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Abstract. Recent works have proven the feasibility of fast and accu-
rate time series classification methods based on randomized convolu-
tional kernels [6, 38]. Concerning graph-structured data, the majority of
randomized graph neural networks are based on the Echo State Network
paradigm in which single layers or the whole network present some form
of recurrence [9, 8]. This paper aims to explore a simple form of a ran-
domized graph neural network. Our idea is implement a no-frills graph
convolutional network and leave its weights untrained. Then, we aggre-
gate the node representations with global pooling operators, obtaining
an untrained graph-level representation. Since there is no training in-
volved, computing such representation is extremely fast. We then apply
a fast linear classifier to the obtained representations. We show that such
a simple approach can obtain competitive predictive performance while
being extremely efficient both at training and inference time. We also
study when over-parameterization, namely generating more features than
the ones necessary to interpolate, may be beneficial for the generaliza-
tion abilities of the resulting models. Exploiting the algorithmic stability
framework and based on empirical evidences from the considered graph
datasets, we will shed some light on the over-parameterization setting.

Keywords: Graph Neural Network · Graph Convolution · Structured
Data · Machine Learning on Graphs · Randomized Neural Networks.

1 Introduction

In this paper, we develop efficient graph neural networks for graph classification.
When dealing with machine learning for structured data, there are typically two
distinct families of tasks that can be tackled. The first task is node property
prediction (e.g., node classification) which is defined as predicting one or more
values associated with each node in a graph. Graph Neural Networks (GNNs)
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have shown promising performance on such tasks [31]. The second task is graph
property prediction (e.g., graph classification) in which the property that has
to be predicted is a global property of a graph. In this case, the training set is
composed of a set of graphs, each with the corresponding associated label. Such
tasks require the inclusion of additional components in the GNN architecture,
allowing the transformation of a set of node-wise representations to a single
graph-level one before performing the prediction.

While many different architectures for node and graph classification have
been proposed in the literature, the majority of the proposals have in common
the end-to-end nature of their training, which results in fairly high computational
complexity. Recently, in order to circumvent the need for expensive end-to-end
training, a family of neural network models that are highly efficient to train
have been receiving increasing attention. Most proposals along these lines so far
have focused on the study of dynamic systems on discrete graphs in the area
of Reservoir Computing (RC) [23, 26]. In this case, a reservoir layer randomly
initialized under asymptotic stability constraints, and left untrained, is respon-
sible for realizing the encoding of each node, while training is restricted only to
the output readout layer [9, 8]. However, although this approach enables learning
tasks on graphs in an extremely efficient way, it involves a fixed-point conver-
gence process of the dynamic reservoir layer on the graph. This process, in turn,
requires a number of iterations that can undermine the overall efficiency of the
approach. More recently, it has been shown [32, 17] that the randomized ap-
proach on graphs can also be exploited without resorting to an iterative process.
In particular, it is possible to perform node classification using randomized graph
convolutions, i.e., without the necessity of training the convolution parameters,
and still obtain competitive predictive performance when training is restricted
to the readout part, as in RC-based approaches. While recently the approach has
been proven feasible for tasks defined on graph nodes, it is still unclear if it also
applies to graph classification tasks. This research question is not straightforward
since the aggregation layer tends to lose a significant amount of information. A
similar problem was already tackled in the case of randomized convolutions for
time series analysis in a recent work [6]. In this paper, we show that by paying
attention to some core aspects of the network architecture, it is possible to define
a very efficient, randomized GNN model for graph classification tasks. Such crit-
ical components are: (i) the presence of non-linearity between graph convolution
layers; (ii) the adoption of a good aggregation scheme; (iii) a wise initialization
of the network weights and number of neurons. We analyze each one of these
critical aspects in our ablation studies and show how each component influences
the resulting predictive performance of the model. We refer to our proposed
model as Untrained-GCN or U-GCN, acknowledging the intuitions behind it to
come from the worlds of randomized neural networks and graph convolutional
networks. The readout layer of the U-GCN consist of a linear classifier. This ap-
proach is commonly adopted when dealing with large-scale problems or aiming
for computational efficiency. When dealing with large-scale problems or aiming
for computational efficiency, a commonly adopted approach is to exploit feature
sketching (random projections followed by a component-wise non-linearity) in
conjunction with a linear classifier. The behavior of linear classifiers on increas-
ing number of random features has been studied from the theoretical point of
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view, in particular for ridge regression [4, 24] and based on stochastic gradient
descent [22], showing, theoretically and empirically, the presence of the double
descent and best-overfit phenomena [28, 37, 35, 12], namely the ability of these
models to improve the generalization performance in over-parameterization, i.e.,
when having much more parameters than the ones needed to interpolate. To
the best of authors’ knowledge, no study in literature considers the case of ran-
dom graph neural features. We speculate that the reason is that the majority
of randomized graph networks in literature are based on a recurrent scheme of
Reservoir Computing that, while generating expressive features, can result in a
high computational complexity with hundreds or thousands of features [9]. The
proposed U-GCN model can efficiently generate thousands of non-linear features.
The classification (or regression) task is performed by a linear model, e.g. ridge
classification, starting from the randomized features. This model allows us to
study the behavior of untrained graph neural models when varying the number
of generated features. In particular, we aim to understand when it may be con-
venient from the generalization performance point of view to generate a large
number of random graph features (going beyond the interpolation threshold).
For this purpose, we will leverage the Algorithmic Stability framework [28] and
empirically show its potentiality in giving insights on the generalization ability
of over-parameterized neural models based on graph random features.

1.1 Graph neural networks

A Graph Neural Network (GNN) [40, 14, 39] is a neural model that exploits
the structure of the graph and the information embedded in feature vectors
of each node to learn a representation hv ∈ Rm for each vertex v ∈ V . In
many GNN models, the computation of hv can be divided into two main steps:
aggregate and combine. We can define aggregation and combination by using two
functions, A and C, respectively: hv = C(L(v),A({X (u) : u ∈ N (v)})). The kind
of aggregation function A and combination function C determinate the type of
Graph Convolution (GC) adopted by the GNN. The first model that relies on
graph convolutions was proposed by Micheli et. al in 2019 [25]. Recently, many
novel GCs base model have been proposed [20, 5, 42, 15, 21, 44].

The model proposed in this paper is built on top of one of the most widely
adopted GC operators, i.e. the GCN [20]: H(i) = F

(
SH(i−1)W(i)

)
, i > 1 where

S = D̃− 1
2 (I + A)D̃− 1

2 , A denotes the standard adjacency matrix of the graph
G and D̃ a diagonal degree matrix with the diagonal elements defined as d̃ii =

1+
∑

j aij . Further, H(i) ∈ Rn×mi is a matrix containing the representation h
(i)
v

of all nodes in the graph (one per row) at layer i, W(i) ∈ Rmi−1×mi denotes the
matrix of the layer’s parameters, and F is the element-wise (usually, nonlinear)
activation function.

1.2 Graph neural networks with random weights

In structured data domains the models proposed in the last few years show
increasing complexity, leading to novel architectures with a considerably high
number of parameters. Unfortunately, this implies a high computational cost,
especially in training the models.



4 N. Navarin et al.

For sequential data, many efficient architectures rely on the Reservoir Com-
puting (RC) paradigm [23] which is based on exploiting fixed (randomized) val-
ues of the recurrent weights. The random weights are defined following the Echo
State Property (ESP) [19] that ensures stability conditions of the dynamical
system. In particular the Echo State Networks (ESN) [19], are widely used when
an efficient recursive model is required. Gallicchio et al. in [8] proposed the
first model for graph domain that exploits RC framework. The proposed model,
dubbed GraphESN is composed of a non-linear reservoir and a feed-forward lin-
ear readout. The reservoir computes a fixed recurrent encoding function over the
whole nodes of the graph as follows:

hv[t+ 1] = f(Winxv +
∑

u∈N (v)

Ŵhhu[t]), (1)

where Win ∈ Rm×s, and Ŵh ∈ Rm×m. For each vertex v ∈ V , hv[0] is ini-
tialized to 0 ∈ Rm. The computation of the global state hv[t

∗] involves the
iteration of eq. (1) till |hv[t

∗ + 1] − hv[t
∗]| ≤ ϵ. Then, the global state is used

by the readout of the model to compute the output using a linear projection:
o = Wout

∑
v∈V hv[t

∗]. In 2020 an evolution of the GraphESN is introduced in
[9]. The FDGNN (Fast and Deep GNN) model constructs a progressively more
abstract neural representation of the input graph by stacking successive layers of
GNN. The formulation of this model is reminiscent of the original formulation of
GNN [39] but the parameters of each layer are initialized by taking into account
some stability constraints and then left untrained. Some simplifications of this
kind of model were recently proposed [10].

In [32] the authors propose a model, dubbed Multi-resolution Reservoir Graph
Neural Network (MRGNN) model, that exploits a Reservoir Convolutional layer
for graphs able to simultaneously and directly consider all topological receptive
fields up to k − hops. The convolutional layer relies on a multi-resolution[3, 33]
structure that exploits nonlinear neurons followed by a standard feed-forward
readout. The multi-resolution reservoir is defined as follows:

Hr = Hk,T Wr, where Hk,T = [XW︸ ︷︷ ︸
Hk,T

(0)

, σ(ÃXW)︸ ︷︷ ︸
Hk,T

(1)

, σ(Ãσ(ÃXW)W))︸ ︷︷ ︸
Hk,T

(2)

, . . . ],

σ is the tanh activation function, Ã is is a generic transformation of the
adjacency matrix that preserves its shape, Wr is a randomly projection matrix
and Hk,T

(i) represents the i-th column block of Hk,T . Note that each Hk,T
(i) contains

information only about random walks of length exactly equal to i.
Recently, Huang et al. [17] explored randomized graph convolutions for the

task of node classification (differently from this paper in which we consider the
more challenging setting of graph classification). The authors propose a single-
layer architecture defined as Z = σ(A2XW )β, where σ is the sigmoid function,
W ∈ Rd×m is the (random) wight matrix for m hidden neurons (that is left
untrained), and β are the trained output weights. Notice that, contrarily to
many graph neural networks, authors propose to adopt a single hidden layer
with an increased receptive field instead of non-linearly stacking multiple layers
with a smaller receptive field.
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1.3 Untrained convolutions for time series

The design of deep randomized neural networks represents one of the emerging
topics in deep learning (see, e.g., [11]). The fundamental idea behind these ap-
proaches is to replace as much as possible the optimization of the parameters of
a deep learning model with their randomization [36]. This usually results in a
neural architecture in which hidden layers are initialized randomly and left un-
trained, while training algorithms operate only on the output readout layer. It is
interesting to note how this paradigm, on the one hand, allows for the design of
extremely efficient baselines and, on the other hand, allows for highlighting and
exploiting the architectural biases of neural information processing models. An-
other advantage of this approach is its marked suitability for implementations in
neuromorphic hardware [41] and, in general, in hardware with low computational
resources, e.g., for AI applications of a pervasive nature [1].

When dealing with temporal information, i.e., for sequence processing, the
paradigm of choice in this context is represented by Reservoir Computing (RC)
[23], and in particular Echo State Networks [19, 18]. Here, the crucial idea is to
build an RNN whose internal connections are randomly initialized under asymp-
totic stability constraints. As an alternative to the RC recurrent approach, the
idea of exploiting randomized convolutions has recently been explored for time
series analysis in the ROCKET model [6]. This is a method based on random-
ized one-dimensional convolutions for efficient feature extraction on time series,
performing consistently well on a diverse range of datasets. The core contribu-
tions of the ROCKET model were: (i) showing that the approach of exploiting
randomized convolutional kernels instead of learning them with backpropagation
is feasible; (ii) the adoption of a new non-differentiable readout function, that
associated with the more commonly adopted global max pooling, that showed
an improvement in the overall predictive performance.

2 Untrained GCN for graph classification

In this section, we present our model for efficient graph classification. We start
in Section 2.1 detailing our graph convolution layers and how they are combined.
Then, in Section 2.2 we describe the pooling operators we decided to adopt, and
finally in Section 2.3 we describe our readout and possible alternatives.

2.1 Untrained GCN feature extraction

As previously discussed in Section 1.2, recent results in literature have shown
that for the task of semi-supervised nod classification, graph neural networks
with random weights are a feasible option. However, it is known in the literature
that for the problem of node classification, even simple models perform well [30,
34, 29]. In this paper, we propose a randomized architecture that is inspired
by fully trained graph neural networks, including the non-linearity scheme. In
particular, we propose to instantiate multiple graph convolution layers (see sec-
tion 1.1), each one followed by an element-wise non-linear activation function.

Following the literature on untrained neural networks we decided to ex-
ploit the hyperbolic tangent activation function. We considered the simple and
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widespread GCN definition (see Section 1.1). The hidden node representation
computed by the l-th layer is defined as:

H(l) = tanh(SH(l−1)W(l)), (2)

where S is the normalized Laplacian adopted by the GCN, W(l) are the layer
parameters and H0 = X. Note that we omit the bias terms for the sake of
simplicity. The final node representations are obtained concatenating the repre-
sentation computed by each graph convolution layer, i.e. H = [H(1), . . . ,H(L)],
where L is the number of layers of the network. While we leave as a future work
the exploration of other activation functions, in our ablation studies we consider
the network without activation functions between layers and show that the non-
linearity has a significant effect on the overall performance of our method. Our
approach is in contraposition to Huang et al. [17] that instead apply the non-
linearity only after the message passing phase. Crucially, the weight values in
W(l) in eq. 2 are initialized randomly and left untrained. For the random initial-
ization, we resort to the widely adopted Glorot uniform approach [13]. In partic-
ular, to control the stability of the expansion of the input information through
the successive layers in the architecture, we introduce a gain hyperparameter θ
to control the effective scaling of W(l). In the resulting process, a weight matrix
of shape n ×m will have entries sampled from a uniform distribution U(−a, a)

where a = θ
√

6
n+m . In our ablation study, we show that considering this hy-

perparameter significantly improves the predictive performance of the overall
network.

2.2 The global pooling layer

The untrained graph convolution layer presented in eq. 2 produces node rep-
resentations that include information about each node’s local connectivity. To
perform graph-level tasks we shall obtain a single representation for the whole
graph. Usually, neural architectures for graph classification achieve this using
global pooling operators, e.g. global maximum, minimum or average pooling.
Notice that in the standard end-to-end training fashion, the pooling operators
are required to be differentiable. Instead, if no gradient has to pass through the
pooling operator, we are free to choose also non-differentiable options. This is
the case for the ROCKET model, presented in Section 1.3. The authors proposed
a non-differentiable pooling mechanism that, in the context of randomized 1-D
convolutions, was shown to consistently improve the predictive performance com-
pared to other widespread pooling operators. This operator is referred to as Per-
centage of Positive Values (PPV) and is defined as: PPV (z) = 1

n

∑n−1
i=0 I[zi > 0],

where I[zi > 0] is the indicator function which value is 1 if zi > 0, 0 otherwise.
As suggested in the original paper, we used as global pooling both the global

max pooling and PPV, concatenating the resulting representations. Note that
this choice doubles the size of the global graph representation compared to the
representations of the single nodes provided in output by the untrained graph
convolution. We conducted ablation studies to show the impact of different ag-
gregation functions on the overall performance of our proposed method.
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2.3 Efficient readout

As mentioned before, our focus in this paper is the development of efficient
and effective neural network models for graph classification. As discussed in
Sections 2.1 and 2.2, the network that computes the graph-level representation
does not need to be trained. This leaves the only trained parameters of the
model to be those in the readout, i.e., the function mapping from the graph-
level representation to the appropriate output for the task. As it is common in
deep randomized approaches [11], the representation component of the neural
architecture includes multiple layers, while the readout component is shallow. In
the case of classification tasks, we exploit one of the fastest linear classifiers in
the literature, the Ridge classifier. In the binary case, this classifier follows the
simple idea of mapping the two possible classes in {−1, 1}, and then treats the
problem as a regression task, solved with ridge regression.

While other classifier choices may lead to improved results, in this paper we
test only this very efficient classifier, and leave the exploration of other more
complex readouts as future work.

3 Graph Random Features and Algorithmic Stability

In this section, we aim to study if and under which conditions it is convenient to
develop overparametrized graph models when using graph random features. We
seek an answer in recent research exploiting measures from statistical learning
theory, such as the Algorithmic Stability, and exploring their relationship with
the observed empirical behaviour of the generalization error.

From a random graph representation, it is possible to compute an approxima-
tion of a specific notion of Algorithmic Stability, the Hypothesis Stability, that,
together with the training error, are able to give insights on the generalization
error and are fast to compute [28]. Let hg be the hidden representation for a
graph computed by the model presented before, and H be the matrix collecting
the representations of all training graphs. We can consider this representation as
the input of a linear model (the readout). It has been shown that the Hypothesis
Stability A is proportional to the conditioning of the Gramian matrix HH⊺, i.e.,
A ∝ Cond(HH⊺) where Cond is a function computing the condition number of
a matrix with eigenvalues λi, i.e., λmax/λmin. Thus, we can study the relationship
between the approximation of the Hypothesis Stability of such representation
and the generalization capabilities of the models trained on such representa-
tions. In fact, the smaller the training error and the smaller the stability, the
higher the generalization ability of the learned model should be [28].

4 Results and discussion

In this section, we present our experimental setting. A critical point when com-
paring different models is the possible dataset augmentation that is applied, and
the considered validation strategy. We decided to use a common setting for the
chemical domain, where the nodes are labelled with a one-hot encoding of their
atom type. The only exception is ENZYMES, where it is common to use 18
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additional available features, and we followed this convention. Moreover, in the
literature, different validation strategies have been applied, making it difficult to
perform a fair comparison between the various methods.

For the reported results we follow the validation strategy in [7]. We estimate
the performance of the U-GCN model by performing 10-fold cross-validation and
repeating the whole procedure 5 times to account for the random initialization.
To select the best model, we used the average accuracy of 10-fold cross-validation
on the validation sets, and we used the same set of selected hyper-parameters
for each fold. We did not perform an extensive hyperparameter search on the
network architecture since our goal is to design an untrained GCN model whose
performance is relatively stable on hyperparameter choice. For this reason, for
U-GCN, we fixed the number of layers to four. As for the number of neurons,
we set the number of hidden neurons to 5, 000 per layer. In Section 4.3 we will
explore how different choices of this hyperparameter influence the results. Since
we use four layers, and concatenate two different readouts, the resulting graph
representation is of size 40, 000. Notice however that since the weights are not
trained, we just have to perform the forward phase which is extremely fast. We
then train the ridge regression classifier that depends on a regularization hyper-
parameter α that we choose in the set {10−4, 105}. We also select the θ parameter
for weight initialization in the set {0.01, 0.1, 1, 3, 5, 10, 30, 50}. Finally we present
some empirical evidences regarding the ability of Algorithmic Stability to explain
the good generalization abilities of over-parameterized U-GCN.

4.1 Datasets

We evaluated U-GCN on commonly adopted graph benchmarks. We consid-
ered four datasets modeling bioinformatic problems: PTC [16], NCI1 [43], PRO-
TEINS, [2], and ENZYMES [2]. We also considered two social network datasets:
IMDB-B and IMDB-M [45]. PTC, and NCI1 involve chemical compounds repre-
sented by their molecular graphs, where node labels encode the atom type, and
bonds correspond to edges. The prediction task for PTC concerns the carcino-
genicity of chemical compounds for male rats. In NCI1 the task represent anti-
cancer screens for cell lung cancer. PROTEINS and ENZYMES involve graphs
that represent proteins. Amino acids are represented by nodes and the edges
connect amino acids that in the protein are less than 6Å apart. All the predic-
tion tasks are binary classification tasks, except for the ENZYMES dataset, that
represents a 6-class classification of chemical compounds. IMDB-B and IMDB-
M are composed of graphs derived from actor/actress and genre information of
different movies on IMDB. The target value for each movie represents its genre.
IMDB-B models a binary classification task, while IMDB-M considers three dif-
ferent classes. Nodes in the social datasets have no associated label.

4.2 Experimental results

In Table 1 we report the results of our experimental comparison. We considered
seven datasets to allow for a comparison with many existing methods in the liter-
ature. We performed a pairwise Wilcoxon signed-rank test between our proposed
U-GCN method and the others. We chose this test because our focus is to pro-
pose an efficient and effective alternative and we want to show that our method
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Model \
Dataset PTC NCI1 PROTEINS D&D ENZYMES IMDB-B IMDB-M

FGCNN[27] 58.8±1.8 81.5±0.4 74.6±0.8 77.5±0.9 - - -
DGCNN[27] 57.1±2.2 73.0±0.9 74.0±0.4 78.1±0.7 - - -
DGCNN[7] * - 76.4±1.7 72.9±3.5 76.6±4.3 38.9±5.7 53.3±5.0 38.6±2.2
SGC[33] * 55.6±7.6 76.3±2.5 75.4±3.4 77.1±4.4 31.3±5.6 66.4±5.5 43.3±3.4
Cheb-Net[33] 55.2±6.5 80.9±1.9 75.8±5.1 77.9±3.7 38.1±6.2 70.6±3.8 43.9±3.4
GIN[7] * - 80.0±1.4 73.3±4.0 75.3±2.9 59.6±4.5 66.8±3.9 42.2±4.6
DIFFPOOL[7] * - 76.9±1.9 73.7±3.5 75.0±3.5 59.5±5.6 68.3±6.1 45.1±3.2
GraphSAGE[7] - 76.0±1.8 73.0±4.5 72.9±2.0 58.2±6.0 69.9±4.6 47.2±3.6
Baseline[7] - 69.8±2.2 75.8±3.7 78.4±4.5 65.2±6.4 50.7±2.4 36.1±3.0
FDGNN[9] 63.4±5.4 77.8±1.5 76.8±2.9 - - 72.4±3.6 50.0±1.3
MGN[10] - 78.8±2.3 - - - 72.7±3.2 49.5±2.2
GRN [10] - 78.2±2.2 - - - 71.7±2.8 50.5±1.4
GESN[10] - 77.8±2.0 - - - 71.7±3.6 48.7±2.1
MRGNN[32] 57.6±10.0 80.6±1.9 75.8±3.5 - 68.2±6.9 72.1±3.6 46.9±3.7
U-GCN 61.2±2.2 82.2±0.4 74.2±1.4 78.0±1.0 68.8±0.6 68.7±1.2 45.8±0.6

(θ = 0.1) (θ = 30) (θ = 10) (θ = 5) (θ = 3) (θ = 1) (θ = 1)

Table 1: Experimental comparison between the proposed U-GCN and many
state-of-the-art methods.

performs comparably to the state of the art. Thus, the absence of a statistically
significant performance difference between our method and the alternatives is
already a good result in our point of view. From the test, it emerges that our
method performs even significantly better than some state-of-the-art end-to-end
trained architectures, showing that the approach we propose is indeed promising.

In Table 2 we perform an ablation study to show the contribution of each core
component of our architecture. First, we consider a version of U-GCN that only
uses the global max pooling as an aggregator, thus discarding the PPV. For this
ablation, we doubled the number of neurons in the network to consider graph
representations of the same size. While there is no clear winner in the comparison,
notice that the feature extraction of U-GCN is faster since it requires extracting
half the number of features. The second ablation we consider is the same U-
GCN where the tanh activation function between graph convolutional layers is
removed, obtaining a linear model. In this case, U-GCN performs significantly
better than linear ablation. Finally, we consider the impact of the θ parameter
comparing U-GCN with a version where we fix θ = 1 (its default value). In this
case, U-GCN performs again significantly better than the ablation.

Concerning the computational times, running on CPU on a server equipped
with an Intel(R) Xeon(R) CPU E5-2630L v3 @ 1.80GHz, for instance for the
ENZYMES dataset with 5, 000 neurons per layer the feature extraction on the
whole dataset takes 33 seconds, while a single LS-SVM training takes on average
5 seconds. For NCI1, the times are 42 and 6 seconds, respectively. These times are
orders of magnitude faster when compared to GNN models trained end-to-end
with stochastic gradient descent. Concerning the test times, they correspond to
the forward pass and the evaluation of the Ridge regression model, thus they are
roughly equivalent to the ones of common GNN models. Notice that the forward
pass could also be implemented on GPU for even faster feature extraction.
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Model \
Dataset PTC NCI1 PROTEINS D&D ENZYMES IMDB-B IMDB-M

U-GCN 61.2±2.2 82.2±0.4 74.2±1.4 78.0±1.0 68.8±0.6 68.7±1.2 45.8±0.6
(θ = 0.1) (θ = 30) (θ = 10) (θ = 5) (θ = 3) (θ = 1) (θ = 1)

U-GCN ablation (max aggr.) 64.1± 1.5 80.6± 0.5 74.7± 0.9 74.7± 0.8 70.1± 0.8 69.8± 1.1 45.8± 0.7
(θ = 50) (θ = 30) (θ = 3) (θ = 30) (θ = 5) (θ = 1) (θ = 0.01)

U-GCN ablation (linear) * 60.6± 1.0 80.5± 0.3 73.3± 0.7 76.8± 0.5 65.7± 1.9 65.5± 1.9 45.5± 1.38
(θ = 1) (θ = 30) (θ = 50) (θ = 30) (θ = 10) (θ = 30) (θ = 1)

U-GCN ablation (θ = 1) * 60.8± 1.3 80.2± 0.5 73.9± 0.5 77.2± 0.6 67.6± 1.3 68.7± 1.2 45.8± 0.62

Table 2: Ablation study: comparison of U-GCN with different variations.

4.3 Algorithmic Stability of over-parameterized U-GCN.

We study the behaviour of the model described in Section 2 varying the num-
ber of neurons (parameters) for certain configurations of the hyperparameters.
Due to space constraints only a subset, the most informative, of the results are
reported. We fixed the number of layers to four. We plot the performance vary-
ing the number of neurons for each layer from 10 to 10, 000 (5, 000 for D&D)
per layer. Since we use four layers and concatenate two different readouts, the
resulting graph representation is up to size 80, 000 (40, 000 for D&D). However,
since the weights are not trained, we just have to perform the forward phase
which is extremely fast even with a high number of features to extract. Then,
we trained a ridge classifier characterized by a regularization hyperparameter α
taking values in the set {0, 10−4, . . . , 105}. We also considered multiple values
of θ, for weight initialization, in the set {0.01, 0.1, 1, 3, 5, 10, 30, 50}. Among the
different graph classification benchmark datasets available we considered three
datasets related to bio-informatics: ENZYMES [2], D&D [2], and NCI1 [43].

In this section, we report for different datasets and different hyperparameters
configurations that can reach competitive performance, the training, validation,
and test accuracies, varying the number of neurons. We also report the Algo-
rithmic Stability estimated via the condition number of the Gram matrix (see
Section 2), and the interpolation threshold (i.e., the value of the number of neu-
rons such that the accuracy on the training set is 100% without regularization).

Figure 1 reports the results for the ENZIMES dataset for different values of
θ. From Figure 1 we can see that there are two different regimes with a phase
change. The first regime is the under-parameterized one, in which the actual
dimension of the feature space is smaller than the interpolation threshold. In
this setting there is a trade-off between accuracy, number of neurons and error,
typical of the classical bias-variance trade-off [28]. Note that in this setting the
Algorithmic Stability is, relatively, quite high. The second regime is the over-
parameterized one, which is the one after the interpolation threshold, that is
characterized by two new phenomena. The first one is that the accuracy on the
test set starts to increase even if the model is interpolating (double-descent or
best-overfit behavior [28]) but in correspondence of the interpolation threshold
there is a change of phase in the Algorithmic Stability which suddenly drops
around this threshold and then generally continues to decrease after the drop.
In other words, Algorithmic Stability is able to tell us that adding more neurons
can actually improve generalization instead of hurting it: in fact, in the over-
parameterized regimes, accuracies increase while stability decreases which is a
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Fig. 1: ENZYMES dataset.

Fig. 2: D&D dataset.

clear sign of increasing generalization [28]. Figures 2 and 3 report the results of
the D&D and NCI1 datasets. We can come up with similar observations as for
the ENZYMES dataset, confirming the empirical evidence that the Algorithmic
Stability is able to explain, and suggest, when over-parameterization can be
beneficial for the generalization ability of neural models based on graph random
features. Note also, that best performances are not always reached with simple
empirical risk minimization and sometimes regularization (α > 0) is needed but
the Algorithmic Stability is always able to provide the necessary insights.

5 Conclusions

We proposed an extremely efficient GNN model for graph classification. The
proposed architecture (U-GNN) is reminiscent of the models that rely on Reser-
voir Computing (RC). Indeed, as the name suggests, the U-GNN exploits simple
stacked graph convolutional layers where the weights are randomly initialized
and then left untrained. The random convolutional projections of the graph’s
nodes are aggregated to obtain a graph-level representation using a global pool-
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Fig. 3: NCI1 dataset.

ing operator that is the concatenation of the global max pooling and the per-
centage of positive values. The main advantage of the approach is that to com-
pute the graph representations no training is required. Finally, the classification
task is performed simply using ridge regression. We assessed the performance of
U-GNN on 7 datasets from different application areas, comparing our proposal
both with models that exploit standard end-to-end training and with GNN based
on the RC framework. The empirical results show that our approach achieved
results comparable to the state-of-the-art methods. We also investigated the gen-
eralization abilities of over-parameterized U-GNN, aiming to understand when
over-parameterization, namely generating more features than the ones necessary
to interpolate, may be beneficial for the generalization of the resulting models.
For this purpose, we rely on the Algorithmic Stability framework that together
with empirical evidences from several commonly adopted graph datasets helped
us understand why more parameters can improve generalization. Of course, this
work is a preliminary but promising step in understating over-parameterized
neural models based on graph random features and more theoretical and empir-
ical evidences need to be derived.
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