94±2.8 93.13±4.6

6 GIN 80.97±1.0 52.93±1.6 78.26±1.7 77.60±1.5 49.23±3.3 88.15±4.1

DAG-MLP 82.51±0.8 54.36±2.4 78.98±2.1 77.23±2.4 55.94±3.4 94.14±4.5

7 GIN 81.38±1.1 53.00±1.3 77.84±1.7 76.42±2.0 48.87±2.8 86.92±4.6

DAG-MLP 81.82±0.9 53.69±3.0 78.86±2.6 77.23±2.5 54.61±3.7 92.97±5.2

8 GIN 81.40±0.9 52.00±1.75 76.44±2.0 76.74±1.9 47.73±3.6 86.67±4.2

DAG-MLP 81.97±0.6 54.64±1.9 78.92±2.0 77.30±2.2 54.33±3.8 94.43±5.5
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Algorithm 1 Merging trees
function merge(set of trees T , labeling L)

D ← empty DAG ▷ start with empty DAG
for each T ∈ T do

Ψ ← ∅ ▷ map from nodes of T to D
R ← l(T ) ▷ start with leaves
while R ̸= ∅ do

for each v ∈ R do
add(D, v, Ψ , L) ▷ add node

N ←
⋃

v∈R{p | p ∈ p(v) ∧ ∀c ∈ chi(p) : Ψ(c) is defined}
▷ add processable ancestors next

R← N
return D

function add(DAG D, node v, map Ψ , labeling L)
if Ψ(v) is defined then ▷ node has already been processed once

return
find v2 ∈ V (D) with L(v) = L(v2) ∧ {Ψ(c) | c ∈ chi(v)} = chi(v2)

▷ try to find (unique) corresponding node in D
if ∄v2 then

add new node v2 with L(v) = L(v2) to D ▷ add new node if needed
Ψ(v)← v2

A Merging Trees - Algorithm

Algorithm 1 describes how to merge a set of trees {T1, . . . , Tn} into a DAG under a
labeling function L :

⋃
i∈{1,...,n} V (Ti) → O, where O is some arbitrary labeling,

that fulfills ∀v ∈
⋃

i∈{1,...,n} V (Ti) : ∀cj , ck ∈ chi(v) : j ̸= k ⇒ L(cj) ̸= L(ck).
Each tree is merged into the DAG separately.

All substructures that are isomorphic under L are merged, by merging nodes
bottom-up: Starting at the leaves of the tree, that is added, each leaf is either
merged into an existing node in the DAG or (if no node matches) the leaf is
added to the DAG as a new node. After a node is added to the DAG, all parents
of that node in the original tree are added to a list containing the next nodes to
be added, provided all their children have already been added to the DAG.

The set of possible matches can be restricted to the set of nodes, that are
parents of all the nodes the children were mapped to.

B Generating the Edge Partition

Algorithm 2 extracts the edges needed for the layers in reverse order. The
algorithm takes a DAG as input and then starts by adding all edges that go
to a root to the first edge partition (layer). The roots are then “processed” and
can be disregarded for the remaining iterations. For each of those edges, if the
source node has no parents left that need to be processed, it is added to the list
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Algorithm 2 Creation of the edge partition
function buildEdgePartitions(DAG D)
E ← {} ▷ list of edge partitions
C ← r(D) ▷ start with roots
P ← ∅ ▷ nodes processes so far
while ∃c ∈ C with c /∈ l(D) do

E ← ∅ ▷ set of edges in this layer
C′ ← ∅ ▷ set of next nodes to process
for each c ∈ C do

P = P ∪ {c}
E = E ∪ {uc | u ∈ chi(c)}
C′ = C′ ∪ {u ∈ chi(c) | ∀v ∈ p(u)⇒ v ∈ P} ▷ add if all parents processed

C ← C′
E append E

reverse E ▷ layers were generated from the last to first
return E

of nodes to process in the next iteration. This is repeated, until no nodes that
have incoming edges need to be processed. Each edge is used exactly once in the
computation.

C Parallel Construction of DAG

The algorithm constructs a DAG in parallel using a set of nodes, V , and edges,
E, wherein the k-NTs were built concurrently for each node in the graph. Subse-
quently, the pairs of the k-NT are merged in parallel, resulting in a merged set
of k-NTs. This process was iteratively repeated, with the merged k-NTs being
divided into two pairs, and the aforementioned steps being applied until only two
merged k-NTs remained, which were subsequently merged sequentially.

D Expressiveness of 0-NTs as Node Invariants

Theorem 1 shows that 1-NTs are more expressive as a node invariant (and in turn
graph invariant) than unfolding trees. While the 0-NTs can also distinguish the
nodes of the two graphs in the example of Figure 7 (and the famous example of
decalin and bicyclopentyl), as a node invariant, they are not more expressive than
unfolding trees in every case. Figure 8 shows an example, where the unfolding
trees of two (non-isomorphic) vertices differ, but their 0-NTs do not. Looking at
the tree sets, however, nt∞,0 can also distinguish those two graphs. It remains
future work to delineate the expressivity of nt∞,0 and wl∞.
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Algorithm 3 Parallel Reduction Algorithm for DAG Construction
function ConstructDAG(set of nodes V , set of edges E)

DAG ← {}
in parallel for each v ∈ V do

DAGv ← Build k-NT for node v ▷ using Definition 1
pDAG ← BuildPairsDAG(V , DAG)
while || pDAG || ≥ 2 do

in parallel for each DAGv,u ∈ pDAG do
DAGv,u ← merge(DAGv, DAGu)

pDAG ← BuildPairsDAG(V , DAG)
DAG ← merge(pDAG0, pDAG1) ▷ using Algorithm 1
return DAG

function BuildPairsDAG(set of nodes V , set of k-NT DAG)
pDAG ← {}
for each two nodes (v, u) ∈ V do

pDAGv,u ← (DAGv, DAGu)

return pairs

(a) A triangle (b) A star
(c) 0-NT of white node in
either graph.

(d) 0-NTs of gray nodes
(triangle left, star right).

Fig. 8: Graphs with vertices, not distinguishable by 0-NTs, but by unfolding trees.

E Datasets

Table 3 provides an overview of the datasets utilized in our evaluation, along
with their corresponding characteristics. These datasets are sourced from the
TUDataset [13].

F Efficiency

The size of the DAG has a huge influence on the computation efficiency of our
method. Tables 4 and 5 show the number of nodes and edges in the computation
DAG of differing size and k-redundancy on dataset MUTAG. As the number of
layers increases, the DAG grows in size initially. This is expected, since a larger
neighborhood around the vertices is explored. For a larger number of layers (the
lower the k, the earlier) the size of the DAG decreases. This means a more efficient
computation and can be explained, by whole subgraphs of the original graph
being fully explored. To illustrate this Figure 9 depicts an example graph G and
its 0-NT for three layers. In the case of a single layer, the 0-NT is identical to the
original unfolding tree. With two layers, the number of nodes and edges increases,



18 F. Bause et al.

Table 3: Summary of dataset characteristics from TUDataset [13]. The table
provides information on the dataset name, number of graphs (|G|), average
number of nodes (|V |), average number of edges (|E|), number of classes, number
of initial features, and maximum diameter (Max Diam.) for each dataset.

Name |G| |V | |E| # Classes # Feature Max Diam.

NCI1 4110 29.87 32.3 2 37 45
IMDB-MULTI 1500 13 65.94 3 89 2
PROTEINS 1113 39.06 72.82 2 3 64
IMDB-BINARY 1000 19.77 96.53 2 136 2
ENZYMES 600 32.63 62.14 6 3 37
MUTAG 188 17.93 19.79 2 7 15

since for example for the blue vertex of the original graph, the neighborhood in
the direction of the green node is fully explored, while for the yellow and red
vertices, this neighborhood is still missing the purple vertex. However, with three
layers the number of nodes decreases, since the neighborhoods are fully explored
then. This leads to a more efficient representation for a higher number of layers.

G Running Time

The process of generating merge DAGs for neighborhood trees with varying depths
(layers) for IMDB-MULTI and IMDB-BINARY datasets reveals an intriguing
finding: regardless of the number of layers involved, the execution time appears to
converge to a similar value. This phenomenon can be attributed to the remarkable
property shared by both datasets, namely their equal diameter of 2.

H Hyper-Parameter

The hyper-parameters were fixed as following: hidden dimension: 64, batch size:
32, learning rate (lr): 0.001, learning rate decay factor: 0.5, learning rate decay
step size: 50, epochs: 500, and weight decay: 0.0005.

I Hardware

The hardware used includes an Intel Xeon Gold 6130 processor (x86_64 architec-
ture) with 64 cores (2 sockets, 2 threads per core) and 251GB system memory,
and two Tesla P100-PCIE-12GB GPUs.
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Table 4: The average number of nodes in the computation DAG for the MUTAG
dataset was compared across different numbers of layers and k-redundancy.

MUTAG Average Number of Nodes

N
u
m

b
er

of
la

ye
rs 2 75.6 75.6 56.6 - - - - - -

3 108.9 108.2 75.4 75.4 - - - - -
4 143.4 147.1 214.3 216.1 94.3 - - - -
5 159.7 168.9 297.7 301.9 126.7 113.1 - - -
6 156.4 167.6 371.5 383.9 428.7 425.5 132.0 - -
7 143.9 157.7 401.8 429.3 569.7 571.1 208.5 150.8 -
8 131.6 143.7 393.1 428.9 684 706 724.1 703.1 169.7

0 1 2 3 4 5 6 7 8
k-Redundancy

Graph G

1 Layer
10 Nodes
8 Edges

2 Layers
15 Nodes
16 Edges

3 Layers
13 Nodes
16 Edges

Fig. 9: 0-NT DAGs for the original graph G, shown with three different layers.
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Table 5: The average number of edges in the computation DAG for the MUTAG
dataset was compared across different numbers of layers and k-redundancy.

MUTAG Average Number of Edges

N
u
m

b
er

of
la

ye
rs 2 102.7 102.7 83.3 - - - - - -

3 153.3 153.1 125.0 125.0 - - - - -
4 202 209.7 430 434.9 166.7 - - - -
5 224.5 241.1 605 618.8 243.6 208.4 - - -
6 221.6 241.3 751.4 783.1 935.5 929.3 250.0 - -
7 206.9 229 809.2 871.9 1238.8 1254.1 440.9 291.7 -
8 190.9 210.1 792.8 873.6 1471.7 1535.3 1630.3 1580.1 333.4

0 1 2 3 4 5 6 7 8
k-Redundancy

Dataset name

Ti
m
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in
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on
ds

10

50

100

500

NCI1 IMDB-MULTI IMDB-BINARY ENZYMES MUTAG

Building 0-redundancy DAG running time

Fig. 10: Running time for building the 0-redundant DAG in parallel.
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Dataset name
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NCI1 IMDB-MULTI IMDB-BINARY ENZYMES MUTAG

2-depth

3-depth

4-depth

5-depth
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8-depth

Building 1-redundancy DAG running time

Fig. 11: Running time for building the 1-redundant DAG in parallel.
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