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Abstract. Summarizing a large graph by grouping the nodes into clus-
ters is a standard technique for studying the given network. Traditionally,
the order of the discovered groups does not matter. However, there are
applications where, for example, given a directed graph, we would like to
find coherent groups while minimizing the backward cross edges. More
formally, in this paper, we study a problem where we are given a directed
network and are asked to partition the graph into a sequence of coherent
groups while attempting to conform to the cross edges. We assume that
nodes in the network have features, and we measure the group coher-
ence by comparing these features. Furthermore, we incorporate the cross
edges by penalizing the forward cross edges and backward cross edges
with different weights. If the weights are set to 0, then the problem is
equivalent to clustering. However, if we penalize the backward edges sig-
nificantly more, then the order of discovered groups matters, and we can
view our problem as a generalization of a classic segmentation problem.
To solve the algorithm we consider a common iterative approach where
we solve the groups given the centroids, and then find the centroids given
the groups. We show that—unlike in clustering—the first subproblem is
NP-hard. However, we show that if the underlying graph is a tree we
can solve the subproblem with dynamic programming. In addition, if the
number of groups is 2, we can solve the subproblem with a minimum cut.
For the more general case, we propose a heuristic where we optimize each
pair of groups separately while keeping the remaining groups intact. We
also propose a greedy search where nodes are moved between the groups
while optimizing the overall loss. We demonstrate with our experiments
that the algorithms are practical and yield interpretable results.

1 Introduction

Summarizing a large graph by grouping the nodes into clusters is a standard
technique for studying networks. While many techniques have been proposed for
clustering undirected graphs, directed graphs pose additional challenges.

On the other hand, much data can be naturally represented using directed
networks such as discussion threads in social media platforms or a citation graph.
In addition to edges we also typically have additional information attached to
the nodes, typically expressed as categorical labels or real-valued features. These
features allow us to measure the similarity of the nodes, which in turn allows us
to cluster similar nodes together. When clustering nodes we would like to take
edges into account. For example, given a citation graph, our goal is to partition
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nodes into similar groups such that one group cites the other. Another example
is a discussion thread where our goal is to group early messages in one group
and replies (and the following replies) in the other group.

We consider discovering ordered partitions in a directed graph. That is, given
a graph, our goal is to divide the vertices in a sequence of k groups such that each
group is as coherent as possible while (backward) cross edges are minimized.

We focus on using L2 error though our approach will work on any centroid-
based objective. The NP-hardness of clustering immediately implies the hard-
ness of our problem. In order to solve our problem we consider two approaches.

The first approach is a greedy search where we decrease the cost by moving
the vertices from one cluster to another. We show that by using a common L2

decomposition we can run a single iteration in O(k(nd+m)) time, where n and
m are the numbers of nodes and edges, and d is the number of features.

We also propose an iterative approach where we fix centroids and optimize
partition, and then fix partition and optimize centroids. Unlike with k-means
algorithm, finding an optimal partition for fixed centroids is NP-hard. We then
consider two common special cases. We show that if the input graph is a tree, we
can find the partition with dynamic programming in O(dn) time. We also show
that if k = 2, we can find the partition with a minimum cut in O(n(d+m))
time. For a general case, we propose an algorithm that enumerates all pairs
of groups and optimizes them using minimum cut while keeping the remaining
groups fixed.

2 Preliminary notation and problem definition

We start by establishing the notation that we will use throughout the paper and
define our main optimization problem.

We assume that we are given a directed graph G = (V,E), where V is
the set of vertices, and E is the set of edges between vertices. We typically
define n to be the number of vertices |V | and m to be the number of edges
|E|. Assume two disjoint set of vertices A and B. We will write E(A,B) =
{e = (v, w) ∈ E | v ∈ A,w ∈ B} to be the edges from A to B.

We assume that we are given a function H : 2V → R that measures the
coherency of a vertex set. We are particularly interested in using L2 error as a
measure of coherence. More specifically, assume that we have a map a : V → RD

that maps a vertex v to a real-valued vector ofD features a(v). Then the measure

is L2(S) = minµ
∑

v∈S ∥a(v)− µ∥22, where µ is the centroid µ = 1
|S|

∑
v∈S a(v).

Our goal is to partition the graph into a sequence of k groups that are at the
same time coherent and minimize the cross-edges. In order to measure the cost of
such a partition, we introduce two weight parameters λf and λb for the forward
and backward edges, respectively. Given an ordered partition S = S1, . . . , Sk,
we define a cost function q as

q(S | λf , λb, H) =

k∑
i=1

H(Si) +

k∑
j=i+1

λf |E(Si, Sj)|+ λb|E(Sj , Si)| .
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We often drop H, λf , or λb from the notation if they are clear from the context.
The definition of q leads immediately to our main optimization problem

Problem 1 (directed graph segmentation (dgs)). Given a directed graph G =
(V,E), integer k, two weights λf and λb, and a function H : 2V → R, find an
ordered k-partition S = S1, . . . , Sk of V such that q(S | λf , λb, H) is minimized.

Note that if we set λb = λf , then the order of sets in S does not matter.
Moreover, if λb = λf = 0, then dgs reduces to a clustering problem. Especially,
if we set H to L2, then the optimization problem is equal to k-means. Our main
interest is to study cases when λf = 0 and λb is large, possibly infinite.

3 Related work

Clustering is a staple method in supervised learning with k-means problem
(see [8], for example) being the most common optimization problem. The NP-
hardness of clustering, even in the plane [15], makes our problem immediately
NP-hard when we set λf = λb = 0 and H to be L2 loss.

The closest framework to our problem setting is pairwise constrained clus-
tering (POC), where selected pairs of data points must be in the same cluster
or must belong to different clusters [7, 27]. Other constraints such as balancing
constraints or minimum-size constraints have also been studied; we refer the
reader to [2] for more details. The key technical difference is that in POC the
constraints have no direction. Consequently, the order of the resulting clusters
does not matter. However, in our case, if λf ̸= λb the order of groups matters,
especially if we set λb = ∞ and λf = 0.

We can also view our problem as a directed network clustering problem.
Undirected graph clustering has been well-studied. Popular methods include
minimizing modularity [18] as well as stochastic blockmodelling [1], spectral
clustering [26], or closely related normalized cuts [17]. We refer the reader to [9,
22] for surveys on undirected graph clustering.

The clustering of directed graphs poses additional challenges, as measures
need to be adapted. Leicht and Newman [14] proposed a modularity measure
for directed graphs. Chung [5] proposed a Laplacian matrix for directed graphs
allowing the use of spectral clustering. Moreover, a random-walk approach was
proposed by Rosvall and Bergstrom [21]. We refer the reader to [16] for a survey
on the clustering of directed graphs. The main difference between graph clus-
tering and our problem is that graph clustering methods focus on optimizing
measures based solely on edges. In contrast, we use additional information, for
example, L2 error over the features while also minimizing the number of cross
edges.

An interesting special case of our problem occurs when the underlying graph
is a directed path, and we set the backward weight to λb = ∞. In such a case,
the clusters will respect the order of the vertices, and dgs reduces to a segmen-
tation problem, in which we are given a sequence of points and are asked to
segment the sequence into k coherent groups. Segmentation can be solved with
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Algorithm 1: Iterative algorihm

1 for v ∈ V do assign v to a set Si randomly;
2 while the loss is decreasing or until a set amount of iterations do
3 compute the centroids µi =

1
|Si|

∑
v∈Si

a(v) for i = 1, . . . , k;

4 optimize S minimizing q(S,M | λf , λb) while the centroids
M = {µi | i = 1, . . . , k} remain fixed;

5 return sets S1, . . . , Sk;

dynamic programming in quadratic time [3] and can be efficiently approximated
in quasilinear time [10] or linear time [11, 25].

Finally, let us point out an interesting connection to isotonic regression [13].
Assume that the underlying graph is a DAG. If we set λb = ∞ and λf = 0,
use L2 error, and additionally require that the L2 norms of the centroids need
to be monotonically increasing ∥µi−1∥2 < ∥µi∥2. Then we can show that the
optimization problem can be solved in polynomial time by first applying isotonic
regression, ordering the nodes by the obtained mapping, and segmenting the
nodes in k segments using dynamic programming [3].

4 Iterative algorithm for L2 error

Let us now focus on using L2 error as the measure of coherency. A standard al-
gorithm to solve the k-means problem is to iteratively fix centroids and optimize
the partition and then optimize centroids while keeping the partition fixed.

In order to adapt this idea to our approach, assume that we are given an
ordered k-partition S of vertices V and k centroids. Let us define the cost

q(S, {µi} | λf , λb) =

k∑
i=1

∑
v∈Si

∥a(v)− µi∥22+
k∑

j=i+1

λf |E(Si, Sj)|+λb|E(Sj , Si)| .

We will then consider the two related sub-problems: in the first, we optimize
the partition while keeping the centroid fixed while in the second we optimize
the centroids while keeping the partition fixed, as given in Algorithm 1.

Problem 2 (dgs-partition). Given a directed graph G = (V,E), integer k,
two weights λf and λb, and k centroids µ1, . . . , µk, find an ordered k-partition
S = S1, . . . , Sk of V such that q(S, {µi} | λf , λb) is minimized.

Problem 3 (dgs-centroid). Given a directed graph G = (V,E), integer k, two
weights λf and λb, and an ordered k-partition S = S1, . . . , Sk of V , find k
centroids µ1, . . . , µk such that q(S, {µi} | λf , λb) is minimized.

Note that dgs-centroid has an analytical solution, µi = 1
|Si|

∑
v∈Si

a(v).

However, dgs-partition is an NP-hard problem.

Theorem 1. dgs-partition is NP-hard.
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Proof. We will show that the unweighted minimum multiterminal cut problem
(mtc) can be reduced to dgs-partition. mtc is an NP-hard problem [6] where
we are given a graph and a set of terminals T = t1, . . . , tk and are asked to
partition the vertices in k groups C = C1, . . . , Ck such that ti ∈ Ci and the
number of cross-edges is minimized.

Let G = (V,E) be an undirected instance of mtc with k terminals T =
t1, . . . , tk. Create an instance of dgs-partition as follows: Set the number of
disjoint sets to find as k and set λf = λb = 1. Define k centroids µ1, . . . , µk to
be standard unit vectors of length k such that µi has 1 as the ith entry and 0
as all the other entries. Create graph G′ as an instance of dgs-partition so
that it contains all the vertices in V and each undirected edge in E becomes a
directed edge in an arbitrarily chosen direction. Additionally, for each terminal
ti create a set Ui of |Ui| = |V | new vertices that are only connected to ti. We
set the feature vectors a(ti) = µi and a(u) = µi for any u ∈ Ui. The remaining
vertices v ∈ V \ T have a(v) = 0.

Let S1, . . . , Sk be the solution for dgs-partition.
The cost of including a vertex u ∈ Ui in Si is ∥a(u)− µi∥2 = 0, while the cost

of including u in Sj , for j ̸= i, is ∥a(u)− µj∥2 = 2. It is then optimal to include
u ∈ Ui in Si as the possible loss of 1 from the edge between the vertex u and ti
is less than the loss of 2 that we would have if u was in another set. Therefore,
an optimal solution will include all the vertices in Ui in Si. This means that
the terminal ti will also have to be in Si as otherwise, the cost from the edges
between ti and the |Ui| = |V | vertices in Ui will be more than any possible loss
from the edges between ti and any other vertices v ∈ V . Thus, ti ∈ Si.

Finally, the remaining non-terminal vertices in V \T have the same loss of 1
regardless of which set they belong to, so an optimal solution will assign them
such that the cost arising from the edges between the sets is minimized.

Given a partition S, we define a cut C for G by setting Ci = V ∩ Si. This
is a valid cut since ti ∈ Si, and since dgs-partition minimizes the number of
cross-edges, C is optimal. ⊓⊔

5 Exact algorithms for special cases

We showed that in general solving dgs-partition is anNP-hard problem. How-
ever, there are two cases where we can solve the sub-problem in polynomial time:
(i) the input graph is a tree or (ii) k = 2. In this section, we will consider these
two cases. The more general case is discussed in the next section.

We should point out that while we focus on L2 error this approach works
with any error as long as it can be decomposed as a sum over the nodes.

Case when the input graph is a tree. We will first consider a case
when the input graph G is a tree. For simplicity, we will assume that G is also
arborescence, that is, there is a root vertex, say r, from that connects to each
vertex with a directed path, but we can extend this approach to trees and forests.

Given an arborescence G = (V,E) and a vertex v ∈ V , let Gv be the subtree
containing v and its descendants. We define c[v, i] to be the cost of the optimal



6 I. Kumpulainen et al.

partition S of Gv such that v ∈ Si. Note that mini c[r, i] is equal to the cost of
the solution to dgs-partition.

In order to compute c[v, i], let us first define

ℓ[v, i] = min
j<i

c[v, j] and u[v, i] = min
j>i

c[v, j],

that is, ℓ[v, i] is the cost of the optimal partition S of Gv such that v ∈ Sj for
some j < i. Similarly, u[v, i] is the cost of the optimal partition S of Gv such
that v ∈ Sj for some j > i. For simplicity, we define ℓ[v, 1] = u[c, k] = ∞.

Next, we compute c[v, i] using only u and ℓ of the children of v.

Theorem 2. Let c, u, and v be as above. Then for v ∈ V and i ∈ 1, . . . , k,

c[v, i] = ∥a(v)− µi∥2 +
∑

w|(v,w)∈E

min(c[w, i], λf + u[v, i], λb + ℓ[v, i]) . (1)

Proof. Define for notational simplicity M = µ1, . . . , µk. Let S be the partition
responsible for c[v, i] For any child w of v, let us write Sw to be S projected to
Gw. Let g(w) be the (possibly zero) cost of the possible cross edge (v, w). Since
Gv is a tree, we can decompose the cost as

q(S,M) = ∥a(v)− µi∥2 +
∑

w|(v,w)∈E

g(w) + q(Sw,M) .

Let w be a child of v. We have 3 possible cases. If w ∈ Si, then g(w) = 0 and, due
to optimality, q(Sw,M) = c[w, i]. If w ∈ Sj for j < i, then g(w) = λb and, due
to optimality, q(Sw,M) = ℓ[w, i]. Similarly, if w ∈ Sj for j > i, then g(w) = λf

and, due to optimality, q(Sw,M) = u[w, i]. Finally, due to the optimality, the
actual case will be the one yielding the smallest cost. ⊓⊔

Computing c[v, i] requires O(d+ deg v) time, where d is the length of the
feature vector. Since ℓ[v, i] = min(ℓ[v, i − 1], c[v, i]) and u[v, i] = min(u[v, i +
1], c[v, i]) we can compute both quantities in constant time. In summary, we can
find the optimal cost in O(dn+m) ∈ O(dn) time. To obtain the corresponding
partition we store the indices that were responsible for c[v, i] in Eq. 1.

In summary, if the input graph is a tree, we can search for the partition using
Algorithm 1 and solve the sub-problem dgs-partition with dynamic program-
ming. We refer to this algorithm as TreeDp.

Case when k = 2. Next, we allow the input graph to be any directed graph
but we require that k = 2. We will argue that we can then solve dgs-partition
using a (weighted) minimum directed cut.

In order to do the mapping assume that we are given a graph G = (V,E)
and two centroids µ1 and µ2. We define a weighted graph H = (W,A) as follows.
The vertices W consist of V and two additional vertices s and t. For each v we
introduce an edge (s, v) to A with a weight c(s, v) = ∥v − µ2∥2 and an edge (v, t)

with a weight c(v, t) = ∥v − µ1∥2. For each, (v, w) ∈ E we add an edge (v, w)
with a weight λf and an edge (w, v) with a weight λb.

The next theorem connects the s− t cut with the cost of the partition.
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Algorithm 2: Mcut, iterative local search based on a minimum cut

1 for v ∈ V do assign v to a set Si randomly ;
2 compute the centroids {µi} for the current partition;
3 while the loss is decreasing or until a set amount of iterations do
4 foreach pair i, j with 1 ≤ i < j ≤ k do
5 solve dgs-partition(i, j), and update µi and µj ;

6 return sets S1, . . . , Sk;

Theorem 3. Let C1, C2 be the s-t cut for H. Let S = S1, S2 where Si = Ci∩V .
Then q(S, µ1, µ2) is equal to the total weight of edges from C1 to C2.

Proof. The cost of the partition is equal to

q(S, µ1, µ2) =
∑
v∈S1

∥v − µ1∥2 +
∑
v∈S2

∥v − µ1∥2 +
∑

e∈E(S1,S2)

λf +
∑

e∈E(S2,S1)

λb

=
∑
v∈S1

c(v, t) +
∑
v∈S2

c(s, v) +
∑

e∈A(S1,S2)

c(e).

The sums amount to the total weight of edges from C1 to C2. ⊓⊔

The theorem states that we can solve dgs-partition with a minimum cut on
H. Solving cut can be done in O(nm) time [19], though theoretically slower algo-
rithms, e.g., by Boykov and Kolmogorov [4], are faster in practice. Constructing
the graph requires O(nd+m) time, where d is the length of the feature vectors.
Thus, we can solve dgs-partition for k = 2 in O(n(d+m)) time.

6 Algorithms for the general case

In this section, we consider two algorithms for the general case. The first algo-
rithm is based on the k = 2 case, where we iteratively select pairs i < j and
optimize Si and Sj while keeping everything else fixed. The second algorithm is
a greedy search where we update partitions by moving one node at a time.

Iterative two-group search. Our first approach, given in Algorithm 2, is
based on the special case for k = 2. We iterate over all pairs 1 ≤ i < j ≤ k and
for each pair, we optimize Si and Sj while keeping the remaining groups fixed
and all the centroids fixed. We will refer to this problem as dgs-partition(i, j)
Once Si and Sj are updated, we update the centroids µi and µj .

Solving dgs-partition(i, j) is almost the same as solving dgs-partition
for k = 2. The only main difference is that we need to take into account the
cross edges from Si and Sj to other groups. More formally, we construct the
same graph H as in Section 5 except we set the costs

c(s, v) = ∥v − µj∥2 + λf |E(W, v)|+ λb|E(v,W )|, and

c(v, t) = ∥v − µi∥2 + λb|E(W, v)|+ λf |E(v,W )|, where W = Si+1 ∪ · · · ∪ Sj−1.

The next result implies that a minimum cut in H solves dgs-partition(i, j).
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Algorithm 3: Greedy, greedy local search

1 for v ∈ V do assign v to a set Si randomly;
2 while the loss is decreasing or until a set amount of iterations do
3 for v ∈ V do find optimal Sj for v; move v to Sj ;
4 return sets S1, . . . , Sk;

Theorem 4. Let C1 = Si ∪ {s} and C2 = Sj ∪ {t}. Then q(S, {µt}) is equal to
the total weight of edges from C1 to C2 in H.

The proof is similar to the proof of Theorem 3 and is therefore omitted.
Similar to the case k = 2, solving the minimum cut can be done in O(nm)

time, and constructing H requires O(dn+m) time, where d is the length of the
feature vector. Consequently, since there are k(k − 1)/2 pairs of i, j, a single
iteration of the algorithm requires O

(
k2n(d+m)

)
time.

Greedy local search. As a final algorithm (see Algorithm 3), we consider
a greedy approach where we start with a random partition and try to improve
it by moving individual nodes from one group to another until convergence.

Next, we will prove the running time of the algorithm.

Theorem 5. A single iteration of Algorithm 3 requires O(knd+ km) time,
where d is the length of the feature vectors.

First, we need to compute the difference of L2 error in O(d) time.

Lemma 1. Let S be a partition. Select i and v ∈ Si. Select j and let S ′ be the
result of moving v from Si to Sj. Let {µt} and {µ′

t} be the corresponding optimal
centroids. Let H(Si) be the L2 error of Si and write H(S) =

∑
H(S⟩). Then

H(S ′)−H(S) = |Si| ∥µi∥2 + |Sj | ∥µj∥2 − |S′
i| ∥µ′

i∥
2 −

∣∣S′
j

∣∣ ∥∥µ′
j

∥∥2
Proof. The identity

∑
w∈St

∥a(w)− µt∥2 = (
∑

w∈St
∥a(w)∥2)−|St| ∥µt∥2 imme-

diately proves the claim. ⊓⊔

Proof (of Theorem 5). Computing the gain of moving v from Si to Sj requires
computing µ′

i and µ′
j which can be done in O(d) time using µi and µj . Lemma 1

allows us to compute the cost difference in O(d+ deg(v)) time. Summing over
v and j leads to a running time of O(knd+ km). ⊓⊔

7 Experimental evaluation

In this section, we describe our experiments to test the Greedy, TreeDp, and
Mcut algorithms in practice. we evaluate the algorithms first on synthetically
constructed graphs and then using two real-world datasets. All data is publicly
available, and we make our source code available online.1

1 https://version.helsinki.fi/dacs/coherent-groups-network
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Experiments on synthetic data. To test our algorithms, we create two
synthetic graphs: a tree graph STree and a directed acyclic graph SDAG. Each
graph consists of 1000 vertices with 10-dimensional features that separate them
into 5 clusters. For the tree graph, we have the vertices numbered from 1 to
1000, and for each vertex v except the first, we randomly add an edge from one
of the earlier vertices to v. For SDAG, we also randomly add an edge between
each pair of vertices vi, vj with i < j with probability 0.01.

We create the features by first sampling 5 centroids uniformly distributed
from [0, 1]10. We then assign v200(i−1)+1, . . . , v200i to a cluster Si with the ith
centroid. Each node then gets a normally distributed feature centred at the
centroid of the cluster it belongs to, with a variance of 0.1 in each dimension.

We define the sets S1, . . . , S5 as the ground truth, as this partition initially
minimizes the L2 loss within the sets, and there cannot be backward edges
between sets but only forward edges from a set Si to a later set Sj with i < j.
We also add random noise, by independently, with a probability p, reassigning
each node a new normally distributed feature around a random centroid.

We compare the similarity between the ground truth partition S and the
partition S ′ returned by our algorithms by computing the Adjusted Rand Index,

ARI = RI−E[RI]
max(RI)−E[RI] . Here RI(S,S ′) = a+b

(n2)
is the Rand Index, where a is the

number of pairs of elements that are in the same set in both S and S ′, and b is
the number of pairs of elements that are in different sets in both S and S ′ [12].

To test our algorithms, we run TreeDp on STree, Mcut on SDAG, and
Greedy on both graphs. For each algorithm, we compare the results for the
case when λf = λb = 0, which is equivalent to k-means clustering, to the case
when λf = 0, λb = 105. The results of the algorithms may vary depending on
how the nodes are randomly initialized to random sets and may get stuck in
local minima. Therefore, we run each algorithm 10 times with different random
initializations and keep the partition that results in the smallest loss.

In Figure 1, we plot ARI between the partition and the ground truth as a
function of the probability p of assigning nodes new features.

When λb = 0, the ARI starts from 1 but rapidly decreases to 0 as the
probability p increases. However, for the λb = 105 case, our algorithms return a
partition that respects the underlying network structure and remains somewhat
similar to the initial ground truth partition. This kind of partitioning is more
suitable for practical applications, where the features for individual nodes are
noisy or unreliable, and the network structure is more important.

Experiments on real-world data. We perform experiments on two real-
world datasets: a tree graph constructed from a discussion on Reddit and a graph
constructed from scientific publications from the DBLP2 dataset [24].

For the Reddit dataset, we use the most popular thread on /r/politics, which
discusses the last U.S. presidential election between Joe Biden and Donald
Trump3. We use the Reddit API to collect the comments in the thread and

2 https://www.aminer.org/citation
3 https://www.reddit.com/r/politics/comments/jptq5n/megathread_joe_biden_

projected_to_defeat/
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Fig. 1: Adjusted Rand Index between the ground truth and the partition chosen
by the algorithms as a function of the probability p of reassigning vertices a new
random features from a random cluster.

Table 1: The number of vertices |V | and the number of edges |E| for the tree
graphs, as well as the loss, runtime, and the number of iterations #I for Greedy
and TreeDp.

Greedy TreeDp

Dataset |V | |E| Loss Runtime #I Loss Runtime #I

Reddit 74 778 74 777 5 455 534.6 2 h 9 min 42 55 220.29 4 h 58 min 75
STree 1 000 999 500 253.44 0.3 s 6 200.26 1.4 s 20

construct a graph where the initial submission and each comment are nodes,
and add an edge from each node to the comments responding to it.

To obtain the feature vectors from text, we use an LLM MPNet [23], to
convert the text for each node into a 768-dimensional vector. We chose the all-
mpnet-base-v2 language model for creating the feature vectors, as its sentence
embeddings achieved the best performance for general-purpose tasks out of the
HuggingFace sentence-transformer models [20].

For the DBLP dataset, we chose publications from ECMLPKDD, ICDM,
KDD, NIPS, SDM, and WWW conferences. For each publication, we add an
edge to those publications that are citing it. To create the features for each node,
we again use the MPNet model to convert the titles of the scientific publications
into sentence embeddings that we use as the feature vectors.

We set the number of clusters to 20 and set λf = 0 and λb = 100000. We
compare TreeDp and Greedy on Reddit and use DBLP to compare Mcut in
Table 1, and Greedy in Table 2. In addition, we compare the algorithms using
the synthetic STree and SDAG datasets with the number of clusters as 5 and the
probability of assigning nodes with features from a random cluster as p = 0.2.

In our experiments, the TreeDp and Mcut algorithms find partitions re-
sulting in significantly lower loss than the Greedy algorithm, which gets stuck
in a poor local minimum. In general, the number of iterations for each algorithm
until convergence is relatively low, except for TreeDp on the Reddit dataset,
where we halted the execution after 75 iterations while the loss was still de-
creasing. In particular, on the DBLP dataset, the Mcut converges in only 7
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Table 2: The number of vertices |V | and the number of edges |E| for DBLP and
SDAG, and the loss, runtime, and the number of iterations #I for Greedy and
Mcut.

Greedy Mcut

Dataset |V | |E| Loss Runtime #I Loss Runtime #I

DBLP 30 581 70 972 28 722 200.72 33 min 22 8 622 678.8 42 min 7
SDAG 1 000 6 060 400 388.59 4.6 s 11 312.07 16 s 7

iterations resulting in a comparable running time to the Greedy algorithm de-
spite individual iterations taking much longer. The running times for the larger
graphs Reddit and DBLP remain practical.

8 Concluding remarks

In this paper, we considered segmenting directed networks by grouping nodes
into coherent groups while minimizing (backward) cross edges. We considered
two general approaches: The first approach is an iterative algorithm, alternating
between fixing the centroids and optimizing the partition, and vice versa. We
showed that finding a partition is an NP-hard problem, but that we can find the
partition exactly for tree graphs in O(dn) time, or when the number of groups
is two in O(n(d+m)) time. For a more general case, we proposed an algorithm
optimizing the nodes between pairs of groups at a time, as well as a greedy local
search algorithm. We performed experiments on both synthetic and real-world
datasets to demonstrate that the algorithms are practical, finding coherent node
groups with a low loss in a feasible number of iterations and running time.

While this paper focused on using the L2 loss function for measuring the
distance between the real-valued feature vectors, our methods could be used
together with other types of loss functions. In particular, networks, where nodes
have categorical features, provide an interesting line for future work. Another
direction for future work would be to consider how more advanced methods for
initializing the sets could be applied or developed for our problem, rather than
assigning each node to a random set at the beginning of the algorithm.
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[17] Meilă, M., Pentney, W.: Clustering by weighted cuts in directed graphs. In:

SDM. pp. 135–144 (2007)
[18] Newman, M.E., Girvan, M.: Finding and evaluating community structure

in networks. Physical review E 69(2), 026113 (2004)
[19] Orlin, J.B.: Max flows in O(nm) time, or better. In: STOC. pp. 765–774

(2013)
[20] Reimers, N.: SBert sentence-transformers documentation. https://www.

sbert.net/docs/pretrained_models.html (2022), accessed: 2023-04-02
[21] Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks

reveal community structure. PNAS 105(4), 1118–1123 (2008)
[22] Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
[23] Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: Mpnet: Masked and permuted

pre-training for language understanding. NIPS 33, 16857–16867 (2020)
[24] Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction

and mining of academic social networks. In: KDD. pp. 990–998 (2008)
[25] Tatti, N.: Strongly polynomial efficient approximation scheme for segmen-

tation. IPL 142, 1–8 (2019)
[26] Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–

416 (2007)
[27] Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clus-
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