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Abstract. Graph Neural Networks (GNNs) have become the leading
paradigm for learning on (static) graph-structured data. However, many
real-world systems are dynamic in nature, since the graph and node/edge
attributes change over time. In recent years, GNN-based models for tem-
poral graphs have emerged as a promising area of research to extend the
capabilities of GNNs. In this work, we provide the first comprehensive
overview of the current state-of-the-art of temporal GNN, introducing
a rigorous formalization of learning settings and tasks and a novel tax-
onomy categorizing existing approaches in terms of how the temporal
aspect is represented and processed. We conclude the survey with a dis-
cussion of the most relevant open challenges for the field, from both
research and application perspectives.
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Neural Network

1 Introduction

The ability to process temporal graphs is increasingly important in various fields
such as recommendation systems [39], social network analysis [6], transportation
systems [47] and face-to-face interactions [20]. Traditional graph-based models
are not well-suited for analyzing temporal graphs as they assume a fixed structure
and cannot capture temporal evolution. In recent years, several models have
been developed to directly encode temporal graphs, including random walk-
based methods [37], temporal motif-based methods [19], matrix factorization-
based approaches [1], and deep learning models [24].

Graph Neural Networks (GNNs) [32] have emerged as the leading paradigm
for static graph processing due to their ability to efficiently propagate infor-
mation along the graph and learn node and graph representations. GNNs have
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achieved state-of-the-art performance in tasks such as node classification [12],
link prediction [48], and graph classification [42]. The success of GNNs highlights
the importance of developing deep learning techniques for non-Euclidean data
and their potential to revolutionize the analysis of graph-structured systems.

GNNs have also been successfully applied to temporal graphs with approaches
ranging from attention-based methods [41] to Variational Graph-Autoencoder
(VGAE) [11]. However, there is currently a lack of systematic literature re-
view in this area. Existing surveys either discuss general techniques for learn-
ing over temporal graphs with only brief mentions of temporal extensions of
GNNs [15,2,43,40] or focus on specific topics like temporal link prediction [27,33]
or temporal graph generation [10].

This work aims to fill the gap by providing a systematic review of GNN-based
methods for temporal graphs, referred to as Temporal GNNs (TGNNs), and for-
malizing the tasks being addressed. The main contributions include a coherent
formalization of learning settings and tasks on temporal graphs, an organization
of existing TGNN works into a comprehensive taxonomy based on time repre-
sentation and the mechanism used, highlighting limitations of current TGNN
methods, discussing open challenges for further investigation, and presenting
real-world applications where TGNNs could provide substantial gains.

2 Temporal Graphs

We provide a formal definition of the different types of graphs analyzed in this
work and we structure different existing notions in a common framework.

Definition 1 (Static Graph - SG). A Static Graph is a tuple G = (V,E,XV , XE),
where V is the set of nodes, E ⊆ V × V is the set of edges, and XV , XE are
dV -dimensional node features and dE-dimensional edge features.

Node and edge features may be empty. Moreover, in the following, we assume
that all graphs are directed, i.e., (u, v) ∈ E does not imply that (v, u) ∈ E.

Extending [27], we define Temporal Graphs as follows.

Definition 2 (Temporal Graph - TG). A Temporal Graph is a tuple GT =
(V,E, VT , ET ), where V and E are, respectively, the set of all possible nodes and
edges appearing in a graph at any time, while

VT := {(v, xv, ts, te) : v ∈ V, xv ∈ RdV , ts ≤ te},
ET := {(e, xe, ts, te) : e ∈ E, xe ∈ RdE , ts ≤ te},

are the temporal nodes and edges, with time-dependent features and initial and
final timestamps. A set of temporal graphs is denoted as GT .

The definition implies that node and edge features are constant inside each
interval [ts, te], but may otherwise change over time. Since the same node or edge
may be listed multiple times, with different timestamps, we denote as t̄s(v) =
min{ts : (v, xv, ts, te) ∈ VT } and t̄e(v) = max{te : (v, xv, ts, te) ∈ VT } the time of
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first and last appearance of a node, and similarly for t̄s(e), t̄e(e), e ∈ E. Moreover,
we set Ts(GT ) := min{t̄s(v) : v ∈ V }, Te(GT ) := max{t̄e(v) : v ∈ V } as the
initial and final timestamps in a TG GT . For two TGs Gi

T := (V i, Ei, V i
T , E

i
T ),

i = 1, 2, we write G1
T ⊆V G2

T to indicate the topological inclusion V 1 ⊆ V 2,
while no relation between the corresponding timestamps is required.

General TGs have no restriction on their timestamps, which can take any
value (for simplicity, we just assume that they are non-negative). However, in
some applications, it makes sense to force these values to be multiples of a fixed
timestep. This leads to the notion of Discrete Time Temporal Graphs, which are
defined as follows.

Definition 3 (Discrete Time Temporal Graph - DTTG). Let ∆t > 0 be
a fixed timestep and let t1 < t2 < · · · < tn be timestamps with tk+1 = tk +∆t. A
Discrete Time Temporal Graph GDT is a TG where for each (v, xv, ts, te) ∈ VT

or (e, xe, ts, te) ∈ ET , the ts, te are taken from the set of fixed timestamps (i.e.,
ts, te ∈ {t1, t2, . . . , tn}, with ts < te).

2.1 Representation of temporal graphs

Two main strategies can be found in the literature for the description of time-
varying graphs, based on snapshots or on events. These different representations
lead to different algorithmic approaches. Extending [10] we give a formal defini-
tion of these representation strategies.

Definition 4 (Snapshot-based Temporal Graph - STG). Let t1 < t2 <
· · · < tn be the ordered set of all timestamps ts, te occurring in a TG GT . Set

Vi := {(v, xv) : (v, xv, ts, te) ∈ VT , ts ≤ ti ≤ te},
Ei := {(e, xe) : (e, xe, ts, te) ∈ ET , ts ≤ ti ≤ te},

and define the snapshots Gi := (Vi, Ei), i = 1, . . . , n. Then a Snapshot-based
Temporal Graph representation of GT is the sequence

GS
T := {(Gi, ti) : i = 1, . . . , n}

of time-stamped static graphs.

This representation is mostly used to describe DTTGs, where the snapshots
represent the TG captured at periodic intervals (e.g., hours, days, etc.).

The event-based strategy is more appropriate when the focus is on the tempo-
ral evolution of individual nodes or edges. This leads to the following definition.

Definition 5 (Event-based Temporal Graph - ETG). Let GT be a TG,
and let ε denote one of the following event:

– Node insertion ε+V := (v, t): the node v is added to GT at time t, i.e., there
exists (v, xv, ts, te) ∈ VT with ts = t.
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– Node deletion ε−V := (v, t): the node v is removed from GT at time t, i.e.,
there exists (v, xv, ts, te) ∈ VT with te = t.

– Edge insertion ε+E := (e, t): the edge e is added to GT at time t, i.e., there
exists (e, xe, ts, te) ∈ ET with ts = t.

– Edge deletion ε−E := (e, t): the edge e is removed from GT at time t, i.e.,
there exists (e, xe, ts, te) ∈ ET with te = t.

An Event-based Temporal Graph representation of TG is a sequence of events

GE
T := {ε : ε ∈ {ε+V , ε

−
V , ε

+
E , ε

−
E}}.

Here it is implicitly assumed that node and edge events are consistent (e.g.,
a node deletion event implies the existence of an edge deletion event for each
incident edge). In the case of an ETG, the TG structure can be recovered by
coupling an insertion and deletion event for each temporal edge and node. ETGs
are better suited than STGs to represent TGs with arbitrary timestamps.

We will use the general notion of TG, which comprises both STG and ETG,
in formalizing learning tasks in the next section. On the other hand, we will
revert to the STG and ETG notions when introducting the taxonomy of TGNN
methods in Section 4, since TGNNs use one or the other representation strategy
in their algorithmic approaches.

3 Learning tasks on temporal graphs

Thanks to their learning capabilities, TGNNs are extremely flexible and can be
adapted to a wide range of tasks on TGs. Some of these tasks are straightforward
temporal extensions of their static counterparts. However, the temporal dimen-
sion has some non-trivial consequences in the definition of learning settings and
tasks, some of which are often only loosely formalized in the literature. We start
by formalizing the notions of transductive and inductive learning for TGNNs,
and then describe the different tasks that can be addressed.

3.1 Learning settings

The machine learning literature distinguishes between inductive learning, in
which a model is learned on training data and later applied to unseen test in-
stances, and transductive learning, in which the input data of both training and
test instances are assumed to be available, and learning is equivalent to lever-
aging the training inputs and labels to infer the labels of test instances given
their inputs. This distinction becomes extremely relevant for graph-structured
data, where the topological structure gives rise to a natural connection between
nodes, and thus to a way to propagate the information in a transductive fashion.
Roughly speaking, transductive learning is used in the graph learning literature
when the node to be predicted and its neighborhood are known at training time
— and is typical of node classification tasks —, while inductive learning indicates
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that this information is not available — and is most often associated to graph
classification tasks.

However, when talking about GNNs with their representation learning capa-
bilities, this distinction is not so sharp. For example, a GNN trained for node
classification in transductive mode could still be applied to an unseen graph,
thus effectively performing inductive learning.

The temporal dimension makes this classification even more elusive, since
the graph structure is changing over time and nodes are naturally appearing
and disappearing. Defining node membership in a temporal graph is thus a
challenging task in itself.

Below, we provide a formal definition of transductive and inductive learning
for TGNNs which is purely topological, i.e. linked to knowing or not the in-
stance to be predicted at the training time, and we complete it with a temporal
dimension, which distinguishes between past and future prediction tasks.

Definition 6 (Learning settings). Assume that a model is trained on a set of
n ≥ 1 temporal graphs GT := {Gi

T := (Vi, Ei, X
V
i , XE

i ), i = 1, . . . , n}. Moreover,
let

T all
e := max

i=1,...,n
Te(G

i
T ), V

all := ∪n
i=1Vi, E

all := ∪n
i=1Ei,

be the final timestamp and the set of all nodes and edges in the training set.
Then, we have the following settings:

– Transductive learning: inference can only be performed on v ∈ V all, e ∈ Eall,
or GT ⊆V Gi

T with Gi
T ∈ GT .

– Inductive learning: inference can be performed also on v /∈ V all, e /∈ Eall, or
GT ̸⊆V Gi

T , for all i = 1, . . . , n.
– Past prediction: inference is performed for t ≤ T all

e .
– Future prediction: inference is performed for t > T all

e .

We remark that all combinations of topological and temporal settings are
meaningful, except for the case of inductive graph-based tasks. Indeed, the mea-
sure of time used in TGs is relative to each single graph. Moving to an unob-
served graph would thus make the distinction between past and future pointless.
Moreover, let us observe that, in all other cases, the two temporal settings are
defined based on the final time of the entire training set, and not of the specific
instances (nodes or edges), since their embedding may change also as an effect
of the change of their neighbors in the training set.

We will use this categorization to describe supervised and unsupervised learn-
ing tasks in Section 3.2-3.3, and to present existing models in Section 4.

3.2 Supervised learning tasks

Supervised learning tasks are based on a dataset where each object is annotated
with its label (or class), from a finite set of possible choices C := {C1, C2, . . . , Ck}.
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Classification

Definition 7 (Temporal Node Classification). Given a TG GT = (V,E, VT , ET ),
the node classification task consists in learning the function

fNC : V × R+ → C

which maps each node to a class C ∈ C, at a time t ∈ R+.

This is one of the most common tasks in the TGNN literature. For instance,
[25,41,36,49,30] focus on a future-transductive (FT) setting, i.e., predicting the
label of a node in future timestamps. TGAT [41] performs future-inductive (FI)
learning, i.e. it predicts the label of an unseen node in the future. Finally,
DGNN [22] is the only method that has been tested on a past-inductive (PI) set-
ting, i.e., predicting labels of past nodes that are unavailable (or masked) during
training, while no approach has been applied to the past-transductive (PT) one.
A significant application may be in epidemic surveillance, where contact tracing
is used to produce a TG of past human interactions, and sample testing reveals
the labels (infection status) of a set of individuals. Identifying the past infection
status of the untested nodes is a PT task.

Definition 8 (Temporal Edge Classification). Given a TG GT = (V,E, VT , ET ),
the temporal edge classification task consists in learning a function

fEC : E × R+ → C

which assigns each edge to a class at a given time t ∈ R+.

Temporal edge classification has been less explored in the literature. Existing
methods have focused on FT learning [25,36], while FI, PI and PT have not been
tackled so far. An example of PT learning consists in predicting the unknown
past relationship between two acquaintances in a social network given their sub-
sequent behaviour. For FI, one may predict if a future transaction between new
users is a fraud or not.

In the next definition we use the set of real and positive intervals I+ :=
{[ts, te] ⊂ R+}.

Definition 9 (Temporal Graph Classification). Let GT be a domain of
TGs. The graph classification task requires to learn a function

fGC : GT × I+ → C

that maps a temporal graph, restricted to a time interval [ts, te] ∈ I+, into a
class.

The definition includes the classification of a single snapshot (i.e., ts = te). As
mentioned above, in the inductive setting the distinction between past and future
predictions is pointless. In the transductive setting, instead, a graph GT ∈ GT
may be classified in a past mode if [Ts(GT ), Te(GT )] ⊆ [ts, te], or in the future
mode, otherwise.
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None of the existing methods tackles temporal graph classification tasks,
possibly for the lack of suitable datasets (see also Section 5). The task has how-
ever numerous relevant applications. An example of inductive temporal graph
classification is predicting mental disorders from the analysis of the brain connec-
tome [13]. Instead, detecting stages of disease progression from gene expression
profiles [9] can be framed as a PT graph classification task.

Regression The tasks introduced for classification can all be turned into corre-
sponding regression tasks, simply by replacing the categorical target C with the
set R. We omit the formal definitions for the sake of brevity. To the best of our
knowledge, no existing TGNN work addresses this kind of problem, even if the
application of static GNNs alone has already shown outstanding results in this
setting, e.g. in weather forecasting [16] and earthquake location and estimation
[23].

Link prediction Link prediction requires the model to predict the relation
between two given nodes, and can be formulated by taking as input any possible
pair of nodes. Thus, we consider the setting to be transductive when both node
instances are known at training time, and inductive otherwise.

Definition 10 (Temporal Link Prediction). Let GT = (V,E, VT , ET ) be a
TG. The temporal link prediction task consists in learning a function

fLP : V × V × R+ → [0, 1]

which predicts the probability that, at a certain time, there exists an edge between
two given nodes.

The domain of the function fLP is the set of all feasible pairs of nodes, since
it is possible to predict the probability of future interactions between nodes that
have been connected in the past or not, as well as the probability of missing edges
in a past time. Most TGNN approaches for temporal link prediction focus on
future predictions, forecasting the existence of an edge in a future timestamp be-
tween existing nodes (FT is the most common setting) [25,31,11,46,41,21,36,22,30,49],
or unseen nodes (FI) [11,41,30]. The only model that investigates past temporal
link prediction is [21], which devises a PI setting by masking some nodes and
predicting the existence of a past edge between them. Note that predicting past
temporal links can be extremely useful for predicting, e.g., missing interactions
in contact tracing for epidemiological studies.

Definition 11 (Event Time Prediction). Let GT = (V,E, VT , ET ) be a TG.
The aim of the event time prediction task is to learn a function

fEP : V × V → R+

that predicts the time of the first appearance of an edge.

None of the existing methods address this task. Potential FT applications of
event time prediction include predicting when a customer will pay an invoice to
its supplier, or how long it takes to connect two similar users in a social network.
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3.3 Unsupervised learning tasks

In this section, we formalize unsupervised learning tasks on temporal graphs, an
area that has received little to no attention in the TGNN literature so far.

Clustering Temporal graphs can be clustered at the node or graph level, with
edge-level clustering being a minor variation of the node-level one. Some relevant
applications can be defined in terms of temporal clustering.

Definition 12 (Temporal Node Clustering). Given a TG GT = (V,E, VT , ET ),
the temporal node clustering task consists in learning a time-dependent cluster
assignment map

fNCl : V × R+ → P(V ),

where P(V ) := {p1, p2, . . . , pk} is a partition of the node set V , i.e., pi ⊂ VT ,
pi ∩ pj = ∅, if i ̸= j, ∪N

i=1pi = VT .

While node clustering in SGs is a very common task, its temporal coun-
terpart has not been explored yet for TGNNs, despite its potential relevance
in application domains like epidemic modelling (identifying groups of exposed
individuals, in both inductive and transductive settings), or trend detection in
customer profiling (mostly transductive).

Definition 13 (Temporal Graph Clustering). Given a set of temporal graphs
GT , the temporal graph clustering task consists in learning a cluster-assignment
function

fGCl : GT × I+ → P(GT ),

where P(GT ) := {p1, . . . , pk} is a partition of the set of temporal graphs in the
given time interval.

Relevant examples of tasks of inductive temporal graph clustering are group-
ing diseases in terms of similarity between their spreading processes [7].

Low-dimensional embedding (LDE) LDEs are especially useful in the tem-
poral setting, e.g. to visually inspect temporal dynamics of individual nodes or
entire graphs, and identify relevant trends and patterns.

Definition 14 (Low-dimensional temporal node embedding). Given a
TG GT = (V,E, VT , ET ), the low-dimensional temporal node embedding task
consists in learning a map

fNEm : V × R+ → Rd

to map a node, at a given time, into a low dimensional space.

Definition 15 (Low-dimensional temporal graph embedding). Given a
domain of TGs GT , the low-dimensional temporal graph embedding task aims to
learn a map

fGEm : GT × I+ → Rd,

which represents each graph as a low dimensional vector in a given time interval.
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Fig. 1: The proposed TGNN taxonomy and an analysis of the surveyed meth-
ods. The top panel shows the new categories introduced in this work with the corre-
sponding model instances (Section 4), where the colored bullets additionally indicate
the main technology that they employ. The bottom table maps these methods to the
task (Section 3) to which they have been applied in the respective original paper, with
an additional indication of their use in the future (F), past (P), inductive (I), or trans-
ductive (T) settings (Section 3.1).

4 A taxonomy of TGNNs

This section describes the taxonomy with which we categorize existing TGNN
approaches (see Figure 1). Following the representation strategies outlined in
Section 2.1, the first level groups methods into Snaphost-based and Event-based.
The second level of the taxonomy further divides these two macro-categories
based on the techniques used to manage the temporal dependencies. The leaves
of the taxonomy in Figure 1 correspond to the individual models, with a colored
symbol indicating their main underlying technology.

4.1 Snapshot-based models

Snaphot-based models are specifically tailored for STGs (see Def. 4) and thus,
consistently with the definition, they are equipped with a suitable method to pro-
cess the entire graph at each point in time, and with a mechanism that learns the
temporal dependencies across timesteps. Based on the mechanism used, we can
further distinguish between Model Evolution and Embedding Evolution methods.

Model Evolution methods We call Model Evolution the evolution of the
parameters of a static GNN model over time. This mechanism is appropriate
for modelling STG, as the evolution of the model is performed at the snapshot
level. The only existing method belonging to this category is EvolveGCN [25].
This model utilizes a RNN to update the GCN [18] parameters at each timestep,
allowing for model adaptation that is not constrained by the presence or absence
of nodes. The method can handle new nodes without prior historical information.
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Embedding Evolution methods Rather than evolving the parameters of a
static GNN model, Embedding Evolution methods focus on evolving the embed-
dings produced by a static model. There are several different TGNN models that
fall under this category. These networks differ from one another in the techniques
used for processing both the structural information and the temporal dynamics
of the STGs. DySAT [31] introduced a generalization of Graph Attention Net-
work (GAT) [35] for STGs. First, it uses a self-attention mechanism to generate
static node embeddings at each timestamp. Then, it uses a second self-attention
block to process past temporal embeddings for a node to generate its novel em-
bedding. The VGRNN model [11] uses VGAE [17] coupled with SIVI [45] to
handle the variation of the graph over time. The learned latent representation is
then evolved through an LSTM conditioned on the previous time’s latent rep-
resentation, allowing the model to predict the future evolution of the graph.
Finally, in ROLAND [46] hierarchical node states are updated based on newly
observed nodes and edges through a GRU update module [4].

4.2 Event-based models

Models belonging to the Event-based macro category are designed to process
ETGs (see Def. 5). These models are able to process streams of events by in-
corporating techniques that update the representation of a node whenever an
event involving that node occurs. The models that lie in this macro category can
be further classified in Temporal Embedding and Temporal Neighborhood meth-
ods, based on the technology used to learn the time dependencies. In particular,
the Temporal Embedding models use recurrent or self-attention mechanisms to
model sequential information from streams of events, while also incorporating a
time encoding. This allows for temporal signals to be modeled by the interaction
between time embedding, node features and the topology of the graph. Tempo-
ral Neighborhood models, instead, use a module that stores functions of events
involving a specific node at a given time. These values are then aggregated and
used to update the node representation as time progresses.

Temporal Embedding methods Temporal embedding methods model TGs
by combining time embedding, node features, and graph topology. These models
use an explicit functional time encoding, i.e., a translation-invariant vectorial
embedding of time based on Random Fourier Features (RFF) [28]. TGAT [41],
for example, introduces a graph-temporal attention mechanism which works on
the embeddings of the temporal neighbours of a node, where the positional
encoding is replaced by a temporal encoding based on RFFs. On the other hand,
NAT [21] collects the temporal neighbours of each node into dictionaries, and
then it learns the node representation with a recurrent mechanism, using the
historical neighbourhood of the current node and a RFF based time embedding.

Temporal Neighborhood methods The Temporal Neighborhood class in-
cludes all TGNN models that make use of a special mailbox module to update
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node embeddings based on events. When an event occurs, a function is evalu-
ated on the details of the event to compute a mail or a message. For example,
when a new edge appears between two nodes, a message is produced, taking into
account the time of occurrence of the event, the node features, and the features
of the new edge. The node representation is then updated at each time by ag-
gregating all the generated messages. Several existing TGNN methods belong to
this category. In APAN [36] an attention-based encoder maps the content of the
mailbox to a latent representation of each node, which is decoded by an MLP
adapted to the downstream task. DGNN [22] combines an interact module —
which generates an encoding of each event based on the current embedding of the
interacting nodes and its history of past interactions — and a propagate module
— which transmits the updated encoding to each neighbors of the interacting
nodes. The aggregation of the current node encoding with those of its temporal
neighbors uses a modified LSTM. TGN [30] is an inductive framework made up
of separate and interchangeable modules. Each node the model has seen so far
is characterized by a memory vector, which is a compressed representation of all
its past interactions. Given a new event, a mailbox module computes a mail for
every node involved. Mails will then be used to update the memory vector. To
overcome the so-called staleness problem [15], an embedding module computes,
at each timestamp, the node embeddings using their neighbourhood and their
memory states. Finally, in TGL [49] a mailbox module is used to store a limited
number of the most recent interactions, called mails. When a new event occurs,
the node memory of the relevant nodes is updated using the messages in the
mailbox. The mailbox is updated after the node embeddings are calculated.

5 Open challenges

Several open challenges still need to be faced to fully exploit the potential of
TGNNs. We discuss the ones we believe are the most relevant in the following.

Evaluation The evaluation of GNN models has been greatly enhanced by the
Open Graph Benchmark (OGB) [14], which provides a standardized evaluation
protocol and a collection of graph datasets enabling a fair and consistent com-
parison between GNN models. An equally well-founded standardized benchmark
for evaluating TGNNs does not currently exist. As a result, each model has been
tested on its own selection of datasets, making it challenging to compare and
rank different TGNNs on a fair basis. The variety and the complexity of learn-
ing settings and tasks described in Section 3 makes a standardization of tasks,
datasets and processing pipelines especially crucial to allow a fair assessment of
the different approaches and foster innovation in the field.
Expressiveness The expressive power of TGNNs is still far from being fully
explored, and the design of new WL tests, suitable for TGNNs, is a crucial
step towards this aim. This is a challenging task since the definition of a node
neighbourhood in temporal graphs is not as trivial as for static graphs, due
to the appearing/disappearing of nodes and edges. In [3], a new version of the
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WL test for temporal graphs has been proposed, applicable only to DTTGs.
Instead, [34] proposed a novel WL test for ETGs, and the TGN model [30]
has been proved to be as powerful as this test. A complete theory of the WL
test for the different TG representations is still lacking. Moreover, no efforts
have been made to incorporate higher-order graph structures to enhance the
expressiveness of TGNNs. This task is particularly demanding, since it requires
not only the definition of the temporal counterpart of the k-WL test but also
some techniques to scale to large datasets.
Learnability Training standard GNNs over large and complex graph data is
highly non-trivial, often resulting in problems such as over-smoothing and over-
squashing. More intuitively, we yet do not know how to reproduce the break-
through obtained in training very deep architectures over vector data when
training deep GNNs. Such a difficulty is even more challenging with TGNNs,
because the typical long-term dependency of TGs poses additional problems to
those due to over-smoothing and over-squashing. Modern static GNN models
use techniques such as dropout and neighbor sampling, but a general solution is
far from being reached. The extension of these techniques to TGNNs are open
challenges and we are aware of only one work towards this goal [44].
Real-world applications The analysis of the tasks in Section 3 revealed sev-
eral opportunities for the use of TGNNs far beyond their current scope of ap-
plication. A challenging direction for the application of TGNNs is the learning
of dynamical systems through the combination of machine learning and physi-
cal knowledge [38]. Physic Informed Neural Networks (PINNs) [29] are already
revolutionizing the field of scientific computing [5], and static GNNs have been
employed in this framework with great success [26,8]. Adapting TGNNs to this
field may enable to carry over these results to the treatment of time-dependent
problems. Climate science and epidemics studies are other topics of enormous
everyday impact that may be explored throw the lens of TGNNs.

6 Conclusion

GNN based models for temporal graphs have become a promising research area.
However, we believe that the potential of GNNs in this field has only been par-
tially explored. In this work, we propose a systematic formalization of tasks and
learning settings for TGNNs, which was lacking in the literature, and a compre-
hensive taxonomy categorizing existing methods and highlighting unaddressed
tasks. Building on this systematization of the current state-of-the-art, we dis-
cuss open challenges that need to be addressed to unleash the full potential of
TGNNs.
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