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Abstract. From social to biological systems, many real-world systems
are characterized by higher-order, non-dyadic interactions. Such systems
are conveniently described by hypergraphs, where hyperedges encode in-
teractions among an arbitrary number of units. Here, we present an open-
source python library, hypergraphx (HGX), providing a comprehensive
collection of algorithms and functions for the analysis of higher-order
networks. These include different ways to convert data across distinct
higher-order representations, a large variety of measures of higher-order
organization at the local and the mesoscale, statistical filters to sparsify
higher-order data, a wide array of static and dynamic generative mod-
els, and an implementation of different dynamical processes with higher-
order interactions. Our computational framework is general, and allows
to analyse hypergraphs with weighted, directed, signed, temporal and
multiplex group interactions. We provide visual insights on higher-order
data through a variety of different visualization tools. We accompany our
code with an extended higher-order data repository, and demonstrate
the ability of HGX to analyse real-world systems through a systematic
analysis of a social network with higher-order interactions. The library
is conceived as an evolving, community-based effort, which will further
extend its functionalities over the years. Our software is available at
https://github.com/HGX-Team/hypergraphx. This paper has been al-
ready accepted and published in the Journal of Complex Networks.
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Introduction

In the last few decades, networks have emerged as the natural tool to model a
wide variety of natural, social and man-made systems. Networks, collections of
nodes and links connecting pairs of them, are able to capture dyadic interactions
only. However, in many real-world systems units interact in groups of three or
more [11,10,17,12]. Systems with non-dyadic interactions are ubiquitous, with ex-
amples ranging from cellular networks [41], drug recombination [81], structural
and functional brain networks [64,37,67], human [20] and animal [59] face-to-
face interactions, and collaboration networks [61]. These higher-order interac-
tions can be naturally described by alternative mathematical structures such as
hypergraphs [11,16], where hyperedges connect groups of nodes of arbitrary size.

In the last 25 years, advances in technology have generated an unprecedented
amount of relational data across a variety of domains. Broadening the scopes of
the first pioneering contributions to the field of network science [76,77,8], these
allowed to develop new data-informed frameworks to investigate biological, tech-
nological and social systems. In parallel with theoretical and methodological pro-
gresses, a crucial role in advancing network science has been played by the de-
velopment of efficient algorithms and computational tools to analyze networked
data. Nowadays, widely used, community-based software such as NetworkX [39]
and igraph [26], and individual efforts such as graph-tool [62] – just to mention
a few – have enabled thousands of researchers to perform multi-faceted, large-
scale network analysis of relational data. Only recently, some early contribu-
tions [5,50,1,27,7], in particular XGI [43], have started to develop computational
tools to match the explosion of interest in higher-order systems.

Here, we provide our contribution by presenting hypergraphx (HGX), a
multi-purpose, open-source python library for the analysis of networked systems
with higher-order interactions. HGX aims to provide, as a single source, a com-
prehensive suite of tools and algorithms for constructing, storing, analysing and
visualizing systems with higher-order interactions. These include different ways
to convert data across distinct higher-order representations, a large variety of
measures of higher-order organization at the local and the mesoscale, statistical
filters to sparsify higher-order data, a wide array of static and dynamic genera-
tive models, an implementation of different dynamical processes, from epidemics
to diffusion and synchronization, with higher-order interactions, and more. Our
computational framework is general, and allows to analyse hypergraphs with
weighted, directed, signed, temporal and multiplex group interactions. Beyond
experts in the field, we hope that our library will make higher-order network
analysis accessible to everyone interested in exploring the higher-order dimen-
sion of relational data.

Tools

Here, we discuss the main functionalities provided by HGX. The different tools
of our library are illustrated online through detailed, user-friendly tutorials. The
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library is conceived as an evolving, community-based effort, which will further
extend its functionalities over the years.

Representations. Hypergraphs represent the most general and flexible frame-
work to encode systems with higher-order interactions [16,11]. However, specific
research questions or data features might benefit from alternative higher-order
frameworks. We provide functions to easily and efficiently convert higher-order
data usually represented as hypergraphs into different representations [11,73]
such as bipartite networks, maximal simplicial complexes, higher-order line graphs,
dual hypergraphs and clique-expansion graphs.

Basic node and hyperedge statistics. Our library provides simple tools charac-
terizing basic node and hyperedge statistics. These include measures of hyper-
degree distributions, both aggregated or separated by order of interactions, as
well as measures of correlations among them. We include functions to compute
hyperdegree-hyperdegree assortativity, both within and across orders. We pro-
vide simple tools to compute hyperedge size distribution in the whole system,
as well as at the level of individual nodes.

Centrality measures. Centrality scores are a key tool in network analysis, and
allow to quantify the importance or influence of different nodes within a sys-
tem [76]. Nodes with high centrality usually have a high number of links, are
strategically connected to other influential nodes, or are characterized by both
such features. Our library provides a variety of higher-order centrality measures,
where interactions in different group sizes are taken into account. These include
centrality measures based on node participation in different subhypergraphs [29]
and different centrality scores based on spectral approaches [14]. We also imple-
ment measures of hyperedge centrality based on shortest paths and betweenness
flows [3].

Motifs. Motifs are small recurring patterns of subgraphs that are overrepresented
in a network [55]. Motif analysis has established itself as a fundamental tool in
network science to describe networked systems at their microscale, identifying
their structural and functional building blocks [54]. We provide an implemen-
tation for higher-order motif analysis, extracting overabundant subgraphs of
nodes connected by higher-order interactions, as originally defined in Ref. [46].
Given their widespread applications and expected use on large-scale real-world
datasets, we also provide an approximated algorithm for higher-order motif anal-
ysis based on hyperedge sampling, able to speed up computations by orders of
magnitudes with only a minimal compromise in accuracy [45].

Mesoscale structures. One of the most relevant features of graphs represent-
ing real-world systems is community structure [30]. A variety of approaches for
community detection on graphs show how these partitions provide meaningful
insights into the fundamental patterns underlying node interactions. Recently,
methods for defining the mesoscale structure of higher-order networks have been
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explored. Here, we provide an implementation of a spectral method which recov-
ers hard communities via hypergraph cut optimization [80]. We also implement
different generative models able to extract overlapping communities and jointly
infer hyperedges [24], allowing to capture a variety of mesoscale organizations,
including both disassortative and assortative community structure [66]. We pro-
vide a method able to extract hyperlink communities, where interactions, and
not system units, are clustered across different hypergraph modules [47]. Finally,
we provide a method to extract the core-periphery organization of higher-order
systems, capturing a group of central and tightly connected nodes in hypergraphs
governing the overall system behaviour, inspired by Ref. [74].

Filters. Many real-world systems are characterized by an abundance of noisy
and redundant interactions, resulting in overly densely connected networks. Dif-
ferent filtering techniques have been developed to identify the most informative
links by adopting an approach based on statistical validation, where the statis-
tical significance of interactions of the real system is evaluated by comparing
them with an ensemble of random replicas that preserve some individual fea-
tures (like degree or strength) [52]. Our library provides a variety of different
tools to filter systems with higher-order interactions. These include extracting
statistically validated hypergraphs, which are a collection of hyperlinks that are
over-expressed representing nodes that are significantly interacting in the same
exact group of fixed size [57], and identifying significant maximally interact-
ing sets, which represent the largest groups of nodes that interact significantly,
captured by combining interactions of different orders [58].

Generative models. The ability to produce synthetic data with different topo-
logical characteristics has proven crucial for a variety of tasks, from algorithms
benchmarking to the study and testing of non-trivial network statistics [60,42].
In our library, we offer ready-to-use implementations for various synthetic hy-
pergraph samplers. We provide functions to build generalised Erdös-Rényi mod-
els, both for uniform (all interactions have the same order) and non-uniform
(different orders of interactions) hypergraphs. We implement scale-free random
hypergraph models with the possibility of tuning the correlation between the
degree sequence among different orders. We also include a variety of randomiza-
tion tools and a configuration model for hypergraphs, where samples are pro-
duced respecting given node degree and hyperedge size sequences [21]. Based
on a similar mechanism, we implement also a more complex sampler which al-
lows to specify hard and soft community assignments for nodes, and arbitrary
community structure, such as assortative and disassortative [65]. Finally, we pro-
vide a higher-order activity-driven model with group interactions that change in
time [63] and compute the associated percolation threshold.

Dynamical processes. The structural properties of complex networks shape the
dynamical process occurring on top of them [9]. Recent works have revealed
that higher-order interactions significantly impact various dynamical processes,
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including percolation [25], diffusion [68,18], pattern formation [19,56], synchro-
nization [53,70,48,33,79], contagion [40,6,71], and evolutionary games [4,22,23]
We provide functions to investigate several of these processes. These include tools
to study synchronization with higher-order interactions, from the analysis of the
multiorder Laplacian matrix for kuramoto dynamics [48], to the implementation
of the Master Stability Function approach for synchronization stability [33,32].
We also provide an algorithm to simulate simplicial social contagion [40], and
analytical and numerical tools to investigate random walks on hypergraphs [18].

Weighted, directed, signed, temporal and multiplex hypergraphs. Our library is
highly flexible. It allows to store and analyze hypergraphs with a rich set of
features associated with hyperedges, including interactions of different intensity,
directions, sign, that vary in time or belong to different layers of a multiplex
system.

Visualization. The adoption of higher-order networks is rapidly increasing, and
the development of standard tools to visualize them is still in progress. Our li-
brary provides different visualization tools to gain visual insights into the higher-
order organization of real-world systems. We provide tools to plot systems with
higher-order interactions, where hyperedges of arbitrary size encode relationships
among an arbitrary number of nodes. Due to the rapid combinatorial increase in
the number of possible higher-order interactions and their overlaps, such a direct
approach is particularly suited for systems with a moderate number of nodes,
while such a visualization might not be effective in other cases. Therefore, we
provide alternative solutions that may assist the practitioner in a variety of cases,
such as relational data with a large number of nodes or large hyperedges. For
instance, we give the option to plot the bipartite projection of a hypergraph
where the two sets of nodes represent respectively the original system units and
the hyperedges in which they take part. We can also plot the hypergraph clique
projection, which results in a simple graph where each hyperedge of size s is de-
composed into a clique of s(s−1)

2 unordered pairwise interactions. Additionally,
we implement a multilayer representation of the hypergraph where each layer
encodes interactions of a given size, and two nodes are connected in layer s only
if they interact in the hypergraph through a hyperedge of size s. Finally, we offer
a novel way of visualizing hypergraphs, where the hypergraph is represented as
a graph whose nodes are pie charts. These pie charts indicate the proportion
of interaction sizes for each node, and two nodes are connected when they have
significant interactions across multiple orders.

Data

Here, we present the dataset repository accompanying our library. Such a repos-
itory is intended to provide an initial core of higher-order relational data, that
we aim to expand over the next few years. We illustrate the functionalities of
HGX by performing different higher-order analyses for one of these datasets.
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Fig. 1. Higher-order analysis of social interactions. We illustrate different func-
tionalities of HGX on a dataset of face-to-face group interactions in a school from the
SocioPattern collaboration [51]. (A) Higher-order degree distributions for different in-
teraction sizes. (B) Higher-order motif analysis. (C) Higher-order overlapping commu-
nity detection, and comparison with node metadata (we plot a subset of three classes).
(D) Statistics of original and filtered higher-order social interactions. (E) Higher-order
centrality measure in the dataset, and in sample obtained from a higher-order gener-
ative model. (F) Temporal autocorrelation for different sizes. (G) Fraction of infected
nodes over time for a spreading process with or without higher-order infections. (H)
Direct hypergraph visualization of social interactions (we plot a subset of one class,
considering only statistically significant interactions).
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Higher-order data repository. The availability of data plays a fundamental role
in developing theoretical frameworks and computational tools across different
scientific domains and applications. The recent explosion of higher-order rela-
tional data has led to novel methodologies to study higher-order systems, which
in turn require extensive datasets to be tested and validated. A few of these
data are inherently higher-order. Several others, instead, have originally been
investigated with pairwise approaches, but have recently been re-explored under
the new lens of higher-order network analysis. This motivates us to accompany
our library with an easily accessible and well-curated data repository, function-
ing as a unifying source of datasets for the analysis of higher-order systems.
We provide a collection of datasets for higher-order systems across different do-
mains, including ecological (animal proximity [34]), social (human face-to-face
interactions [72,75,51,36,35], co-authorships [69,15,2], votes [28]), technological
(e-mails [44,78,15]) and biological (gene-disease [13] and drug [15] associations)
systems. Some of these datasets record metadata characterizing the system units
(e.g., whether an individual in a hospital is a patient or a doctor) and the in-
teractions among them (e.g., the scientific domain of a research paper involving
a group of authors). Also, they store information about the structural features
of group interactions, which can be nonreciprocal, multi-relational and time-
varying. Datasets can be loaded to explicitly highlight some of these character-
istics. Indeed, our library allows to apply filters in the data loading process, for
example by selecting specific sets of nodes with regard to some metadata restric-
tion, or by extracting group interactions limited to a given size, type or time
interval. In the next years, we plan to continuously expand the data repository,
and to add further filtering options to the data loading functions.

Analysing real-world higher-order systems: a guided tour. To illustrate the power
of HGX in loading, manipulating, analysing and visualizing real-world systems
with group interactions, in Figure 1 we present an illustrative analysis of a
dataset from the SocioPattern collaboration encoding face-to-face social inter-
actions in a high school [51]. This dataset has been widely investigated in the
literature on higher-order interactions [15,40,46,24,65], and records the activity
of 327 students, divided into nine different high school classes. Our analysis fo-
cuses in particular on interactions among 2, 3 and 4 individuals, as statistics is
limited for larger groups.

In (A) we show the different higher-order degree distributions. The largest
degrees are obtained for pairwise interactions, and, in general, the curves show
different profiles. Higher-order degree distributions display different correlations
across different orders (Pearson’s correlation coefficient ρ, ρ2,3 = 0.74, ρ2,4 =
0.46, ρ3,4 = 0.72). To characterize such a higher-order system at the microscale,
in (B) we perform higher-order motif analysis as introduced in Ref. [46]. We con-
sider subhypergraphs of three nodes and capture over- (positive abundance score
greater) and under- (negative) represented motifs in the data, as compared to a
randomized higher-order configuration model [21]. Local structures with group
interactions supported by pairwise links are found to be particularly relevant.
In (C) we describe the mesoscale structure of the system, by extracting over-
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lapping communities with the method of Ref. [24]. For simplicity, we consider a
subset of three classes and plot pairwise interactions only. Nodes are represented
as pie-charts, colored proportionally to the higher-order communities they be-
long to. In general, the inferred modules are well aligned with node metadata,
with most students largely interacting within the community associated with
their class. In (D), we show statistics for the interactions in the dataset. We
see an inverse trend between the number of interactions and group size. We
also plot statistics for a filtered system, where we have considered statistically
validated hypergraphs [57], removing redundant hyperedges and identifying the
most informative group interactions. We continue by showcasing the ability of
the model introduced in Ref. [65] to generate hypergraphs which are similar to
the original dataset. To validate such a statement, in (E) we plot the distribu-
tion of (a rescaled version of) higher-order centrality measure [29] both in the
real and sampled hypergraphs, showing good agreement between the two. To
further illustrate the flexibility of our computational framework, we then con-
sider the temporal dimension of higher-order interactions. In particular, in (F)
we the temporal autocorrelation for different interaction sizes, one of the mea-
sures introduced to characterize the temporal evolution of higher-order systems
in Ref. [31]. Results show the existence of long-range correlations at all orders
of interactions, with a temporal cut-off which is dependent on the group size.
Beyond structural analysis, our library also allows to investigate a variety of dy-
namical processes with higher-order interactions. Here we simulate higher-order
spreading among students in high school, following a model where groups of in-
fected individuals are associated with higher-order contagion terms, in addition
to traditional pairwise mechanisms [40]. In (G) we show the fraction of infected
nodes over time for two configurations, one with and one without higher-order
infections. As shown, the presence of such a higher-order term might signifi-
cantly change the collective dynamics, pushing the system from a healthy to an
endemic state. Finally, in (H), we present a direct hypergraph visualization of
the higher-order system. For simplicity, we plot individuals belonging to a single
class and display all statistically significant interactions [57] among two, three
and four of them.

Conclusions

Hand in hand with new theory and methodologies, the development of efficient
algorithms and software to analyze networked data has played a pivotal role in
the advancement of modern network science. Here we have presented HGX, a
versatile and robust python library that offers a flexible and efficient framework
to analyze networked systems with higher-order interactions. Its user-friendly
environment and its vast range of functionalities make it accessible and useful
to practitioners and researchers to answer a wide variety of needs and ques-
tions. In the future, we aim to keep expanding the toolkit of HGX across multi-
ple new dimensions. For instance, we can already foresee the implementation of
tools to investigate the robustness of higher-order systems under different attack
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strategies. We will also provide methods to efficiently summarize higher-order
information and reduce the dimensionality of higher-order data. We aim to in-
clude tools to build and analyse higher-order dependencies from multivariate
time series [67], and measures of information theory to capture redundant and
synergistic higher-order interactions [49]. Moreover, we aim to expand our cov-
erage of higher-order processes, by including different evolutionary games [4,23],
ecological dynamics [38], and more.

We hope that HGX will make higher-order network analysis open to all re-
searchers dealing with networked data, and we invite the community to explore
the library and contribute.
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