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Abstract. In the past, the dichotomy between homophily and het-
erophily has inspired research contributions toward a better understand-
ing of Deep Graph Networks’ inductive bias. In particular, it was believed
that homophily strongly correlates with better node classification predic-
tions of message-passing methods. More recently, however, researchers
pointed out that such dichotomy is too simplistic as we can construct
node classification tasks where graphs are completely heterophilic but
the performances remain high. Most of these works have also proposed
new quantitative metrics to understand when a graph structure is useful,
which implicitly or explicitly assume the correlation between node fea-
tures and target labels. Our work empirically investigates what happens
when this strong assumption does not hold, by formalising two gener-
ative processes for node classification tasks that allow us to build and
study ad-hoc problems. To quantitatively measure the influence of the
node features on the target labels, we also use a metric we call Feature
Informativeness. We construct six synthetic tasks and evaluate the per-
formance of six models, including structure-agnostic ones. Our findings
reveal that previously defined metrics are not adequate when we relax the
above assumption. Our contribution to the workshop aims at presenting
novel research findings that could help advance our understanding of the
field.

Keywords: Graph Representation Learning · Task Complexity · Deep
Graph Networks.

1 Introduction

In recent years we have witnessed an exponentially increasing interest in machine
learning techniques that can process graph-structured data [8,22,50,3]. This is
due to the wide range of applications that these methods can deal with, as graphs
are a natural abstraction in many scientific fields: chemistry [45], physics [9], and
recommender systems [17] to name a few.

In the context of Deep Graph Networks (DGNs) [3], based on neural [46,36],
probabilistic [2], or even untrained message passing [19], researchers have empir-
ically observed that such models perform favourably on node classification tasks
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when the graph structure is homophilic [35], meaning that adjacent nodes in the
graph share similar features or target labels to be predicted. In contrast, het-
erophilic graphs exhibit an opposite behaviour, and structure-agnostic baselines
like a Multi-Layer Perceptron (MLP) proved to be better or very competitive
compared to DGNs at classifying nodes under heterophily [54,32]. There has been
a lot of effort in the literature to mitigate the (apparent) detrimental effects of
heterophily, but a separate line of works recently showed that it is possible to
construct completely heterophilic graphs where DGNs achieve an almost perfect
test performance [31,10]3. There, it is claimed that the distribution of the neigh-
bouring class labels is a decisive factor to determine whether a DGN’s inductive
bias is suitable for the task, meaning that it leads to better performances com-
pared to an MLP. These results, however, rely on a specific, and often implicit,
assumption about a good correlation between the node features and the target.

The goal of this contribution is to continue the discussion on how to determine
what are the components that make a node classification task difficult to solve,
without being necessarily bound to message-passing architectures. At present
time, we know that homophily alone is not a good metric to gauge the difficulty
of the task, and in this paper we aim at showing that if we relax the assumptions
of [31], the distribution of the neighbouring class labels does not tell the whole
story either. We achieve this by evaluating different models on a few but carefully
designed synthetic datasets for node classification that control specific properties
of the graph, similarly to what is done in [40]. In particular, we give examples
of cases where an unfavourable distribution of neighbouring class labels can be
associated with very good DGNs performances.

Our observations open new questions that we would like to discuss in the
context of the workshop: is it possible to create a taxonomy of the characteristics
that make a task easy or hard to solve (e.g., for message-passing architectures)?
Can we find new measures to quantitatively assess the presence or absence of such
characteristics? Is it possible to find criteria to determine the intrinsic difficulty
of tasks when the assumptions of [31] do not hold?

Addressing these questions can be critical for many reasons. First of all,
it would enhance our understanding of DGNs’ inductive bias (which is related
but orthogonal to their expressiveness in distinguishing substructures [14]), thus
allowing us to make sensible choices of model architectures for specific tasks.
Second, it could give some practical guidelines to identify whether the struc-
ture of the graph gives a practical advantage compared to just using the node
features, which (as of today) remains a purely empirical question [16]. In turn,
this would allow people to successfully apply DGNs to problems where no struc-
ture is available, by creating ad-hoc structures with well-defined characteris-
tics. So far, this has been done with nearest-neighbour graphs, although it re-
mains unclear whether this brings a significant advantage compared to an MLP
[25,4,33,44,53,29,48].

3 We found some mistakes in the proofs of this paper, which however do not undermine
its empirical results. We contacted the authors who are working on a new version.
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2 Related Works

The body of literature that critically investigates the apparent harm of het-
erophilic graphs has recently been growing. Some authors have tried to define
different “node behaviours” by analyzing the degree of a node and its local level
of heterophily, arguing that they can explain whether a DGN will perform well
or badly on a task [52]. These results rely on the assumption that nodes from
different classes exhibit distinct (to some extent) distributions of their features.
This is precisely the assumption we want to challenge in our contribution be-
cause, when put to the extreme, it means a structure-agnostic baseline would
already be able to correctly separate all nodes. Another contribution introduced
a new metric that measures how different node embeddings of different classes
look after an aggregation step, showing a good correlation between high val-
ues of the metric and good performances of a DGN [30]. Others exploited the
homophily assumption on the node features to rewire the graph by connecting
homophilic but distant neighbours, under the assumption that homophily helps
DGNs to perform better [27].

In the following, we will build on some recently defined metrics such as Label
Informativeness (LI) [42] and Cross-Class Neighborhood Similarity (CCNS) [31]
to create synthetic tasks. These are metrics that look more at the class infor-
mation rather than the features, and so far they have shown to correlate well
with the performance of a DGN when features of nodes of different classes are
generated by distinct (i.e. well-enough separated) distributions.

In time, researchers have also tried to empirically assess the quality of DGNs
compared to structure-agnostic baselines on a plethora of different real and
synthetic tasks [47,16,15,23,40]. Their results are mostly quantitative, but they
might act as a “certificate of goodness” of newly developed measures of tasks’
difficulty. Recently, an attempt has been made in this direction by comparing
the performance of models across a range of node and graph properties [32],
but some of the conclusions do not explicitly mention all assumptions made in
the process; for example, it appears that DGNs works better in the homophilic
setup, but we know from other works that this is not necessarily the case.

Finally, most theoretical research on message-passing methods deals with
the issues of over-smoothing [26,12,11,6], which is concerned with the flattening
of the graph signal after repeated applications of graph convolutions, and over-
squashing [1,49,20] of learned representations, meaning that there is a bottleneck
of information when predictions have to be made. In addition, there is a very
active research direction on the expressive power that comes with each message-
passing model [38,51,18,5]. These works are orthogonal to the current discussion,
as they talk about how difficult it can be for DGNs to process particular graphs
regardless of the specific task under consideration.

Overall, the landscape of contributions is vast and it is easy to misinterpret
some of the results when important assumptions are not explicitly formalized.
In the next sections, we will consider the scenario where the assumption of the
correlation between node features and target labels is not valid.
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3 Method

In this section, we formalise a generative process to create synthetic node clas-
sification tasks, each defined by a graph. We will focus on undirected graphs
G = (V, E), where V and E represent the set of nodes and edges, respectively.
The edges in E define the structure of G: two nodes u ∈ V and v ∈ V are con-
nected, or adjacent, if an edge {u, v} belongs to E . The set of neighbours of node
u ∈ V is denoted by Nu, that is, Nu = {v ∈ V | {u, v} ∈ E}; also, the degree
of a node is defined as du = |Nu|. In this paper, each node has a feature vector
and a target class label attached to it. For a node u, we denote its input feature
and output label as xu and yu, respectively. Without loss of generality, each
input feature is a d-dimensional vector, meaning xu ∈ Rd, and each class label
yu belongs to a finite set of labels C.

Before introducing the new generative process that we use in our experi-
ments, we review the most common metrics used in the literature to quantify
homophily, heterophily, and other relevant properties in graphs. A subsequent
analysis of their limitations will motivate our systematic study of different node
classification tasks by explicitly defining their generative processes and thus the
underlying assumptions.

Homophily/Heterophily Quantities Quantitative metrics for measuring ho-
mophily in graphs rely on the class similarity between adjacent node pairs. In
particular, a graph is considered homophilic if most of the adjacent nodes share
the same class label. In contrast, in an heterophilic graph nodes of the same
class tend not to connect together. The most common definition is possibly the
“edge-homophily” [54]:

he =

∑
{u,v}∈E I[yu = yv]

|E|
, (1)

where I[pred] = 1 if and only if the predicate pred is true. A purely heterophilic
graph has he = 0, whereas a purely homophilic graph satisfies he = 1.

A related quantity is the node-homophily [41], which computes the average
proportion of neighbours that have the same class across all nodes in the graph.
These two quantities are simple and intuitive, but they are sensitive to the
number of classes and their imbalance, making the numbers hard to interpret
and not very comparable across different datasets [28,42]. To overcome this issue,
researchers have introduced the notion of “adjusted homophily” [42]:

hadj =
he −

∑
k∈C p̄(k)

2

1−
∑

k∈C p̄(k)
2
, (2)

where p̄(k) ∝
∑

u∈Vk
du, and Vk = {u ∈ V | yu = k} is the subset of nodes

with the node class label equal to k. We will consider both edge and adjusted
homophily in our experimental settings to see how different they can get.
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Recent Quantities More recently, researchers realised that the dichotomy be-
tween homophily and heterophily does not tell the whole story about how “good”
a graph structure is, where good means that said structure allows to better sep-
arate nodes of different classes with the right inductive bias [31,43,42]. Conse-
quently, they started focusing on capturing neighbouring patterns across nodes
of the same or different classes.

The Cross-Class Neighbourhood Similarity (CCNS) [31] computes the simi-
larity between two classes k, k′ using the neighbourhood class label distribution:

CCNS(k, k′) =
1

|Vk||Vk′ |
∑
u∈Vk

∑
v∈Vk′

cos(Du, Dv), (3)

where Du is the empirical histogram (over |C| classes) of node u’s neighbouring
class labels, that is, Du(t) =

∑
w∈Nu

I[yw = t] counts how many neighbours
of u have the class label t. The function cos(·, ·) computes the cosine similarity
between two histograms, but any other similarity function can be used. Im-
portantly, the elements on the diagonal measure the neighbourhood similarity
among nodes with the same class label; instead, the off-diagonal elements mea-
sure the neighbourhood similarity among nodes with different class labels. The
CCNS has empirically proven to be a good certificate of difficulty for a task:
when there is high intra-class similarity and low inter-class similarity, a Graph
Convolutional Network (GCN) [24] typically performs better compared to an
MLP [31].

The Label Informativeness (LI) [42] is another metric that measures the
impact of neighbours’ class labels to determine a particular node’s class label:

LI = 2−
∑

k∈C
∑

k′∈C p(k, k
′) log p(k, k′)∑

k∈C p̄(k) log p̄(k)
, (4)

where p(k, k′) ∝
∑

{u,v}∈E I[yu = k ∧ yv = k′] is the empirical joint distribution
of class labels along the edges, and p̄(k) ∝

∑
u∈Vk

du. Given an edge {u, v} ∈ E ,
LI measures the amount of knowledge the label yv gives for predicting yu. Its
value is equal to 0 when the node label does not depend on the neighbours’
labels, and it is equal to 1 when the node label is completely determined by one
of its neighbours’ labels. Similarly to the CCNS, the LI empirically correlates
with the performances of DGNs better than other homophily metrics [42].

Limitations of Current Approaches The CCNS and LI metrics seem to
give more insights into what is a helpful graph structure, in the sense that the
numbers they provide correlate with the performance of a graph machine learning
classifier. However, these encouraging results rely on a strong assumption: the
input features xu are generated from a distribution Fyu , and the expectation of
the different distributions Fk are assumed to be distinct from each other [31].
While this assumption might seem reasonable (especially for tabular datasets),
it is also too simplistic for at least two reasons. First, it assumes that there is
already a good degree of separability between the nodes by just looking at their
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feature values. Secondly, we can build tasks where the node label depends solely
on the structural property of the input graph and not on their feature values; in
this case, the node features might even be missing. Generally speaking, a task
can be solved even though the relationship between node features and target
labels is too complex to show a direct correlation.

3.1 Generative Processes for Graphs

As mentioned in Section 1, our investigation stems from a few simple questions:
what happens when the assumption on features we just described does not hold
anymore? Can we still use quantitative metrics such as the CCNS and LI to
determine how “good” a structure is? How badly can these quantities fail at
recognising a helpful structure? To investigate this interplay between features
and structures in graph learning, we introduce two generative processes to create
synthetic node classification tasks with relatively straightforward characteristics.
In both cases, we will be able to enforce a low correlation between the features
and the target, which we measure with a quantity called Feature Informativeness
(FI) (also known as the coefficient of determination in previous works [34]). The
idea of FI is similar to LI: given that we model the input features x and the class
labels y as random variables, we measure the amount of knowledge the feature
x gives for predicting y as:

FI =
I(x,y)

H(x)
, (5)

where I(·, ·) is the (empirical) mutual information and H(·) is the (empirical)
entropy, with 0 ≤ I(x,y) ≤ H(x). When the input features are not categorical,
we discretise them using a histogram with a bin size equal to 1. The value of FI
ranges in the interval [0, 1], where 0 (resp. 1) denotes minimal (resp. maximal)
informativeness between node features and target labels.

Neighbours-Based Generative Process. The first generative process builds
tasks where the class label of a node depends solely on its neighbours:

hu ∼ Cat(1/K, . . . , 1/K), xu | h ∼ N (µhu
, σhu

), E | h ∼ E(h),

Huk =
∑
v∈Nu

I[hv = k], yu | E ,h = ϕ(Hu1, . . . ,HuK) (6)

where all hu are hidden factors modelled as categorical variables with K states
and the node input feature xu is generated from a Gaussian distribution whose
parameters depend on hu. The node class label yu is generated using a determin-
istic function ϕ which takes as input K values Hu1, . . . ,HuK , where Huk counts
the number of neighbours whose hidden variables are in the k-th state. Thanks
to the introduction of the hidden variables and the choice of ϕ, we can highlight
failure cases of the known metrics and argue for the creation of new ones that
are effective when the value of FI is low.
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Structural-Based Generative Process. In the second generative process,
the class label of a node depends solely on some structural properties and not
necessarily on neighbouring information. We define such process as:

yu ∼ Cat(1/K, . . . , 1/K), E | y ∼ E(y), xu | E = du, (7)

where all yu are categorical variables with K states and the node input feature
xu is the node degree. The distribution E generates a structure whose edges are
dependent on the specific node label assignments y; we refer the reader to the
next section for concrete examples. By construction, the node features are not
required at all to solve the task. Here, we use the node degree as the only node
feature similar to previous works [16] to obtain a low FI score.

4 Experiments

In the following, we report the details to reproduce our results, from the task
generation to the training of the different baselines.4

4.1 Task Generation

We create six different node classification tasks: the first three are generated
by the neighbour-based generative process (symbol Ni) while the last three are
generated by the structural one (symbol Si).

Most Common Hidden State (N1) In the first neighbour-based task N1,
we fix K = 4 and generate a random structure (i.e. for each node we randomly
select its neighbours). A continuous node feature is generated using 4 different
Gaussian, one for each class. The function ϕ is defined as follows:

yu = ϕ1(Hu1, Hu2, Hu3, Hu4) = argmax
k∈[1,4]

Huk. (8)

Least Common Hidden State (N2) The second task N2 is obtained by just
replacing the argmax of Equation (8) with the argmin. To simplify the task
from a “structural” viewpoint, we ensure that, for each node, it exists a hidden
state that never occurs in its neighbourhood (i.e. ∀u ∈ V.∃k ∈ [1, 4]. Hk = 0).

Parity (N3) The last neighbour-based task uses yet another different ϕ that
generates the class node label as follows:

ϕ3(Hu1, Hu2) = Hu2 mod 2. (9)

This means we consider the parity of the number of neighbours of class 2 to
determine the class of each node. In N3, the number of hidden states (and thus
the number of node class labels) is equal to 2.
4 https://github.com/danielecastellana22/feature-structure-interplay-graph-learning

https://github.com/danielecastellana22/feature-structure-interplay-graph-learning
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|V| |E| Avg. du K = |C| he hadj LI FI

N1 1911 32418 16.9639 4 0.2566 -0.0053 0.0003 0.0093
N2 1600 33416 20.8850 4 0.2475 -0.0037 0.0003 0.0112
N3 1600 31790 19.8687 2 0.5014 0.0025 0.0000 0.0029

S1 1600 33524 20.9525 4 0.0000 -0.3333 1.0000 0.0182
S2 1600 33398 20.8738 4 0.0000 -0.3333 0.2076 0.0164
S3 1580 9288 5.8785 4 0.3402 0.1152 0.0464 0.2704

Table 1. We report the statistics of the tasks considered. All our tasks exhibit a low
Feature Informativeness.

Easy Multipartite (S1) The first task purely based on structural properties
is task S1, where we generate a multipartite graph with K = 4 clusters. The
label yu indicates the cluster of a node. To facilitate the task, the connectivity
pattern among clusters is further simplified: nodes in cluster 1 are connected
with nodes in cluster 4 and nodes in cluster 2 are linked to nodes in cluster 3.
Thus, each node has neighbours with the same label.

Random Multipartite (S2) The structural task S2 is again a multipartite
graph with K = 4 clusters. However, this time the structure is generated ran-
domly. Given a node u and its cluster yu, we randomly select its neighbours from
all the nodes outside its cluster, i.e. the set {v | yv ̸= yu}. Thus, each node has
neighbours with all labels different from its own.

Count Triangles (S3) In the last structural task, the node class label yu indi-
cates the number of triangles in which the node is involved. At first, we sample
the labels yu ∈ [1, 4] for all nodes (K = 4). Then, we generate a structure such
that, for all nodes, the value of yu effectively indicate the number of triangles
the node belongs to. There exist various structures that can satisfy these con-
straints; in our experiment, we simply use the algorithm proposed in [37,39] to
generate a valid structure. We obtain the final structure by removing self-loops
and parallel edges.

4.2 Task Statistics

In Table 1, we report some statistics of the generated tasks. First, we observe that
the FI scores are always close to zero except for S3, and all graphs appear to be
quite heterophilic since the maximal values of hadj is 0.11. All generated graphs
exhibit different label connectivity patterns: in the neighbour-based tasks, there
is no information gain in observing the label of a neighbour in isolation (i.e. all
tasks have LI = 0); instead, in the structure-based tasks, we have three different
and higher values for LI.

We also show the CCNS matrix for each task in Figure 1. All neighbour-
based tasks (first row) have an almost uniform CCNS matrix, meaning that not



The Interplay between Features and Structures in Graph Learning 9

0 1 2 3

0
1
2
3

N1

0 1 2 3

0
1
2
3

N2

0 1

0

1

N3

0 1 2 3

0
1
2
3

S1

0 1 2 3

0
1
2
3

S2

0 1 2 3

0
1
2
3

S3

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. We show the CCNS matrices for every task considered. Our tasks exhibit a
broad spectrum of CCNs matrices with low FI.

even the neighbouring label distribution of a node is informative. In this case,
one can easily see a relation to the very low values of LI in Table 1. Instead,
in the first two structural tasks (second row) the CCNS exhibits a clear diag-
onal pattern, whereas in S3 the pattern is less obvious; this indicates that the
neighbouring label distribution of a node contains some information about its
label. Interestingly, here there is less agreement between the CCNS and the LI:
while on S1 the value of LI is equal to 1 (i.e. the label of a node is completely
determined by a neighbouring label), it is only 0.2 on S2. As pointed out in [42],
this happens because LI only considers the effect of picking one label from the
neighbourhood rather than considering the whole neighbouring label distribu-
tion (as CCNS does). As a side note, we notice that the CCNS matrix in S1

is different from the one in S2 even if in both tasks each node can be uniquely
classified by looking at the neighbouring class label distribution. This behaviour
is likely due to the limited expressiveness of the cosine similarity, which cannot
capture all differences between probability distributions.

For completeness, Figure 2 depicts the histograms of the node feature for each
class and each task. In all the neighbour-based tasks (first row) we can clearly
distinguish the different Gaussians used to generate the feature, but there is al-
most no correlation with the target labels thanks to our generative process.
Similarly, in the structural tasks (second row), the target labels have been gen-
erated in a completely independent way from the node features. The higher FI
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Fig. 2. We visualise the (discretised) distributions of the continuous features for the
different tasks, divided by class value. Except for S3, the distribution of the feature
values is approximately the same for each class.

for S3 is merely an artefact due to our arbitrary choice of the degree as a node
feature.

These analyses reveal that when the target labels do not directly correlate with
the node features, but instead depend on the underlying generative process in
complex ways, metrics such as LI and CCNS suggest that DGNs might perform
on par or worse than an MLP on the first three tasks (N1, N2, N3), whereas the
opposite should be true for the last three (S1, S2, S3). In the next sections, we
will empirically show that this is indeed not the case, thus questioning the effec-
tiveness of these metrics in discriminating the “goodness” of the graph structure
when the FI is low.

4.3 Experimental Settings

For each node classification task, we consider an experimental setup where we
randomly split 70% of the nodes for training, 10% for validation, and 20% for
testing. To assess the model performances, we first carry out model selection
by selecting the best configuration on the validation set, where accuracy is the
metric of interest. After the best configuration is selected, we estimate the trained
model’s empirical risk on the test nodes. This process is repeated 10 times for
different splits and the test results are averaged together.
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The models considered in our experiments are GCN [24], GATv2 [7], Graph-
SAGE [21], PNA [13], and an MLP. In addition, we consider another baseline
called “Mode” that always predicts the most frequent label in the training data.
In the model selection, we tried the following hyper-parameters: latent dimen-
sion ∈ {2, 5, 10, 20}, learning rate ∈ {0.01}, number of epochs ∈ {1000}, early-
stopping patience ∈ {100}, number of layers ∈ {2, . . . , 5} for the neighbour-
based tasks and ∈ {2, . . . , 9} for the structure-based ones, number of heads
∈ {1, 2, 3} for GAT and aggregation function ∈ {mean,max} for Graph-SAGE.
For all DGNs, we also validated: graph augmentation with self-loops, input skip-
connections and the ego- and neighbour-embedding separation (as suggested in
previous works for heterophilic graphs [54]).

4.4 Results

N1 N2 N3 S1 S2 S3

GCN 99.1± 0.4 72.9± 1.7 53.9± 3.0 99.5± 0.5 37.4± 1.8 54.9± 0.9
GATv2 99.0± 0.5 74.6± 1.5 58.0± 5.7 99.1± 0.5 59.2± 11.4 57.0± 2.0

GraphSAGE 98.9± 0.4 73.3± 1.4 53.3± 4.2 99.2± 0.7 70.6± 7.3 54.9± 1.5
PNA 98.9± 0.5 72.9± 1.0 53.4± 3.0 99.2± 0.4 49.0± 5.1 55.4± 1.2

MLP 32.0± 2.4 26.5± 1.8 51.6± 1.6 25.7± 1.7 25.8± 1.0 49.6± 1.0
Mode 32.7± 0.5 26.0± 0.6 50.9± 0.8 25.0± 0.6 24.8± 0.6 26.1± 0.6

Table 2. Mean and std test accuracy results obtained by models on the tasks.

In Table 2 we report the accuracy of all models under study on our synthetic
tasks. On the neighbour-based tasks (N1, N2, N3), the MLP has significantly
poorer performances compared to the DGNs because it does not have access
to the important information carried by the connectivity patterns, and it has
comparable accuracy to the Mode baseline. This result comes as no surprise due
to the absence of a correlation between features and target labels. The DGNs, on
the other hand, are able to exploit the structural information and produce better
scores. Nevertheless, the synthetic tasks are associated with different degrees of
difficulty: while on N1 all DGNs reach a test accuracy of almost 99%, they achieve
only 74% and 58% on N2 and N3, respectively. Following up on the discussion
of Section 4.2, the CCNS and LI are in clear disagreement with the empirical
results of Table 2: a very low value of LI and an almost uniform CCNS matrix
correspond to very good DGN scores on N1.

In the structure-based tasks (S1, S2, S3), the MLP still struggles. On S1 and
S2, its performances are close to the Mode baseline, while on S3 it is able to reach
a higher accuracy of almost 50% while Mode is stuck at 26%. This behaviour is
justified by the higher value of feature informativeness reported in Table 1. Also
in this case, the DGNs always outperform the structure-agnostic baselines since
the class labels depend on the structure, and as before the values of accuracy
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obtained by DGNs vary across the task. While all models solve S1 by reaching an
accuracy of 99%, the results on S2 range from 37% (GCN) to 70% (GraphSAGE).
Both S1 and S2 are multipartite graphs with the following difference: in S1 the
class of a node is completely determined by a label from its neighbourhood (since
all neighbours have the same label), while in S2 the node class label is determined
by all the neighbours’ label (it is the only missing labels in the neighbours). The
different performances obtained are therefore due to the intrinsic difficulties in
detecting the presence of neighbours rather than their absence. In fact, in S1 it
is sufficient to observe one of the neighbours’ labels to predict the correct node
class; instead, in S2 we need to know all the neighbours’ labels to detect the
missing class. This is yet another difference that cannot be detected by metrics
like the CCNS matrix since the neighbours’ label distribution is different for each
class (as shown in Figure 1). Finally, on S3 all DGNs reach an accuracy that
is slightly better than the MLP one. The hardness of this task arises from the
complexity of counting the number of triangles in random graphs, and it cannot
be captured by previous metrics that do not focus on the structural properties
of the graph. For instance, the CCNS would seem to suggest that S3 should have
been simpler than N1, but this is not what we have observed empirically.

In summary, these results show that class label-based metrics alone are not
enough to capture the intrinsic difficulty of neighbour-based and structural tasks
when the node features do not correlate with class labels, which is the main and
strong assumption that previous works have (more or less implicitly) made. This
calls for the development of new metrics and further investigation of data where
the FI is low. We also argue that researchers have not devoted enough attention
yet to the nature of the function ϕ. While we do not have access to this function
in real-world problems, deepening our understanding of the relation between ϕ
and DGNs’ performances in a controlled setting can help us make considerable
progress in the field.

5 Conclusions

In this paper, we identified potential limitations of known node classification
metrics that estimate how useful the graph structure is in effectively distin-
guishing nodes belonging to different classes. We then presented two generative
processes for node classification tasks where the main assumption of these met-
rics does not hold. Through our findings, it became evident that both the CCNS
and LI are inadequate indicators when node features do not correlate with target
labels. This work hopes to highlight the necessity for novel indicators to fill this
gap and to emphasise the importance of a more systematic investigation into
the underlying assumptions of these metrics. Such efforts are crucial if we want
to make concrete progress in the area of graph representation learning.
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