
Balancing performance and complexity with adaptive graph
coarsening

Marek Dědič12[0000−0003−1021−8428], Lukáš Bajer2[0000−0002−9402−6417], Pavel Procházka2, and
Martin Holeňa3[0000−0002−2536−9328]

1 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7,
Prague, 110 00, Czech Republic

2 Cisco Systems, Inc., Karlovo náměstí 10, Prague, 120 00, Czech Republic
{madedic,lubajer,paprocha}@cisco.com

3 Institute of Computer Science, Czech Academy of Sciences, Pod vodárenskou věží 2, Prague, 182 07,
Czech Republic martin@cs.cas.cz

Abstract Graph based models are used for tasks with increasing size and computational
demands. We present a method for node classification that allows a user to precisely select
the resolution at which the graph in question should be pretrained. Our method builds on
an existing algorithm for pretraining on coarser graphs, HARP, which we extend in order to
tune the effect of graph coarsening on the accuracy of node classification on a fine level. We
present a novel way of refining the reduced graph in a targeted way based on the node clas-
sification confidence of particular nodes. This enhancement provides sufficient detail where
needed, while collapsing structures where per-node information is not necessary for sufficient
node classification accuracy. Hence, the method provides a meta-model for enhancing graph
embedding models such as node2vec. We apply it to several datasets and discuss the differing
behaviour on each of them in the context of their properties.

Keywords: Graph representation learning · Graph coarsening · Graph diffusion · Graph
homophily · Performance-complexity trade-off · HARP

1 Introduction

Across a wide variety of applications and domains, graphs emerge as a domain-independent and
ubiquitous way of organizing structured data. Consequently, machine learning on graphs has, in
recent years, seen an explosion in popularity, breadth and depth of both research and applications.
While there have been significant advances in algorithms for learning from graph data [15,30], the
underlying graph topology has, until recent works [46,48], received much less attention. In the
reported research, we investigate the interplay of graph coarsening and the quality of its learned
embedding (as studied, for example, by [1,35]), which in turn entails an interplay between the
coarsening and the performance of a downstream task, in our case, node classification.

The main aim of this work is to explore the performance-complexity characteristics in the
context of graph learning, as introduced in [41]. Consider an undirected graph G with nodes V (G)
and edges E (G). The result of a repeated application of graph coarsening is a sequence of graphs
G0, G1, G2, . . . , GL where G0 = G. Given a model M that operates on graphs, a performance metric,
and a complexity metric, the sequence G0, G1, . . . , GL corresponds to points in the performance-
complexity plane, where advancing along the sequence generally hurts performance and decreases
complexity.

2 M. Dědič et al.

This performance-complexity characteristic allows for a choice of a working point that is
optimal for the particular use-case. The choice of the working point, suitable performance metric
and complexity metric are subjective and depend on the particular use-case, downstream task
and the environment in which the model is to be deployed. In this work, the transductive node
classification accuracy on a testing dataset is chosen as the performance metric. For the complexity
metric, the number of nodes in the graph was chosen as it constitutes a good proxy for real-world
algorithmic complexity, as shown in [14].

While the methods proposed in the rest of this work may yield models and graphs with lower
computational demands than models using the original graph, the algorithm for finding the opti-
mal working point itself entails running the same complex models on multiple graphs, therefore
potentially offsetting any gains from the lower complexity of the model itself. To overcome these
potential shortcomings, the following options are considered:

– The optimal working point may generalize to datasets other than the one used for the performance-
complexity analysis, for example when collecting data from the same source periodically.

– The whole performance-complexity curve is not needed to choose the optimal working point.
In the context of this work, the graphs are evaluated in reverse order, i.e. starting with GL. As
such, the evaluation only needs to be run until reaching a working point that is acceptable for
the intended use-case.

Further discussion of the performance-complexity trade-off problem is considered in [41].

2 Related work

The publication most relevant to our research is [11], in which the HARP approach is proposed.
Because we directly extend and modify this method, it will be recalled in some detail in Sec-
tion 3. Other important works concerning graph coarsening are [1,8,13], which survey numerous
coarsening methods, [25], which presents results concerning scalability of graph coarsening, [10,22],
which establish coarsening as a basis for partitioning, and [34], which shows relationships of graph
coarsening to properties of the Laplacian. In view of the fact that the HARP approach is a mul-
tilevel approach, we paid attention also to the multilevel graph coarsening methods proposed in
[5,33,49,51], among them [51] also being inspired by HARP.

In a broader context, our research is related to the more general topic of graph reduction,
which apart from graph coarsening includes also graph sparsification and condensation. A general
framework covering both coarsening and sparsification has been proposed in [7]. Graph condensation
is a more recent approach [26,27], inspired by the gradient matching scheme for the construction
of training datasets, called dataset condensation [52]: To a given original graph, it attempts to
construct a much smaller synthetic graph such that the gradients of the parameters of a considered
graph neural network with respect to both graphs match. Also of note is the recent work [28],
presenting an alternative coarsening approach for planar graphs and [32], which sparsifies not only
the graph topology, but simultaneously also the features of its nodes and weights of graph neural
network used for its embedding. Elaboration of graph coarsening methods in machine learning can
build on several decades of their successful application, such as pairwise aggregation, independent
sets, or algebraic distance, in numerical linear algebra [13], including in particular multilevel graph
coarsening [37,47].

More recently, a connection of graph coarsening with another more general topic has been
addressed, namely with pooling in graph neural networks. In a framework presented in [20], pooling

Adaptive graph coarsening 3

is viewed as a composition of three subsequent transformations: selection, in which the nodes of the
input graph are mapped to the nodes of the pooled one, reduction, in which the node attributes of
the input graph are aggregated into the node attributes of the pooled one, and connection, in which
the edges and possibly edge attributes of the input graph are mapped to the edges and possibly
edge attributes of the pooled one. This sequence of transformations is perfectly relevant also to
coarsening methods, as was in [20] demonstrated for the methods NMF [2] and top-K [9,19].

3 An overview of the HARP algorithm

Our work builds on the HARP method [11] for pretraining methods such as node2vec [21] on
coarsened graphs. While HARP itself works with and modifies the graph structure, this is not the
main interest of its authors, who focus more on the classification accuracy for the original graph.
The sequence G0, G1, G2, . . . , GL is generated in HARP consecutively. Let ϕi denote this mapping
Gi = ϕi (Gi−1). Following [43], we restrict the definition of such a coarsening ϕi to only consist of
a series of edge contractions C ⊆ E (G). In an overview, the HARP algorithm first ahead-of-time
consecutively coarsens the graph. The method itself can then be executed by repeating the following
steps on the graphs from the coarsest to the finest (i.e., from GL to G0):

1. Training on an intermediary graph. The graph embedding model is trained on Gi, pro-
ducing its embedding ΦGi

.
2. Embedding prolongation. The embedding ΦGi is prolonged (i.e. refined) into ΦGi−1 by

copying embeddings of merged nodes. ΦGi−1
is then used as the starting point for training on

Gi−1.

The particular details of the coarsening and prolongation steps are further explained in [11].

4 HARP extension for flexible performance-complexity balancing

Graph representation learning methods such as node2vec typically have a large number of parame-
ters – on the widely used OGBN-ArXiv dataset (see [23]), the state-of-the-art node2vec model has
over 21 million parameters. At the same time, recent works in the domain of graph learning have
started to focus more heavily on simpler methods as a competitive alternative to heavy-weight ones
(see [17,24]). As the authors of [11] observed, HARP improves the performance of models when
fewer labelled data are available. The proposed lower complexity models based on HARP could
also improve performance in a setting where only low fidelity data are available for large parts of
the graph. Coarser models could be trained on them, with a subsequent training of finer models
using only a limited sample of high fidelity data.

While the prolongation used by HARP is sufficient when used only as a means of pre-training,
the approach is far too crude when studying the relationship between graph complexity and the
quality of graph embedding as a single coarsening iteration can reduce the number of nodes to less
than half. In order to overcome this limitation, we present the adaptive prolongation approach,
which aims to replace the fixed steps defined by the used coarsening algorithm (such as HARP) by a
variable number of smaller “micro-steps”, each of a predefined size that can be chosen independently
from the underlying coarsening and its step size. The L coarsening steps are thus decoupled from
K prolongation steps, where K is independent of L. The prolongation steps are driven by the
interplay of the downstream task with the local properties of the underlying graph, enabling the

4 M. Dědič et al.

method to produce embeddings with different level of granularity in different parts of the graph,
e.g. an embedding that is coarse inside clusters of similar nodes and at the same time fine at the
border between such clusters.

Fully prolong

Train & evaluate
downstream model

Ordering of
Order according

to uncertainty

Contraction set

Prolong selected
contractions

Select contractions affecting
nodes in the obtained order

Figure 1. A schematic explanation of the adaptive prolongation algorithm for obtaining the embedding Ψi

from Ψi+1.

Let us denote ΨK , . . . ,Ψ0 the resulting embedding sequence. Similarly to standard HARP
prolongation, the algorithm starts with the coarsest graph GL, trains a graph model to compute
its embedding ΨK and gradually refines it until reaching the embedding Ψ0. These prolongation
steps are interlaid with continued training of the graph model, as in standard HARP. A description
of a single prolongation step from Ψi+1 to Ψi follows, is schematically outlined in Figure 1 and
described in detail in Algorithm 1.

The procedure keeps track of all the edge contractions that were made in the dataset augmen-
tation part of the algorithm and gradually reverses them. To this end, apart from the embedding
Ψi, the set of all contractions yet to be reversed as of step i is kept as C(i)

L , . . . , C(i)
0 , with the initial

values C(K)
j corresponding to the underlying coarsening ϕj as defined in Section 3.

In each prolongation step, the embedding Ψi+1 is prolonged to Ψi by selecting a set of np

contractions Cprolong and undoing them by copying and reusing the embedding of the node resulting
from the contraction to both of the contracted nodes. To obtain Cprolong, nodes of G0 are first
ordered in such a way that corresponds to the usefulness of prolonging them. Subsequently, the
set C(i+1)

L , . . . , C(i+1)
0 is ordered to match this node ordering by considering the nodes that the

individual contractions affect. Cprolong is then selected by taking the first np contractions. If
multiple contractions affecting the same node are available in the sequence C(i+1)

L , . . . , C(i+1)
0 , one

is selected from C(i+1)
j corresponding to the coarsest-level coarsening. The sequence C(i)

L , . . . , C(i)
0 is

produced from C(i+1)
L , . . . , C(i+1)

0 by removing all of the edges contained in Cprolong.
To obtain an ordering of nodes of G0 based on the usefulness of their prolongation, the embedding

Ψi+1 is fully prolonged to a temporary embedding of the full graph, Ψtemp
0 . The downstream model

is then trained using this temporary embedding to obtain Ypred, the predicted posterior distribution
of classes for each node in G0 (e.g. the output of the softmax layer of an MLP). The entropy of
this distribution is measured, representing the amount of uncertainty in the classifier for each given
node. The nodes are ordered based on the entropy from highest to lowest. This reflects the principle
that it is most useful to prolong those nodes where the downstream classifier is the least certain. For
downstream tasks other than node classification, the ordering would need to be defined in a different
manner (for example using labels, which are not available for all nodes in our case), however the
approach of prolonging the nodes about which the downstream model is the most uncertain can be
extended to other tasks.

Adaptive graph coarsening 5

Algorithm 1 Adaptive prolongation
Require: G0 . The original graph
Require: ytrain . Training labels
Require: np . The number of nodes to prolong
Require: Ψi+1 . The previous embedding
Require: C(i+1)

L , . . . , C(i+1)
0 . A list of all the contractions yet to be reversed

Ensure: Ψi . The next embedding
Ensure: C(i)L , . . . , C(i)0 . Updated contraction list without the prolonged contractions

node_order ← get_node_order(G0,Ψi+1,ytrain, C(i+1)
L , . . . , C(i+1)

0)

Cprolong ← select_contractions(node_order, np, C(i+1)
L , . . . , C(i+1)

0)
Ψi ← use Cprolong to prolong the embedding Ψi+1

C(i)L , . . . , C(i)0 ← remove contractions in Cprolong from C(i+1)
L , . . . , C(i+1)

0

function get_node_order(G0,Ψi+1,ytrain, C(i+1)
L , . . . , C(i+1)

0)
Ψtemp

0 ← use C(i+1)
L , . . . , C(i+1)

0 to fully prolong the current embedding Ψi+1 to G0

model← train_downstream_model(Ψtemp
0 ,ytrain)

Ypred ← predict(model, node) for each node ∈ V (G0)
entropy_per_node← H (Ypred)
return V (G0), sorted in descending order by entropy_per_node

end function

function select_contractions(ordered_nodes, np, C(i+1)
L , . . . , C(i+1)

0)
Cprolong ← {}
for node ∈ ordered_nodes, until |Cprolong| = np do

contraction← resolve_contraction(node, Cprolong, C(i+1)
L , . . . , C(i+1)

0)
If contraction 6= null, add contraction to Cprolong

end for
return Cprolong

end function

function resolve_contraction(node, Cprolong, C(i+1)
L , . . . , C(i+1)

0)
contraction← null
for j ∈ {0, . . . , L} do . I.e. all steps of the original coarsening from finest to coarsest

contraction_candidate ← find in C(i+1)
j a contraction that affects node, if not found, continue

with j + 1
if contraction_candidate ∈ Cprolong then

return contraction
end if
contraction← contraction_candidate
node ← apply contraction to node, so that in the next loop, a subsequent contraction may be

selected
end for
return contraction

end function

6 M. Dědič et al.

5 Experimental evaluation

The proposed methods were experimentally verified on 10 publicly available datasets. The datasets
Cora and CiteSeer [50] were used with the “full” train-test split as in [12]. In addition, 2 variants
of the Twitch dataset [42] with the hignest node count (DE and EN) were used. Five medium
sized datasets were also used, the PubMed dataset [50], the DBLP dataset [6], the IMDB dataset
[18] and both variants of the Coauthor dataset [44]. Finally, one large dataset was used, the OGB
ArXiv dataset [23].

The hyper-parameters for both the node2vec model used for the embedding training and the
multi-layer perceptron used for downstream classification were initially set to values used in prior
art (see [16,23]) and then manually fine-tuned for each dataset.

The achitecture of the algorithm was identical accross all datasets, with the only difference being
in the values of the hyper-parameters, as listed in Table 1. For the Cora dataset, the node2vec model
generated an embedding in R128 from 4 random walks of length 20 for each node with a context
window of size 5. The optimizer ADAM [29] was used with a learning rate of 0.01 and batches of
128 samples. The model was trained for 5 epochs and in each step of the adaptive prolongation,
100 nodes were prolonged, until reaching the original graph (the value of np was calculated so that
the total number of training epochs would match baseline model training). The MLP classifier
using the embeddings featured 3 linear layers of 128 neurons with batch normalization after each
layer. Each layer was normalized using dropout [45] with the rate of 0.5. Finally, a linear layer was
used for the class prediction. For the classifier, ADAM with a learning rate of 0.01 was used for
30 epochs of training with the cross-entropy loss function. Dataset features weren’t used for the
classifier training as the aim of this work is to compare the embeddings. The experiment was run
10 times end-to-end and results averaged. The experiments were implemented using PyTorch [38]
and PyTorch Geometric [16].

Table 1. Hyper-parameter values used for different datasets

Hyper-parameter Cora CiteSeer PubMed DBLP Twitch IMDB ArXiv Coauthor

Embedding dimension 128 32 64 32 128 128 128 128
of random walks 4 5 3 2 10 40 10 40
Random walk length 20 20 40 20 80 100 80 10
Context window size 5 5 20 5 3 5 20 5
Node2vec learning rate 0.01 0.01 0.01 0.01 0.025 0.01 0.01 0.01
Node2vec batch size 128 128 128 128 128 256 128 256
Node2vec epochs 5 7 1 1 5 1 1 1
of MLP layers 3 3 1 3 2 2 3 2
MLP hidden layer width 128 256 128 256 64 64 256 16
Dropout rate 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
MLP learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MLP epochs 30 80 300 300 500 100 300 100

In order to study the effect of adaptive prolongation, the method was used to assess the perfor-
mance of downstream transductive classification at different coarsening levels. For each prolongation
step, the intermediary embedding was fully prolonged to obtain an embedding of the original graph

Adaptive graph coarsening 7

G. A classifier was then trained with this embedding as input. This setup allows us to compare
classification accuracy at each step of the adaptive prolongation. Figure 2 shows the results of this
experiment, compared with a baseline node2vec model (that is, without any coarsening or prolon-
gation) that was trained for the same number of epochs as the total epochs of the adaptive model
over all prolongation steps.

0% 50% 100%
20%

30%

40%

50%

60%

70%

80%

90%

Node count

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

DBLP
Cora

CiteSeer
ArXiv

Twitch-EN

0% 50% 100%

Node count

Coauthor-Physics
Coauthor-CS

PubMed
Twitch-DE

IMDB

Figure 2. Downstream classifier test-set accuracies at different steps of adaptive prolongation. Dashed line
shows the baseline node2vec model accuracy. The node count is taken relative to the total node count in
each dataset. The results are averaged over multiple runs, with the solid line representing the mean and
the shaded area denoting one standard deviation.

The behaviour of the model somewhat differs between the used datasets. For the Cora, CiteSeer,
DBLP, PubMed, ArXiv and Coauthor datasets, the model starts from a very low performance,
which quickly rises as the model trains for several prolongation steps. The model trained on
CiteSeer attains performance comparable to the reference model when approximately half of all
nodes are available to it. On the other hand, with e. g. Coauthor-CS, the model slowly approaches
the reference model for the whole duration of training, only reaching comparable performance
at a point where nearly the whole graph is available to it. Models trained on the two medium-
sized datasets, DBLP and PubMed, exhibit a different behaviour in that they briefly reach a local
maximum followed by a slight decrease in performance until finally approaching the performance
of the reference model in a manner similar to the models trained on Cora and CiteSeer. The ArXiv
dataset exhibits a similar behaviour to a lesser extent. A further discussion of this behaviour follows
in the later part of this section. The Twitch and IMDB datasets are substantially different, with

8 M. Dědič et al.

very high initial performance and only small performance gains with increasing number of nodes
available, with different variants of it exhibiting this effect to a different extent.

To study the distribution of model properties, the results were evaluated at k-th deciles of
the node count of the full graph, for all possible values of k. At each decile, the performance
of the model was compared to the baseline node2vec model using the Wilcoxon signed-rank test
with the Holm-Bonferroni correction for multiple hypothesis testing. The hypotheses that the
models are equivalent with the baseline were rejected by the test at the 5% level of significance for
k ∈ {1, 2, 3, 4, 5}, suggesting that the adaptive prolongation approach is useful in situations where
at least half of the nodes is available.

In view of recent proposals regarding statistical validation of results in machine learning [3]
and to further compare the proposed model with the baseline, the results were also studied using
the stronger assumptions of Bayesian estimation. The comparison was done using the Bayesian
Wilcoxon signed-rank test [4] for 3 different widths of the region of practical equivalence (ROPE),
1%, 5% and 10%. The probabilities that the two models are practically equivalent are listed in
Table 2. Of a particular note is the fact that at 60% complexity, the models have over a 99%
probability of being within 10 percentage points of performance and at 80% complexity, they have
over 99% probability of being withing 5 percentage points of performance. This shows that the
proposed method may offer a significant complexity reduction in exchange for a relatively minor
decrease in performance.

Table 2. The probabilities that the adaptive approach will be practically equivalent to node2vec when
compared on different fractions of the full graph and with different widths of the region of practical equiv-
alence.

Nodes 1% ROPE 5% ROPE 10% ROPE

10% 0% 0.3% 2.5%
20% 0% 0.8% 14.1%
30% 0% 1.7% 35.3%
40% 0% 5.3% 72.0%
50% 0.1% 35.3% 85.7%
60% 0.6% 62.2% 99.7%
70% 32.0% 84.7% 100.0%
80% 30.0% 99.9% 100.0%
90% 48.9% 100.0% 100.0%
100% 87.7% 100.0% 100.0%

When the models for DBLP and PubMed are studied more closely, both reach a local maximum
at around 14% of the graph, followed by a slight decline and gradual approach to the baseline. This
suggests a global structure in the data, which the model learns at the point of the local maxima.
To investigate this hypothesis and try to explain the behaviour of the model in general, several
graph measures were applied to the graphs generated during the adaptive prolongation algorithm
run. All of the measures were applied to the graph Gi at each step in the prolongation process.

The measures used were edge homophily [53], node homophily [39], class homophily [31], ad-
justed homophily [40], balanced accuracy [40], adjusted accuracy [40], label informativeness [40],
and global assortativity [36].

Adaptive graph coarsening 9

Table 3. The Pearson correlation coefficients of the relationship between 8 graph measures and the
classification accuracy accross the prolongation procedure.

Measure DBLP PubMed

Edge homophily 0.91 0.99
Node homophily 0.94 0.96
Class homophily 0.89 0.99
Adjusted homophily 0.91 0.99
Balanced accuracy 0.89 0.99
Adjusted accuracy 0.89 0.99
Label informativeness 0.94 0.98
Global assortativity -0.94 -0.38

The values of these measures were compared to the classification accuracy and a strong correla-
tion was found for the majority of them, as listed in Table 3. This suggests the explanation of the
graphs being heterophilic when very coarse (as could be expected), then reaching a point where the
global structure of the graph is in place and is then only refined in a local sense. Such a behaviour
may introduce nodes which have a different label than their neighbourhoods (a kind of noise in the
data), which is a possible explanation for the local optima in performance.

6 Conclusion

In this work, an extension of the HARP algorithm was proposed, which generalizes it from a method
for pretraining to a general graph reduction framework. A novel approach to prolonging graphs
in the HARP setting was presented that selectively prolongs the graph in a way that maximizes
performance of the considered downstream task under limited graph size. All of the proposed
methods were experimentally verified, with the headline result being that at about 40% reduction
in node count, the accuracy was still reasonably close to the accuracy on a full graph for most
datasets.

In future work, a direct way of tackling the outlined problem may be explored, along the lines of
our preliminary exploration in this direction [41]. The proposed approach constitutes of only a single
coarsening pass, in contrast to the double procedure of coarsening followed by prolongation used in
this work. As in this work, the coarsening procedure is viewed as a sequence of edge contractions.
This sequence is, however, determined by the performance of an auxiliary linear regression model,
providing a more realistic heuristic for the optimal way of gradually decreasing graph complexity.

References

1. Akyildiz, T.A., Alabsi Aljundi, A., Kaya, K.: Understanding Coarsening for Embedding Large-Scale
Graphs. In: 2020 IEEE International Conference on Big Data (Big Data). pp. 2937–2946 (Dec 2020).
https://doi.org/10.1109/BigData50022.2020.9377898

2. Bacciu, D., Di Sotto, L.: A Non-negative Factorization Approach to Node Pooling in Graph Convo-
lutional Neural Networks. In: Alviano, M., Greco, G., Scarcello, F. (eds.) AI*IA 2019 – Advances in
Artificial Intelligence. pp. 294–306. Lecture Notes in Computer Science, Springer International Pub-
lishing, Cham (2019). https://doi.org/10.1007/978-3-030-35166-3_21

https://doi.org/10.1109/BigData50022.2020.9377898
https://doi.org/10.1109/BigData50022.2020.9377898
https://doi.org/10.1007/978-3-030-35166-3_21
https://doi.org/10.1007/978-3-030-35166-3_21

10 M. Dědič et al.

3. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a Change: a Tutorial for Comparing
Multiple Classifiers Through Bayesian Analysis. Journal of Machine Learning Research 18(77), 1–36
(2017), http://jmlr.org/papers/v18/16-305.html

4. Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., Ruggeri, F.: A Bayesian Wilcoxon signed-rank
test based on the Dirichlet process. In: Proceedings of the 31st International Conference on Machine
Learning. pp. 1026–1034. PMLR, Beijing, China (Jun 2014), https://proceedings.mlr.press/v32/
benavoli14.html, iSSN: 1938-7228

5. Béthune, L., Kaloga, Y., Borgnat, P., Garivier, A., Habrard, A.: Hierarchical and Unsupervised
Graph Representation Learning with Loukas’s Coarsening. Algorithms 13(9), 206 (Sep 2020). https:
//doi.org/10.3390/a13090206, https://www.mdpi.com/1999-4893/13/9/206, number: 9 Publisher:
Multidisciplinary Digital Publishing Institute

6. Bojchevski, A., Günnemann, S.: Deep Gaussian Embedding of Graphs: Unsupervised Inductive
Learning via Ranking. In: 6th International Conference on Learning Representations (Feb 2018),
https://openreview.net/forum?id=r1ZdKJ-0W

7. Bravo Hermsdorff, G., Gunderson, L.: A Unifying Framework for Spectrum-Preserving Graph Spar-
sification and Coarsening. In: Advances in Neural Information Processing Systems. vol. 32. Curran
Associates, Inc., Vancouver, Canada (2019), https://proceedings.neurips.cc/paper/2019/file/
cd474f6341aeffd65f93084d0dae3453-Paper.pdf

8. Cai, C., Wang, D., Wang, Y.: Graph Coarsening with Neural Networks. In: International Conference
on Learning Representations (Feb 2022), https://openreview.net/forum?id=uxpzitPEooJ

9. Cangea, C., Veličković, P., Jovanović, N., Kipf, T., Liò, P.: Towards Sparse Hierarchical Graph
Classifiers (Nov 2018). https://doi.org/10.48550/arXiv.1811.01287, http://arxiv.org/abs/1811.
01287, arXiv:1811.01287 [cs, stat]

10. Çatalyürek, Ü.V., Deveci, M., Kaya, K., Uçar, B.: Multithreaded Clustering for Multi-level Hypergraph
Partitioning. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium. pp.
848–859 (May 2012). https://doi.org/10.1109/IPDPS.2012.81, iSSN: 1530-2075

11. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: HARP: Hierarchical Representation Learning for Networks.
Proceedings of the AAAI Conference on Artificial Intelligence 32(1) (Apr 2018), https://ojs.aaai.
org/index.php/AAAI/article/view/11849, number: 1

12. Chen, J., Ma, T., Xiao, C.: FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling. In: 6th International Conference on Learning Representations (Feb 2018),
https://openreview.net/forum?id=rytstxWAW

13. Chen, J., Saad, Y., Zhang, Z.: Graph coarsening: from scientific computing to machine learning. SeMA
Journal 79(1), 187–223 (Mar 2022). https://doi.org/10.1007/s40324-021-00282-x

14. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: An Efficient Algorithm for
Training Deep and Large Graph Convolutional Networks. In: Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining. pp. 257–266. KDD ’19, Association for
Computing Machinery, New York, NY, USA (Jul 2019). https://doi.org/10.1145/3292500.3330925,
https://doi.org/10.1145/3292500.3330925

15. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional Neural Networks on Graphs with Fast
Localized Spectral Filtering. In: Advances in Neural Information Processing Systems. vol. 29. Cur-
ran Associates, Inc., Barcelona, Spain (2016), https://proceedings.neurips.cc/paper/2016/file/
04df4d434d481c5bb723be1b6df1ee65-Paper.pdf

16. Fey, M., Lenssen, J.E.: Fast Graph Representation Learning with PyTorch Geometric (Apr 2019),
arXiv: 1903.02428

17. Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M., Monti, F.: SIGN: Scalable Inception
Graph Neural Networks (Nov 2020), arXiv: 2004.11198

18. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: Metapath Aggregated Graph Neural Network for Het-
erogeneous Graph Embedding. In: Proceedings of The Web Conference 2020. pp. 2331–2341 (Apr 2020).
https://doi.org/10.1145/3366423.3380297, http://arxiv.org/abs/2002.01680, arXiv:2002.01680
[cs]

http://jmlr.org/papers/v18/16-305.html
https://proceedings.mlr.press/v32/benavoli14.html
https://proceedings.mlr.press/v32/benavoli14.html
https://doi.org/10.3390/a13090206
https://doi.org/10.3390/a13090206
https://doi.org/10.3390/a13090206
https://doi.org/10.3390/a13090206
https://www.mdpi.com/1999-4893/13/9/206
https://openreview.net/forum?id=r1ZdKJ-0W
https://proceedings.neurips.cc/paper/2019/file/cd474f6341aeffd65f93084d0dae3453-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cd474f6341aeffd65f93084d0dae3453-Paper.pdf
https://openreview.net/forum?id=uxpzitPEooJ
https://doi.org/10.48550/arXiv.1811.01287
https://doi.org/10.48550/arXiv.1811.01287
http://arxiv.org/abs/1811.01287
http://arxiv.org/abs/1811.01287
https://doi.org/10.1109/IPDPS.2012.81
https://doi.org/10.1109/IPDPS.2012.81
https://ojs.aaai.org/index.php/AAAI/article/view/11849
https://ojs.aaai.org/index.php/AAAI/article/view/11849
https://openreview.net/forum?id=rytstxWAW
https://doi.org/10.1007/s40324-021-00282-x
https://doi.org/10.1007/s40324-021-00282-x
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://doi.org/10.1145/3366423.3380297
https://doi.org/10.1145/3366423.3380297
http://arxiv.org/abs/2002.01680

Adaptive graph coarsening 11

19. Gao, H., Ji, S.: Graph U-Nets. In: Proceedings of the 36th International Conference on Machine Learn-
ing. pp. 2083–2092. PMLR (May 2019), https://proceedings.mlr.press/v97/gao19a.html, iSSN:
2640-3498

20. Grattarola, D., Zambon, D., Bianchi, F.M., Alippi, C.: Understanding Pooling in Graph Neural
Networks. IEEE Transactions on Neural Networks and Learning Systems pp. 1–11 (2022). https:
//doi.org/10.1109/TNNLS.2022.3190922, conference Name: IEEE Transactions on Neural Networks
and Learning Systems

21. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 855–864 (2016)

22. Herrmann, J., Özkaya, M.Y., Uçar, B., Kaya, K., Çatalyürek, Ü.V.: Multilevel Algorithms for
Acyclic Partitioning of Directed Acyclic Graphs. SIAM Journal on Scientific Computing 41(4),
A2117–A2145 (Jan 2019). https://doi.org/10.1137/18M1176865, https://epubs.siam.org/doi/
abs/10.1137/18M1176865, publisher: Society for Industrial and Applied Mathematics

23. Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., Leskovec, J.: Open Graph
Benchmark: Datasets for Machine Learning on Graphs (Feb 2021). https://doi.org/10.48550/arXiv.
2005.00687, http://arxiv.org/abs/2005.00687, arXiv:2005.00687 [cs, stat]

24. Huang, Q., He, H., Singh, A., Lim, S.N., Benson, A.R.: Combining Label Propagation and Simple
Models Out-performs Graph Neural Networks (Nov 2020), arXiv:2010.13993

25. Huang, Z., Zhang, S., Xi, C., Liu, T., Zhou, M.: Scaling Up Graph Neural Networks Via Graph
Coarsening. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. pp. 675–684. KDD ’21, Association for Computing Machinery, New York, NY, USA (Aug
2021). https://doi.org/10.1145/3447548.3467256

26. Jin, W., Tang, X., Jiang, H., Li, Z., Zhang, D., Tang, J., Yin, B.: Condensing Graphs via One-Step
Gradient Matching. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. pp. 720–730. KDD ’22, Association for Computing Machinery, New York, NY,
USA (Aug 2022). https://doi.org/10.1145/3534678.3539429, https://doi.org/10.1145/3534678.
3539429

27. Jin, W., Zhao, L., Zhang, S., Liu, Y., Tang, J., Shah, N.: Graph Condensation for Graph Neural
Networks. In: The Tenth International Conference on Learning Representations (Jan 2022), https:
//openreview.net/forum?id=WLEx3Jo4QaB

28. Kammer, F., Meintrup, J.: Space-Efficient Graph Coarsening with Applications to Succinct Planar
Encodings (Jun 2022), arXiv:2205.06128

29. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (Jan 2017), arXiv:1412.6980
30. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional Networks. In: 5th

International Conference on Learning Representations, {ICLR} 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, Toulon, France (Apr 2017), https://openreview.
net/forum?id=SJU4ayYgl

31. Lim, D., Hohne, F., Li, X., Huang, S.L., Gupta, V., Bhalerao, O., Lim, S.N.: Large Scale Learning on
Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods. In: Advances in Neural In-
formation Processing Systems. vol. 34, pp. 20887–20902. Curran Associates, Inc., online (2021), https:
//proceedings.neurips.cc/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf

32. Liu, C., Ma, X., Zhan, Y., Ding, L., Tao, D., Du, B., Hu, W., Mandic, D.: Comprehensive Graph
Gradual Pruning for Sparse Training in Graph Neural Networks (Jul 2022), arXiv:2207.08629

33. Liu, N., Jian, S., Li, D., Zhang, Y., Lai, Z., Xu, H.: Hierarchical Adaptive Pooling by Capturing High-
order Dependency for Graph Representation Learning. IEEE Transactions on Knowledge and Data
Engineering pp. 1–1 (2021). https://doi.org/10.1109/TKDE.2021.3133646, conference Name: IEEE
Transactions on Knowledge and Data Engineering

34. Loukas, A.: Graph Reduction with Spectral and Cut Guarantees. J. Mach. Learn. Res. 20(116), 1–42
(2019)

35. Makarov, I., Kiselev, D., Nikitinsky, N., Subelj, L.: Survey on graph embeddings and their applications
to machine learning problems on graphs. PeerJ Computer Science 7, e357 (Feb 2021). https://doi.
org/10.7717/peerj-cs.357, https://peerj.com/articles/cs-357, publisher: PeerJ Inc.

https://proceedings.mlr.press/v97/gao19a.html
https://doi.org/10.1109/TNNLS.2022.3190922
https://doi.org/10.1109/TNNLS.2022.3190922
https://doi.org/10.1109/TNNLS.2022.3190922
https://doi.org/10.1109/TNNLS.2022.3190922
https://doi.org/10.1137/18M1176865
https://doi.org/10.1137/18M1176865
https://epubs.siam.org/doi/abs/10.1137/18M1176865
https://epubs.siam.org/doi/abs/10.1137/18M1176865
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.48550/arXiv.2005.00687
http://arxiv.org/abs/2005.00687
https://doi.org/10.1145/3447548.3467256
https://doi.org/10.1145/3447548.3467256
https://doi.org/10.1145/3534678.3539429
https://doi.org/10.1145/3534678.3539429
https://doi.org/10.1145/3534678.3539429
https://doi.org/10.1145/3534678.3539429
https://openreview.net/forum?id=WLEx3Jo4QaB
https://openreview.net/forum?id=WLEx3Jo4QaB
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf
https://doi.org/10.1109/TKDE.2021.3133646
https://doi.org/10.1109/TKDE.2021.3133646
https://doi.org/10.7717/peerj-cs.357
https://doi.org/10.7717/peerj-cs.357
https://doi.org/10.7717/peerj-cs.357
https://doi.org/10.7717/peerj-cs.357
https://peerj.com/articles/cs-357

12 M. Dědič et al.

36. Newman, M.E.J.: Mixing patterns in networks. Physical Review E 67(2), 026126 (Feb 2003). https://
doi.org/10.1103/PhysRevE.67.026126, https://link.aps.org/doi/10.1103/PhysRevE.67.026126,
publisher: American Physical Society

37. Osei-Kuffuor, D., Li, R., Saad, Y.: Matrix Reordering Using Multilevel Graph Coarsening for ILU
Preconditioning. SIAM Journal on Scientific Computing 37(1), A391–A419 (Jan 2015). https://doi.
org/10.1137/130936610, https://epubs.siam.org/doi/abs/10.1137/130936610, publisher: Society
for Industrial and Applied Mathematics

38. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-
Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32. pp.
8024–8035. Curran Associates, Inc., Vancouver, Canada (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

39. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: Geometric Graph Convolutional
Networks (Feb 2020). https://doi.org/10.48550/arXiv.2002.05287, http://arxiv.org/abs/2002.
05287, arXiv:2002.05287 [cs, stat]

40. Platonov, O., Kuznedelev, D., Babenko, A., Prokhorenkova, L.: Characterizing Graph Datasets for
Node Classification: Beyond Homophily-Heterophily Dichotomy (Sep 2022). https://doi.org/10.
48550/arXiv.2209.06177, http://arxiv.org/abs/2209.06177, arXiv:2209.06177 [cs, math]

41. Procházka, P., Mareš, M., Dědič, M.: Downstream Task Aware Scalable Graph Size Reduction for
Efficient GNN Application on Big Data. In: Information Technologies - Applications and Theory (ITAT
2022). Zuberec, Slovakia (2022)

42. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-Scale attributed node embedding. Journal of Complex
Networks 9(2), cnab014 (Apr 2021). https://doi.org/10.1093/comnet/cnab014, https://doi.org/
10.1093/comnet/cnab014

43. Schulz, T.H., Horváth, T., Welke, P., Wrobel, S.: Mining Tree Patterns with Partially Injective Homo-
morphisms. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) Machine Learning
and Knowledge Discovery in Databases. pp. 585–601. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-10928-8_35

44. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of Graph Neural Network Evalua-
tion (Jun 2019). https://doi.org/10.48550/arXiv.1811.05868, http://arxiv.org/abs/1811.05868,
arXiv:1811.05868 [cs, stat]

45. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A Simple Way
to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15(56), 1929–1958
(2014), http://jmlr.org/papers/v15/srivastava14a.html

46. Topping, J., Giovanni, F.D., Chamberlain, B.P., Dong, X., Bronstein, M.M.: Understanding over-
squashing and bottlenecks on graphs via curvature. In: The Tenth International Conference on Learning
Representations (Sep 2021), https://openreview.net/forum?id=7UmjRGzp-A

47. Ubaru, S., Saad, Y.: Sampling and multilevel coarsening algorithms for fast matrix approximations.
Numerical Linear Algebra with Applications 26(3), e2234 (2019). https://doi.org/10.1002/nla.
2234, https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2234

48. Veličković, P.: Geometric Deep Learning - Grids, Groups, Graphs, Geodesics, and Gauges (2021),
https://geometricdeeplearning.com/

49. Xie, Y., Yao, C., Gong, M., Chen, C., Qin, A.K.: Graph convolutional networks with multi-level
coarsening for graph classification. Knowledge-Based Systems 194, 105578 (Apr 2020). https://
doi.org/10.1016/j.knosys.2020.105578, https://www.sciencedirect.com/science/article/pii/
S0950705120300629

50. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting Semi-Supervised Learning with Graph Embeddings.
In: Proceedings of The 33rd International Conference on Machine Learning. pp. 40–48. PMLR, New
York, NY, USA (Jun 2016), https://proceedings.mlr.press/v48/yanga16.html

https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126
https://doi.org/10.1103/PhysRevE.67.026126
https://link.aps.org/doi/10.1103/PhysRevE.67.026126
https://doi.org/10.1137/130936610
https://doi.org/10.1137/130936610
https://doi.org/10.1137/130936610
https://doi.org/10.1137/130936610
https://epubs.siam.org/doi/abs/10.1137/130936610
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.48550/arXiv.2002.05287
https://doi.org/10.48550/arXiv.2002.05287
http://arxiv.org/abs/2002.05287
http://arxiv.org/abs/2002.05287
https://doi.org/10.48550/arXiv.2209.06177
https://doi.org/10.48550/arXiv.2209.06177
https://doi.org/10.48550/arXiv.2209.06177
https://doi.org/10.48550/arXiv.2209.06177
http://arxiv.org/abs/2209.06177
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1007/978-3-030-10928-8_35
https://doi.org/10.1007/978-3-030-10928-8_35
https://doi.org/10.48550/arXiv.1811.05868
https://doi.org/10.48550/arXiv.1811.05868
http://arxiv.org/abs/1811.05868
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=7UmjRGzp-A
https://doi.org/10.1002/nla.2234
https://doi.org/10.1002/nla.2234
https://doi.org/10.1002/nla.2234
https://doi.org/10.1002/nla.2234
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2234
https://geometricdeeplearning.com/
https://doi.org/10.1016/j.knosys.2020.105578
https://doi.org/10.1016/j.knosys.2020.105578
https://doi.org/10.1016/j.knosys.2020.105578
https://doi.org/10.1016/j.knosys.2020.105578
https://www.sciencedirect.com/science/article/pii/S0950705120300629
https://www.sciencedirect.com/science/article/pii/S0950705120300629
https://proceedings.mlr.press/v48/yanga16.html

Adaptive graph coarsening 13

51. Zhang, W., Yang, J., Shang, F.: HARP Pro: Hierarchical Representation Learning based on global
and local features for social networks (2021)

52. Zhao, B., Mopuri, K.R., Bilen, H.: Dataset Condensation with Gradient Matching. In: International
Conference on Learning Representations (Jan 2021), https://openreview.net/forum?id=mSAKhLYLSsl

53. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond Homophily in Graph
Neural Networks: Current Limitations and Effective Designs. In: Advances in Neural Informa-
tion Processing Systems. vol. 33, pp. 7793–7804. Curran Associates, Inc., online (2020), https:
//proceedings.neurips.cc/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf

https://openreview.net/forum?id=mSAKhLYLSsl
https://proceedings.neurips.cc/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf

	Balancing performance and complexity with adaptive graph coarsening

