
Graph Neural Networks for Graph Drawing

Matteo Tiezzi1, Gabriele Ciravegna2,3, and Marco Gori1,3

1 SAILAB, University of Siena, Siena, Italy
https://sailab.diism.unisi.it/

2 Politecnico di Torino, Torino, Italy
3 Université Cote d’Azur, Inria, 3IA, I3S, CNRS, Nice, France

Abstract. Graph Drawing techniques have been developed in the last
few years with the purpose of producing aesthetically pleasing node-link
layouts. Recently, the employment of differentiable loss functions has
paved the road to the massive usage of Gradient Descent and related op-
timization algorithms. In this paper, we propose the novel framework of
Graph Neural Drawers (GND), Graph Neural Networks (GNNs) whose
learning process can be driven by any provided loss function, such as
the ones commonly employed in Graph Drawing. We prove that this
mechanism can be guided by loss functions computed by means of Feed-
forward Neural Networks, on the basis of supervision hints that express
beauty properties. We provide a proof-of-concept by constructing a loss
function for the edge-crossing, and provide quantitative and qualitative
comparisons among different GNN models working under the proposed
framework. This method has been published in the IEEE Transactions
on Neural Networks and Learning Systems journal, and it is available at
doi.org/10.1109/TNNLS.2022.3184967.

Keywords: Graph Drawing · Graph Representation Learning · Graph
Neural Drawers · Graph Neural Networks.

1 Introduction

Visualizing complex relations and interaction patterns among entities is a cru-
cial task, given the increasing interest in structured data representations[13].
The Graph Drawing [6] literature aims at developing algorithmic techniques to
construct drawings of graphs – i.e. mathematical structures capable to efficiently
represent the aforementioned relational concepts with nodes and edges connect-
ing them – for example via the node-link paradigm [49,55,22]. The readability
of graph layouts can be evaluated following some aesthetic criteria such as the
number of crossing edges, minimum crossing angles, edge length variance, etc.
[3]. The final goal is to find suitable coordinates for the node positions, and
this often requires to explicitly express and combine these criteria through com-
plicated mathematical formulations [17]. Moreover, effective approaches such
as energy-based models [33,35] or spring-embedders [25,11] require hands-on
expertise and trial and error processes to achieve certain desired visual prop-
erties. Additionally, such methods define loss or energy functions that must be

https://sailab.diism.unisi.it/
https://doi.org/10.1109/TNNLS.2022.3184967

2 M. Tiezzi et al.

optimized for each new graph to be drawn, often requiring to adapt algorithm-
specific parameters. Lately, two interesting directions have emerged in the Graph
Drawing community. The former one leverages the power of Gradient Descent
to explore the manifold given by pre-defined loss functions or combinations of
them. Stochastic Gradient Descent (SGD) can be used to move sub-samples of
vertices couples to minimize spring-embedder losses [68], substituting compli-
cated techniques such as Majorization [20]. This approach has been extended
to arbitrary optimization goals and solved via Gradient Descent if the corre-
sponding criterion can be expressed via smooth functions [3]. The latter novel
direction consists in the exploitation of Deep Learning models. Indeed, Neural
networks are capable to learn the layout characteristics from plots produced by
other graph drawing techniques [10,60], as well as the underlying distribution of
data [41]. Very recently, the node positions produced by graph drawing frame-
works [10] have been used as an input to Graph Neural Networks (GNNs) [51,62]
to produce pleasing layout that minimize combinations of aesthetic losses [59].

We propose a framework, Graph Neural Drawers (GND), which embraces
both the aforementioned directions. We borrow the representational capability
and computational efficiency of neural networks to prove that (1) differentiable
loss functions guiding the common Graph Drawing pipeline can be provided di-
rectly by a neural network, a Neural Aesthete, even when the required aesthetic
criteria cannot be directly optimized. We propose a proof-of-concept where we
focus on the criteria of edge crossing, proving that a Neural Aesthete can learn to
identify if two arcs are crossing or not and provide a differentiable loss function
towards non-intersection that can be exploited by (Stochastic) Gradient Descent
methods. Moreover, (2) we prove that GNNs, even in the non-attributed graph
scenario if enriched with appropriate node positional features, can be used to
process the topology of the input graph with the purpose of mapping the ob-
tained node representation in a 2D layout. We compare various commonly used
GNN models [38,58,63], proving the flexibility of the proposed framework. In
particular, GND is capable to draw graphs (i) from supervised coordinates,
i.e. emulating Graph Drawing Packages, (ii) minimizing common aesthetic loss
functions and, additionally, (iii) by descending towards the gradient direction
provided by the Neural Aesthete.

2 Graph Drawing Algorithms

Graph drawing algorithms typically optimize functions that somehow express a
sort of beauty index to derive a graphical visualization of the graph at hand
in a bidimensional or tridimensional space [6,21,65]. Amongst others, typical
beauty indexes are those of measuring the degree of edge crossings [48], avoiding
small angles between adjacent or crossing edges or measures to express a degree
of uniform allocation of the vertexes [29,3]. All these requirements inherently
assume that the graph drawing only consists of the allocation of the vertexes in
the layout space, since the adjacent matrix of the graph can drive the drawing
of the arcs as segments. Without loss of generality, also in this work we restrict

3. THE NEURAL AESTHETE 3

our objective to the vertex coordinates optimization, but the basis ideas can be
extended also to the case of appropriate arc drawing.

We denote a graph by G = (V, E), where V = {v1, . . . , vN} is a finite set of
N nodes and E ⊆ V × V collects the arcs connecting them. The neighborhood
of node vi is denoted by Ni. We denote the coordinates of each vertex with
pi : V 7→ IR2, for a node i mapped to a bi-dimensional space. We denote with
P ∈ IRN×2 the matrix of the node coordinates.

One of the techniques that empirically proved to be very effective for an
aesthetically pleasing node coordinates selection is the Stress function [35],

stress(P) =
∑
i<j

wij

(
||pi − pj || − dij

)2 (1)

where pi, pj are the coordinates of vertices i and j, respectively, dij is the graph
theoretic distance (or shortest-path) between node i and j, and wij is a weighting
factor leveraged to balance the influence of certain pairs given their theoretical
distance. Usually, it is defined as wij = d−α

ij with α ∈ [0, 1, 2]. The optimization of
this function is generally carried out leveraging complicated resolution methods
(i.e., 2D Newton-Raphson method, Stress Majorization, etc.) that hinder its
efficiency.

Recently, Gradient Descent methods were employed to produce graph lay-
outs [68] by minimizing the Stress function, and noticeably, Ahmed et al. [3]
proposed a similar approach employing auto-differentiation tools. The advan-
tage of this solution is that, as long as aesthetic criteria are characterized by
smooth differentiable functions, it is possible to undergo an iterative optimiza-
tion process on the node coordinates following, at each variable update step, the
gradient of the criteria.

Clearly, the definition of aesthetic criteria as smooth functions could be hard
to express. For instance, while we can easily count the number of arc intersec-
tions, devising a smooth function that may drive a continuous optimization of
this problem is not trivial [52,3]. Indeed, finding the intersection of two lines, is
as simple as solving the following equation system:{

a1x+ b1y + c1 = 0,

a2x+ b2y + c2 = 0
(2)

By employing the classic Cramer’s rule we can see that there is an intersection
only in case of a non-negative determinant of the coefficient matrix A,Det(A) =
a1b2 − a2b1 ̸= 0. Clearly, the previous formula cannot be employed as a loss
function in an optimization problem since it does not provide gradients.

3 The Neural Aesthete

To tackle this issue and provide a scoring function optimizable via gradient
descent, we propose the Neural Aesthete, a neural network that learns beauty
from examples with the perspective of generalizing to unseen data. The obtained

4 M. Tiezzi et al.

modelled function that is expressed by the Neural Aesthete is smooth and dif-
ferentiable by definition and offers a fundamental heuristic for graph drawing.
As a proof-of-concept, we focus on edge crossing. In this case, we define the
Neural Aesthete as a machine which processes two arcs as inputs and returns
the information on whether or not they intersect one each other. Each arc is
identified by the coordinates of the corresponding pair of vertices, eu = (pi, pj)
for eu ∈ E . Hence, the Neural Aesthete ν(·, ·, ·) : E2 × Rm → R operates on the
concatenation of two arcs, eu and ev and returns:

yeu,ev = ν
(
θ, eu, ev), (3)

where θ ∈ Rm is the vector which represents the weights of the neural net-
work. The Neural Aesthete is learned by optimizing a cross-entropy loss function
L(yeu,ev , ŷeu,ev) over the arcs (eu, ev) ∈ E , which is defined as:

L(yeu,ev , ŷeu,ev) = −
(
ŷeu,ev · log(yeu,ev) + (1− ŷeu,ev) · log(1− yeu,ev)

)
, (4)

where ŷeu,ev is the target and it is ŷeu,ev = 1 only if (eu, ev) intersect4. Notice that
the learning process from a finite set of supervised examples yields weights that
allows us to estimate the probability of intersection of any two arcs. Basically, the
learned output of the neural network can be regarded as a degree of intersection
between any arc couple. Once learned, this characteristic of the Neural Aesthete
comes in handy for the computation of the gradient of a loss function for Graph
Drawing. In general, we want to move the extreme nodes defining the two arcs
towards the direction of non-intersection.

Hence, for the Graph Drawing task, the Neural Aesthete is able to process an
unseen edge couple (eu, ev) randomly picked from the edge list E , and to predict
their degree of intersection yeu,ev . We define the loss function L(·, ·) on this edge
pair as the cross-entropy with respect to the target no-intersection, ŷeu//ev = 0

Hu,v = L(yeu,ev , ŷeu//ev) = −log(1− yeu,ev) (5)

This smooth and differential loss function foster the utilization of Gradient De-
scent methods to optimize the problem variables, i.e. the arc node coordinates
(eu, ev). This same procedure can be replicated to all the graph edges. Some
qualitative results obtained when optimizing over all the graph edges the Neural
Aesthete Loss (alone and combined to the Stress loss) are reported in Appendix
C.1.

4 GNNs for Graph Drawing

The increasing adoption of GNNs in several research fields and practical tasks
[34,67] opens the road to an even wider spectrum of problems. DeepDrawing [60]
employs a graph-based LSTM model to learn node layout styles from Graph
Drawing frameworks. DeepGD [59] is a concurrent work in which a Message
4 The intersection of eu, ev is automatically computed, e.g., by solving Eq. 2.

4. GNNS FOR GRAPH DRAWING 5

Passing Neural Network (MPNN) processes node positions to develop pleasing
layouts that minimize combinations of aesthetic losses. Starting node positions,
however, needs to be initialized by standard graph drawing frameworks [10];
in case a random initialization is employed, network performances deteriorate.
Approaches like [62], instead, introduce additional virtual connections in the
graph topology, thus increasing the computational burden for the model (given
that the computational complexity of the GNN propagation is linear in the
number of edges). Further analysis of the related work on graph drawing as well
as a detailed report on several GNNs-based solutions proposed in the literature
is reported in Appendix A.

In this paper, instead, we propose an approach to Graph Drawing, GNDs,
that directly leverages the computational efficiency of GNNs and, thanks to
informative nodal features (Laplacian eigenvectors, see the following), is general
enough to be applied to several learning tasks.

Problem Formulation We formulate the problem as a node-focused regres-
sion task, in which for each vertex belonging to the input graph we want to infer
its coordinates in a bi-dimensional plane, conditioned on the graph topology
and the target layout/loss function. Furthermore, in the GND framework, we
propose to employ GNNs to learn to draw by themselves following the guide-
lines prescribed by Neural Aesthetes (see Section 4.3). In order to be able to
properly solve the Graph Drawing task via GNDs, a crucial role is played by
the expressive power of the GNN model and the nodal features which are used.
In fact, in line with the aforementioned regression task, each node state must
be uniquely identified to be afterwards mapped to a different 2D position in
the graph layout. This problem is inherently connected with recent studies on
the representational capabilities of GNNs (see Appendix A and [66]). Standard
MP-GNNs have been proved to be less powerful than the 1-WL test [45], both
due to the lack of expressive power of the used aggregation mechanisms and
to the existence of symmetries inside the graph. For instance, local isomorphic
neighborhoods create indiscernible unfolding of the GNN computational struc-
ture. Hence, the GNN embeds isomorphic nodes to the same point in the high
dimensional space of the states, hindering the Graph Drawing task. Some ap-
proaches address this problem proposing novel and more powerful architectures
(WL-GNNs) that, however, tend to penalise the computational efficiency of the
GNNs [45]. Moreover, given the fact that we focus on the task of drawing non-
attributed graphs, it is even more important to enrich the nodes with powerful
features able to identify both the position of nodes inside the graph (often re-
ferred to as Positional Encodings (PEs)[23]) and the neighboring structure.

To address this issue, we keep standard GNN architectures and leverage
Positional features defined as the Laplacian eigenvectors [8] of the input graph,
as introduced recently in GNNs [23]. Laplacian eigenvectors embed the graphs
into the Euclidean space through a spectral technique, are unique and distance-
preserving (far away nodes on the graph have large PE distance). Indeed, they
can be considered hybrid positional-structural encodings, as they both define a
local coordinate system and preserve the global graph structure.

6 M. Tiezzi et al.

Formally, they are defined via the factorization of the graph Laplacian matrix:

L = I−D−1/2AD−1/2 = UTΛU, (6)

where I is the N × N identity matrix, D is the node degree matrix, A is the
adjacency matrix and Λ and U correspond respectively to the eigenvalues and
eigenvectors. As proposed in [23], we use the k smallest non-trivial eigenvec-
tors to generate a k-dimensional feature vector for each node, where k is chosen
by grid-search. Noticeably, given that the smallest eigenvectors provide smooth
encoding coordinates of neighboring nodes, during the message exchange each
node receives and implicit feedback on its own positional-structural characteris-
tics from all the nodes with which it is communicating. This process foster the
regression task on the node coordinates, which receives useful information from
their respective neighborhood. We believe that this is a crucial component of the
model pipeline.

Experimental setup We test the capabilities of the proposed framework
comparing the performances of three commonly used GNN models (see Table
3). Given the fact that the outputs of GND are node coordinates, we can im-
pose on such predictions heterogeneous loss functions that can be optimized via
BackPropagation. In the proposed experiments, we test the GND performances
on the loss functions defined as the following:

1. distance with respect to ground truth node coordinates belonging to certain
layouts, produced by Graph Drawing packages (Section 4.1);

2. aesthetic loss functions (e.g. Stress) (Section 4.2);
3. loss functions provided by Neural Aesthetes (Section 4.3).

We assume to work with solely the graph topology, hence the node are not char-
acterized by additional features. For further details regarding the experimental
settings, see Appendix D.

4.1 GNNs learn to draw from ground-truth examples

The first experimental goal is focused on the task of learning to draw graph
layouts given ground-truths node positions produced by Graph Drawing frame-
works. Among several packages, we chose NetworkX [32] for its completeness and
ease of integration with other development tools. This framework provides sev-
eral utilities to plot graph appearances. We choose two different classical layouts.
The first is the Kamada-Kawai node layout [35] computed by optimizing the
Stress function. In few words, this force-directed method models the layout dy-
namic as springs between all pairs of vertices, with an ideal length equal to their
graph-theoretic distance. The latter is the Spectral layout, which leverages
the unnormalized Laplacian L̂ and its eigenvalues to build cartesian coordinates
for the nodes [7], formally L̂ = D − A = ÛT Λ̂Û , where Λ̂ and Û correspond to
the eigenvalues and eigenvectors, respectively, and using the first two non-trivial
eigenvectors (k = 2) as the actual node coordinates. This layout highlights
clusters of nodes in the graph.

4. GNNS FOR GRAPH DRAWING 7

Each training graph is enriched by Positional Encodings defined as k-dimensional
Laplacian Eigenvectors and is processed by each of the tested GNN models to
predict the node coordinates. Hence, we need a loss function capable to discern
if the generated layout is similar to the corresponding ground truth. Further-
more, trained models should generalize the notion of graph layout beyond a sim-
ple one-to-one mapping. For these reasons, we leverage the Procrustes Statistic
[60] as a loss function since it measures the shape difference among graph lay-
outs independently of affine transformations such as translations, rotations and
scaling. Given a graph composed of N nodes, the predicted node coordinates
P = (p1, ..., pN) and the ground-truth positions P̂ = (p̂1, .., p̂N), the Procrustes
Statistic similarity is defined as the squared sum of the distances between P and
P̂ after a series of possible affine transformations [60]. Formally:

R2 = 1−
(
Tr(PT P̂ P̂TP)

1
2

)2
Tr(PTP)Tr(P̂T P̂)

(7)

where Tr(·) denotes the trace operator and the obtained metric R2 assumes
values in the interval [0, 1], the lower the better. We will use the Procrustes
Statistic-based similarity both as the loss function to guide the model training,
and to evaluate its generalization capability on the test set.

We tested the proposed framework comparing the test performances obtained
by the three different GNN models (see Table 3 in Appendix), GCN, GAT,
GIN. Also, we devised several competitors in order to assess the performances
of the proposed approach. Given that Laplacian PEs available at node-level are
powerful descriptors of the neighboring graph structure, we leverage a Multilayer
Perceptron (MLP) as a baseline. This neural predictor learns a mapping to the
node coordinates, solely exploiting the available local information. We compare
the performances obtained by GNNs with Laplacian PEs against those achieved
by the three corresponding variants of rGNNs (GNN employing randomized
input features, see Appendix B for further details), which we denote with rGCN,
rGAT, rGIN. For a fair comparison, we searched in the same hyperparameter
space for all the baseline and competitors.

In Figure 1, we report a qualitative evaluation obtained by the best perform-
ing models for each different GNN architecture on two randomly picked graphs
from the test set of the Rome dataset. More precisely, we report the evaluation
in the case of Kamada-Kawai layout supervisions (first column depicts the
Ground Truth (GT)). See Appendix E for additional results and considerations
on the Spectral layout. The results show the good performances of the GND
framework in generating two heterogeneous styles of graph layouts, learning from
different ground truth node coordinates.

In order to give a more comprehensive analysis, we report in Table 1 a quan-
titative comparison among the global Procrustes Statistic similarity values ob-
tained on the test set by the best models, for both the Rome dataset and on
the Sparse dataset a synthetic, randomly generated dataset with sparse edge
connections (further details on both datasets are reported in Appendix D). We
report the average score and its standard deviation over three runs with different

8 M. Tiezzi et al.

GT GCN GAT GIN

Fig. 1. Kamada-Kawai layout. Qualitative example of the predicted node coordinates
for the Rome dataset. Each row depicts the Ground-Truth positions (GT), the graph
layout produced by GCN, GAT, GIN model, on two randomly picked test graphs.

Table 1. Procrustes Statistic similarity (defined in Eq. 7) on the test split of the
Rome and Sparse dataset. We compare three GNN models with two graph layouts
generation, Kamada-Kawai and Spectral. We report the average valued and its
standard deviation over three runs with different weights initialization.

Model Rome Sparse

Kamada Spectral Kamada Spectral

MLP 0.291 ± 0.000 0.144 ± 0.000 0.282 ± 0.001 0.131 ± 0.000
rGCN 0.612 ± 0.009 0.527 ± 0.008 0.592 ± 0.006 0.532 ± 0.009
rGAT 0.475 ± 0.008 0.437 ± 0.008 0.465 ± 0.015 0.425 ± 0.017
rGIN 0.685 ± 0.001 0.590 ± 0.003 0.675 ± 0.010 0.603 ± 0.030

GCN 0.241 ± 0.001 0.078± 0.002 0.228± 0.000 0.060± 0.000
GAT 0.186 ± 0.000 0.057 ± 0.000 0.177 ± 0.001 0.045 ± 0.001
GIN 0.240± 0.002 0.076± 0.003 0.229 ± 0.003 0.059± 0.001

seeds. The strength of the Laplacian PE is validated by the decent performances
yielded by the MLP baseline. Conversely, the random features characterizing
the rGNNs are not sufficient to solve this node regression task. Some additional
structural information is required in order to jointly represent the node position
and its surroundings. Indeed, all the models exploiting the proposed solution
outperform the competitors. Instead, the improved performances of GNNs em-
ploying Laplacian PE with respect to MLP are due to the fact that in GNNs
nodes states receive implicit feedback on their own position during the message
passing steps. The proposed GAT model with Laplacian PE achieves the best
performances in all the settings. We believe that the attention mechanism plays
a crucial role in the task of distinguishing the right propagation patterns, along-

4. GNNS FOR GRAPH DRAWING 9

side the fact that the multi-head attention mechanism provides a bigger number
of learnable parameters with respect to the competitors.

4.2 GNNs learn to draw minimizing aesthetic loss functions

In Section 4.1, GNDs explicitly minimize the distances with respect to certain
ground-truth node positions, hence learning to draw directly from data according
to certain layouts. In this second experimental setting, instead, we build GNNs
capable to draw at inference time respecting certain aesthetic criteria which are
implicitly learnt during training following an unsupervised learning strategy. We
defined our framework in such a way that powerful PE features are mapped to
2D coordinates. Given a smooth and differentiable loss function defined on such
output, we can leverage the BP algorithm in order to learn to minimize hetero-
geneous criteria. We investigate the case in which the GNN models minimize the
Stress function (see Eq. 1) on the predicted node coordinates. Only during the
training phase, for each graph, we compute the shortest-path dij among every
node couple (i, j). At inference time, the GND framework process the graph
topology (the adjacency matrix) and the node features, directly predicting the
node coordinates, without the need of any further information.

We use the same experimental setup, competitors and hyper-parameters se-
lection grids of Section 4.1. However, according to a preliminary run of the mod-
els which achieved poor performances, we varied the hidden state dimension grid
to {100, 200, 300}. This means that this task need a bigger representational ca-
pability with respect to the previous one, which is coherent with the complex
implicit nature of the learning problem. We set the Stress normalization factor
to wij = 1

dij
(hence, α = 1) and compute the averaged Stress functionFor this

experiment, we use the stress value obtained on the validation split as the met-
ric to select the best performing model. For comparison, we report the stress
loss values obtained by three State-of-the-art Graph Drawing methods. We also
compared against Neato5, which leverage the stress majorization [27] algorithm
to effectively minimize the stress, PivotMDS [10], which employs a determinis-
tic dimension reduction approach, and ForceAtlas2 [33], which generates graph
layouts through a force-directed method.

We report in Figure 2 some qualitative examples of the graph layouts pro-
duced by the best selected GNN models on test samples (the same graphs se-
lected for Figure 1), following the aforementioned setting. Noticeably, all three
models succeed in producing a layout that adheres to the typical characteris-
tics of graphs obtained via Stress minimization. In particular, for reference on
the drawing style, the layouts of these same graphs generated via the Kamada-
Kawai algorithm (that also minimize stress) are depicted in the first column of
Figure 1. Comparing the graph layout produced by the various GNN models and
the aforementioned ones from Kamada-Kawai, also in this case it is easy to see
from a qualitative analysis that the GAT model is the best performing one.

5 Implementation available through Graphviz, https://graphviz.com

https://graphviz.com

10 M. Tiezzi et al.

Table 2. Average Stress loss value obtained on the Training set and Test set by the
best selected models, for each dataset. We report the mean and standard deviation
obtained over three runs initialized with different fixed seeds. We do not report standard
deviations for Neato and PivotMDS, being deterministic algorithms.

Model Rome Sparse

train loss test loss train loss test loss

ForceAtl.2 27.44 ± 0.01 26.82 ± 0.02 23.31 ± 0.01 22.69 ± 0.02
Neato 4.35 4.34 5.61 5.66
Piv.MDS 16.40 16.65 28.93 29.27

MLP 1.07 ± 0.01 1.06 ± 0.03 1.16 ± 0.02 1.18 ± 0.00
rGCN 1.25 ± 0.01 1.24 ± 0.04 1.70 ±0.02 1.72 ±0.01

rGAT 0.98 ± 0.02 0.97 ± 0.00 1.34 ± 0.01 1.36 ± 0.01
rGIN 1.11 ± 0.03 1.49 ± 0.04 1.49 ±0.07 1.89 ± 0.02

GCN 0.51 ± 0.02 0.53 ± 0.03 0.56 ±0.05 0.61 ±0.02

GAT 0.33 ± 0.02 0.34 ± 0.00 0.30 ± 0.02 0.33 ± 0.01
GIN 0.49 ± 0.04 0.88 ± 0.05 0.28 ±0.05 0.81 ± 0.01

GCN GAT GIN

Fig. 2. Stress minimization on the Rome dataset. Qualitative example of the
graph layout produced by three GNN models on the test graphs of the Rome dataset.

A quantitative comparison is reported in Table 2, over both the Rome and
Sparse datasets. For comparison, we report the stress values for each competi-
tor and dataset, both at training time and test time, averaged over three runs
initialized with different seeds. Once again, GAT performs the best. The metrics
obtained by the GIN model highlight an overfit of the training data, given the se-
lected grid parameters. All GND models obtain better stress than the compared
SOTA drawing packages, with Neato being the best performing one among them
in terms of stress minimization, as expected. Similar conclusion with respect to
the previous experiment can be drawn regarding the results obtained by rGNNs
and MLP. Indeed, these results show how learning to minimize stress requires

4. GNNS FOR GRAPH DRAWING 11

both positional and structural knowledge, and that the message passing process
foster the discriminative capability of the learned node states, with respect to
solely exploiting local information.

4.3 GNNs learn to Draw from Neural Aesthetes

In the previous Section, we showed that GNDs are capable to learn to minimize
a differentiable smooth function that implicitly guides the node coordinates po-
sitioning. In a similar way, the Neural Aesthete introduced in Section 3 provide
a smooth differentiable function that can be leveraged to find a good gradient
descent direction for the learning parameters. In this Section, we mix the two
proposals in order to build a Graph Neural Drawer that learns to generate graph
layouts thanks to the gradients provided by the edge-crossing Neural Aesthete,
and, eventually, to optimize the combination of several aesthetic losses.

At each learning epoch, GND minimizes the loss function H(P) defined in
Eq. 10, over the whole edge list E . The loss function can be computed as follows:
the GNN model process the graph and predicts node-wise coordinates. Given
such predicted node positions and the input graph adjacency matrix, the Neural
Aesthete (trained beforehand as explained in Appendix C.1) processes couples of
arcs and output their degree-of-intersection. The overall loss function can then
be composed by the contribution given by each of the considered arc-couples,
as in Eq. 5. We restrict our analysis to the Rome dataset and exploiting a GAT
model with 2 hidden layers, a hidden size of node state of 25, PE dimension
k = 10, learning rate η = 10−2. We compare the graph layout generated by
this model when employing three different loss functions: (i) stress loss, (ii)
Neural-Aesthete edge-crossing based loss H(P), (iii) a combination of the two
losses with a weighing factor λ = 0.5 acting on the Neural Aesthete loss, i.e.:
Loss(P) = Stress(P) + λH(P).

We report in Figure 3 some qualitative results on two test graphs (one for
each row). We compare the layout obtained optimizing the stress function (first
column, see Section 4.2), the edge-crossing Neural Aesthete (second column)
and the combination of the two losses. The styles of the generated layout are
recognizable with respect to the plain optimization of the Neural Aesthete with
Gradient Descent (see Figure 4), meaning that the GND framework is able to fit
the loss provided by the Neural Aesthete and to generalize it to unseen graphs.
Noticeable, the introduction of the combined loss functions (third column in
Figure 3) helps in better differentiating the nodes in the graph with respect to
the case of solely optimizing stress. The Neural Aesthete guided layouts (second
and third column) tend to avoid edge intersections, as expected. This opens the
road to further studies in this direction, leveraging the generality of the Neural
Aesthetes approach and the representation capability of GNNs.

4.4 Computational Complexity

The proposed framework leverages the same computational structure of the un-
derlying GNN model, which we can generally describe, for each parameter up-

12 M. Tiezzi et al.

stress Na-Crossing Combined

Fig. 3. Learning from the Neural Aesthete. We report the layouts obtained on
two randomly picked test graphs from the Rome dataset. Left-to-right: Graph layout
generated by optimizing the stress loss function, the edge-crossing Neural Aesthete
based loss (denoted with NA-Crossing), and the combination of the two losses.

date, as linear with respect to the edge number O
(
T (|V| + |E|)

)
, where T is

the number of iterations/layers, |V| the number of nodes and |E| the number
of edges. Through our approach, there is not any increase in the computation
related to the graph topology or the edge connection patterns. At inference time,
the only additional requirement is the computation of the Laplacian PEs, requir-
ing O(E3/2), with E being the number of edges, that however can be improved
with the Nystrom method [24,23].

This is confirmed by the experiments that we conducted on bigger graphs
(and reported in Appendix F) that show that our method is extremely more
efficient than all SOTA method we compared against (as shown in Fig. 7), while
still being able to draw aesthetically pleasing graphs (as shown in Fig. 8).

5 Conclusion

In this paper we proposed a general framework to emphasize the role of im-
plicit learning criteria based on loss functions that enforce classic aesthetic mea-
sures. Graph Neural Drawers open the doors towards the construction of a novel
machine learning-based drawing scheme where the Neural Aesthete drives the
learning of a GNN towards the optimization of beauty indexes. While we have
adopted the Neural Aesthetes only from learning to minimize arc intersections,
the same idea can be used for nearly any beauty index. We show that our frame-
work is effective also for drawing unlabelled graphs. In particular, we rely on the
adoption of Laplacian Eigenvector-based positional features [23] for attaching
information to the vertexes, which leads to very promising results.

5. CONCLUSION 13

References

1. Abboud, R., Ceylan, I.I., Grohe, M., Lukasiewicz, T.: The surprising power of
graph neural networks with random node initialization. In: IJCAI (2021)

2. Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing num-
ber of k n: Closing in (or are we?). In: Thirty essays on geometric graph theory,
pp. 5–18. Springer (2013)

3. Ahmed, R., De Luca, F., Devkota, S., Kobourov, S., Li, M.: Graph drawing via
gradient descent, GD2. arXiv preprint arXiv:2008.05584 (2020)

4. Bacciu, D., Errica, F., Micheli, A., Podda, M.: A gentle introduction to deep learn-
ing for graphs. Neural Networks 129, 203–221 (2020)

5. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Physical
Review E 71(3), 036113 (2005)

6. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph drawing: algorithms
for the visualization of graphs. Prentice Hall PTR (1998)

7. Beckman, B.: Theory of spectral graph layout. Tech. rep., Technical Report MSR-
TR-94-04, Microsoft Research (1994)

8. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation 15(6), 1373–1396 (2003)

9. Bodnar, C., Frasca, F., Otter, N., Wang, Y.G., Liò, P., Montúfar, G., Bronstein, M.:
Weisfeiler and lehman go cellular: Cw networks. arXiv preprint arXiv:2106.12575
(2021)

10. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: GD 2006. pp. 42–53. Springer (2006)

11. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing.
In: GD 2008. pp. 218–229. Springer (2008)

12. Bresson, X., Laurent, T.: Residual gated graph convnets. CoRR abs/1711.07553
(2017), http://arxiv.org/abs/1711.07553

13. Bronstein, M.M., Bruna, J., Cohen, T., Veličković, P.: Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478
(2021)

14. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017)

15. Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two
and three dimensions (preliminary version). In: Proceedings of the twelfth annual
symposium on Computational geometry. pp. 319–328 (1996)

16. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković, P.: Principal neighbourhood
aggregation for graph nets. In: NeurIPS. vol. 33, pp. 13260–13271 (2020)

17. Cox, M.A., Cox, T.F.: Multidimensional scaling. In: Handbook of data visualiza-
tion, pp. 315–347. Springer (2008)

18. Cui, H., Lu, Z., Li, P., Yang, C.: On positional and structural node features for
graph neural networks on non-attributed graphs. arXiv preprint arXiv:2107.01495
(2021)

19. Dai, H., Kozareva, Z., Dai, B., Smola, A.J., Song, L.: Learning steady-states of
iterative algorithms over graphs. In: ICML. vol. 80, pp. 1114–1122 (2018)

20. De Leeuw, J.: Convergence of the majorization method for multidimensional scal-
ing. Journal of classification 5(2), 163–180 (1988)

21. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing
graphs: an annotated bibliography. Computational Geometry 4(5), 235–282 (1994)

http://arxiv.org/abs/1711.07553

14 M. Tiezzi et al.

22. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM CSUR 52(1), 1–37 (2019)

23. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982 (2020)

24. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nystrom
method. IEEE TPAMI 26(2), 214–225 (2004)

25. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected
graphs (extended abstract and system demonstration). In: GD ’94. pp. 388–403.
Springer (1994)

26. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement.
Software: Practice and experience 21(11), 1129–1164 (1991)

27. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
GD2004. pp. 239–250. Springer (2004)

28. Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of
graphs using node-link and matrix-based representations. In: IEEE INFOVIS. pp.
17–24. Ieee (2004)

29. Gibson, H., Faith, J., Vickers, P.: A survey of two-dimensional graph layout tech-
niques for information visualisation. Information visualization 12(3-4), 324–357
(2013)

30. Gilmer, J., Schoenholz, S., Riley, P., Vinyals, O., George, D.: Message passing neu-
ral networks. In: Machine Learning Meets Quantum Physics, pp. 199–214. Springer
(2020)

31. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: ICML. pp. 1263–1272. PMLR (2017)

32. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics,
and function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los
Alamos, NM (United States) (2008)

33. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: Forceatlas2, a continuous
graph layout algorithm for handy network visualization designed for the gephi
software. PloS one 9(6), e98679 (2014)

34. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate
protein structure prediction with alphafold. Nature pp. 1–11 (2021)

35. Kamada, T., Kawai, S., et al.: An algorithm for drawing general undirected graphs.
Information processing letters 31(1), 7–15 (1989)

36. Kaufmann, M., Spallek, A.M., Splett, J.: A heuristic approach towards drawings
of graphs with high crossing resolution. In: GD 2018. vol. 11282, p. 271. Springer
(2018)

37. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015), http://arxiv.org/abs/1412.6980

38. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks (2017)

39. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017), https://openreview.net/forum?id=SJU4ayYgl

40. Kipf, T.N., et al.: Deep learning with graph-structured representations (2020)
41. Kwon, O.H., Ma, K.L.: A deep generative model for graph layout. IEEE TVCG

26(1), 665–675 (2019)
42. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural

networks. In: ICLR (2016), https://arxiv.org/abs/1511.05493
43. Maron, H., Ben-Hamu, H., Shamir, N., Lipman, Y.: Invariant and equivariant graph

networks. In: ICLR (2019), https://openreview.net/forum?id=Syx72jC9tm

http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/1511.05493
https://openreview.net/forum?id=Syx72jC9tm

5. CONCLUSION 15

44. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model cnns. In: IEEE
CVPR. pp. 5115–5124 (2017)

45. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rattan, G., Grohe,
M.: Weisfeiler and leman go neural: Higher-order graph neural networks. In: AAAI
Conference on Artificial Intelligence. vol. 33, pp. 4602–4609 (2019)

46. Murphy, R., Srinivasan, B., Rao, V., Ribeiro, B.: Relational pooling for graph
representations. In: ICML. pp. 4663–4673 (2019)

47. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

48. Purchase, H.: Which aesthetic has the greatest effect on human understanding?
In: GD ’97. pp. 248–261. Springer (1997)

49. Saket, B., Simonetto, P., Kobourov, S., Börner, K.: Node, node-link, and node-
link-group diagrams: An evaluation. IEEE TVCG 20(12), 2231–2240 (2014)

50. Sato, R., Yamada, M., Kashima, H.: Random features strengthen graph neural
networks. In: SIAM SDM 2021. pp. 333–341. SIAM (2021)

51. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009)

52. Shabbeer, A., Ozcaglar, C., Gonzalez, M., Bennett, K.: Optimal embedding of
heterogeneous graph data with edge crossing constraints. In: Presented at NIPS
Workshop on Challenges of Data Visualization. p. 1 (2010)

53. Srinivasan, B., Ribeiro, B.: On the equivalence between node embeddings and
structural graph representations. ICLR (2020)

54. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: Networkit: A tool suite for large-scale
complex network analysis. Network Science 4(4), 508–530 (2016)

55. Tamassia, R.: Handbook of graph drawing and visualization. CRC press (2013)
56. Tiezzi, M., Marra, G., Melacci, S., Maggini, M.: Deep constraint-based propagation

in graph neural networks. IEEE TPAMI (2021)
57. Tiezzi, M., Marra, G., Melacci, S., Maggini, M., Gori, M.: A lagrangian approach to

information propagation in graph neural networks. In: ECAI. Frontiers in Artificial
Intelligence and Applications, vol. 325, pp. 1539–1546. IOS Press (2020). https:
//doi.org/10.3233/FAIA200262

58. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

59. Wang, X., Yen, K., Hu, Y., Shen, H.W.: Deepgd: A deep learning framework for
graph drawing using gnn. IEEE Computer Graphics and Applications (2021)

60. Wang, Y., Jin, Z., Wang, Q., Cui, W., Ma, T., Qu, H.: Deepdrawing: A deep
learning approach to graph drawing. IEEE TVCG 26(1), 676–686 (2019)

61. Weisfeiler, B., Lehman, A.A.: A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 2(9),
12–16 (1968)

62. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems 32(1), 4–24 (2021)

63. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
(2019)

64. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019), https://openreview.net/forum?id=ryGs6iA5Km

65. Yoghourdjian, V., Archambault, D., Diehl, S., Dwyer, T., Klein, K., Purchase,
H.C., Wu, H.Y.: Exploring the limits of complexity: A survey of empirical studies
on graph visualisation. Visual Informatics 2(4), 264–282 (2018)

https://doi.org/10.3233/FAIA200262
https://doi.org/10.3233/FAIA200262
https://doi.org/10.3233/FAIA200262
https://doi.org/10.3233/FAIA200262
https://openreview.net/forum?id=ryGs6iA5Km

16 M. Tiezzi et al.

66. You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. ICML (2019)
67. Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., Li, H.: T-gcn:

A temporal graph convolutional network for traffic prediction. IEEE T-ITS 21(9),
3848–3858 (2019)

68. Zheng, J.X., Pawar, S., Goodman, D.F.: Graph drawing by stochastic gradient
descent. IEEE TVCG 25(9), 2738–2748 (2018)

A Related Work

There exists a large variety of methods in literature to improve graph readability.
A straight-forward approach, that has been proved to be effective in improving
the human understanding of the graph topology, consists in minimizing the num-
ber of crossing edges [48]. However, the computational complexity of the problem
is NP-hard, and several authors proposed complex solutions and algorithms to
address this problem [2]. In [52], authors employ an Expectation-Maximization
algorithm based on the decision boundary surface built by a Support Vector
Machine. The underlying idea is that two edges do not cross if there is a line
separating the node coordinates. Further aesthetic metrics have been explored,
such as the minimization of node occlusions [15], neighborhood preservation, the
maximization of crossing edges angular width [36] and many more [29,3]. Given
the graph drawing categorization depicted in surveys [29] (i.e. force-directed,
dimension reduction, multi-level techniques), interesting and aesthetically pleas-
ing layouts are produced by methods regarding a graph as a physical system,
with forces acting on nodes with attraction and repulsion dynamics up to a sta-
ble equilibrium state [35]. Force-directed techniques inspired many subsequent
works, from spring-embedders [26] to energy-based approaches [33]. The main
idea is to obtain the final layout of the graph minimizing the Stress function (see
Eq. 1). The forces characterizing this formulation can be thought of as springs
connecting pairs of nodes. This very popular formulation, exploited for graph
layout in the seminal work by Kamada and Kawai [35], was optimized with the
localized 2D Newton-Raphson method. Further studies employed various compli-
cated optimization techniques, such as the Stress Majorization approach which
produces graph layout through an iterative resolution of simpler functions, as
proposed by Gasner et al. [27]. In this particular context, some recent contribu-
tions highlighted the advantages of using gradient-based methods to solve graph
drawing tasks. The SGD method was successfully applied to efficiently minimize
the Stress function in Zheng et al. [68], displacing pairs of vertices following the
direction of the gradient, computed in closed form. A recent framework, (GD)2,
leverages Gradient Descent to optimize several readability criteria at once [3],
as long as the criterion can be expressed by smooth functions. Indeed, thanks
to the powerful auto-differentiation tools available in modern machine learning
frameworks [47], several criteria such as ideal edge lengths, Stress Majorization,
node occlusion, angular resolution and many others can be easily optimized. We
build our first contribution upon these ideas, proving that neural networks can
be used to learn decomposed single criteria (i.e., edge crossing) approximating

A. RELATED WORK 17

smooth functions, with the purpose of providing a useful descent direction to
optimize the graph layout.

Deep Learning has been successfully applied to data belonging to the non-
Euclidean domain, e.g. graphs, in particular thanks to GNNs [14,62]. The seminal
work by Scarselli et al. [51] proposes a model based on an information diffusion
process involving the whole graph, fostered by the iterative application of an
aggregation function among neighboring nodes up to an equilibrium point. The
simplification of this computationally expensive mechanism was the goal of sev-
eral works which leverage alternative recurrent neural models [42] or constrained
fixed-point formulations. This problem was solved via Reinforcement Learning
algorithms as done in Stochastic Steady-state Embedding (SSE)[19] or cast to
the Lagrangian framework and optimized by a gradient descent-ascent approach,
like in Lagrangian-Propagation GNNs (LP-GNNs) [57], even with the advantage
of multiple layers of feature extraction [56]. The iterative nature of the afore-
mentioned models inspired their classification into the umbrella of RecGNNs in
recent surveys [62,4].

In addition to RecGNNs, several other flavours of GNN models have been
proposed, such as the ConvGNNs [40] or Attentional GNNs [58,44,12]. All such
models fit into the powerful concept of message exchange, the foundation on
which is built the very general framework of Message Passing Neural Networks
(MPNNs)[31,30].

Recent works analyze the expressive capabilities of GNNs and their aggre-
gation functions, following the seminal work on graph isomorphism by Xu et
al. [64]. The model proposed by the authors, Graph Isomorphism Network
(GIN), leverage an injective aggregation function with the same representational
power of the Weisfeiler-Leman (WL) Test [61]. Subsequent works (sometimes de-
noted with the term WL-GNNs) try to capture higher-order graph properties
[45,43,16,9]. Bearing in mind that we deal with the non-attributed graph sce-
nario, i.e., graphs lacking node features, we point out the importance of the
nodal feature choice. Several recent works investigated this problem [18,53,46].
We borrow the highly expressive Laplacian Eigenvector-based positional features
described by Dwivedi et al. [23].

In literature, several efforts have been made to develop powerful informative
features for Graph Representation . Recently, it has been shown that the usage
of random nodal features theoretically strengthens the representational capabil-
ity of GNNs [50,1]. Indeed, setting random initial node embedding (i.e., different
random values when processing the same input graph) enable GNNs to better
distinguish local substructures, to learn distributed randomized algorithms and
to solve matching problems with nearly optimal approximation ratios. Formally,
the node features can be considered as random variables sampled from a prob-
ability distribution µ with support D ⊆ Rs, li ∼ µ, ∀i ∈ V, where µ can be
instantiated as the Uniform distribution. The main intuition is that the underly-
ing message passing process combines such high-dimensional and discriminative
nodal features, fostering the detection of fixed substructures inside the graph
[50]. These approaches, which hereinafter we refer to as rGNNs, proved that

18 M. Tiezzi et al.

classification tasks can be tackled in a novel way, with a paradigm shift from the
importance of task-relevant information (the features values) to the relevance of
the relationship among node values. However, the peculiar regression task ad-
dressed in this work requires both positional and structural knowledge, which is
essential to identify neighboring nodes.

There have been some early attempts in applying Deep Learning models and
GNNs to the Graph Drawing scenario. Wang et al. [60] proposed a graph-based
LSTM model able to learn and generalize the coordinates patterns produced by
other graph drawing techniques. However, this approach is limited by the fact
that the model drawing ability is highly dependent on the training data, such
that processing different graph classes or layout styles requires re-collecting and
re-training procedures. We prove that our approach is more general, given that
we are able to learn both drawing styles from graph drawing techniques and to
draw by minimizing aesthetic losses. Another very recent work, DeepGD [59],
consists in a message-passing GNN which process starting positions produced by
graph drawing frameworks [10], to construct pleasing layouts that minimize com-
binations of aesthetic losses (Stress loss combined with others). Both DeepDraw
and DeepGD share the common need of transforming the graph topology into
a more complicated one: DeepDrawing [60] introduces skip connections (fake
edges) among nodes in order to process the graph via a bidirectional-LSTM;
DeepGD converts the input graph to a complete one, so that each node cou-
ples is directly connected, and requires to explicitly provide the shortest path
between each node couple as an edge feature. The introduction of additional
edges into the learning problem increase the computational complexity of the
problem, hindering the model ability to scale to bigger graphs. More precisely,
in the DeepGD framework the computational complexity grows quadratically in
the number of nodes O(N2). Conversely, we show that the GNN are capable of
producing aesthetically pleasing layouts without inserting additional edges, by
simply leveraging powerful positional-structural features. Additionally, we intro-
duce a novel neural-based mechanism, the Neural Aesthete, capable to express
differentiable aesthetic losses delivering flexible gradient direction also for non-
differentiable goals. We show that this mechanism can be exploited by Gradient-
descent based graph drawing techniques and by the proposed GND framework.
Finally, GNN-based Encoder-Decoder architectures can learn a generative model
of the underlying distribution of data from a collection of graph layout exam-
ples [41].

B Graph Neural Networks

In this appendix, we better define some notation. We denote with li all the
input information (initial set of features) eventually attached to each node i in
a graph G. The same holds for an arc connecting two nodes i and j, whose
feature, if available, is denoted with l(i,j). Each node i has an associated hidden
representation (or state) xi ∈ Rs, which in recent models is initialized with the
initial features, xi = li (but it is not necessarily the case in RecGNN models [56]).

C. DRAWING GRAPHS WITH THE HELP OF THE NEURAL AESTHETE 19

Many GNN models can be efficiently described under the powerful umbrella of
Message Passing Neural Networks (MPNNs) [31], where the node state xi is
iteratively updated at each iteration t, through an aggregation of the exchanged
information among neighboring nodes Ni, undergoing a message passing process.
Formally,

x
(t−1)
(i,j) = MSG(t)

(
x
(t−1)
i , x

(t−1)
j , l(i,j)

)
(8)

x
(t)
i = AGG(t)

x
(t−1)
i ,

∑
j∈Ni

x
(t−1)
(i,j) , li

 (9)

where x
(t)
(i,j) represent explicitly the message exchanged by two nodes, com-

puted by a learnable map MSGt(·).6 Afterwards, AGGt(·) aggregates the incoming
messages from the neighborhood, eventually processing also local node informa-
tion such as the node hidden state xi and its features li. The messaging and
aggregation functions MSG(t)(·), AGG(t)(·) are typically implemented via Multi-
Layer Perceptrons (MLPs) learned from data. Apart from RecGNN, other GNN
models leverage a different set of learnable parameters for each iteration step.
Hence, the propagation process of such models can be described as the outcome
of a multi-layer model, in which, for example, the node hidden representation
at layer t, x(t)

i , is provided as input to the next layer, t+ 1. Therefore an ℓ-step
message passing scheme can be seen as an ℓ-layered model.

This convenient framework is capable to describe several GNN models [62].
In this work, we focus our analysis on three commonly used GNN model from
literature (i.e., GCN [38], GAT [58], GIN [64]) whose implementation is given
in Table 3, characterized by different kinds of aggregation mechanisms (degree-
norm, attention-based, injective/sum, respectively). Following the Table nota-
tion, in GCN cu,v denotes a normalization constant depending on node degrees;
in GAT α

(t−1)
u,v is a learned attention coefficient which introduces anisotropy in

the neighbor aggregation, σ denotes a non-linearity and W,W0,W1 are learnable
weight matrices; in GIN ϵ is a learnable parameter (which is usually set to zero).

C Drawing Graphs with the help of the Neural Aesthete

As anticipated in 3, a major contribution of this paper is that of also introducing
the notion of Neural Aesthete.

Its smooth and differential loss function (see Eq. 5, foster the utilization of
Gradient Descent methods to optimize the problem variables, i.e. the arc node
coordinates (eu, ev).When considering all the graph edges:

H(P) =
∑

(eu,ev)∈E

L(yeu,ev , ŷeu//ev) (10)

6 Notice that in the case in which arc features l(i,j) are not available they are removed
from the problem formulation.

20 M. Tiezzi et al.

Table 3. Common implementations of GNN aggregation mechanisms. See the main
text and the referenced papers for further details on the formulations.

Method: Funct. Reference Implementation

GCN[39]: Mean Kipf and Welling [39] σ
(
cvW

(t)xv
(t−1) +

∑
u∈Nv

cu,vW
(t)xu

(t−1)

)
GAT[58]: Att. Veličković et al. [58] σ

(∑
u∈Nv

α
(t−1)
u,v W (t)x

(t−1)
u

)
GIN[64]: Sum Xu et al. [64] MLP(t)

(
(1 + ϵ)xv

(t−1) +
∑

u∈Nv
xu

(t−1)
)

Overall, a possible graph drawing scheme is the one which returns: P ⋆ =
argminP H(P). This can be carried out by classic optimization methods. For
instance, a viable solution is by gradient descent as follows: P ← P −η∇PH(P),
where η specifies the learning rate.

It is worth mentioning that, overall, this approach leverages the computa-
tional efficiency and parallelization capabilities of neural networks. Hence, the
prediction of the edge-crossing degree can be carried out for many edge cou-
ples in parallel. Moreover, this same approach can be conveniently combined
with other aesthetic criteria, for instance coming from other Neural Aesthetes
or from classical loss function (e.g., Stress). For example, we could consider

E = H(P) + λAA(·) + λBB(·) (11)

where A(·) and B(·) denotes other aesthetic criteria characterized by smooth
differentiable functions.

C.1 Example: Neural Aesthete on small-sized Random Graphs

We provide a qualitative proof-of-concept example for the aforementioned Neural
Aesthete for edge-crossing in Figure 4.

We built an artificial dataset composed of 100K entries to train the Neural
Aesthete. Each entry of the dataset is formed by an input-target couple (x, ŷ).
The input pattern x corresponds to the Neural Aesthete arcs input positions7
as defined in Section 2, whose node coordinates are randomly picked inside the
interval [0, 1]. The corresponding target ŷ is defined by Eq. 2.

We balanced the dataset composition in order to have a comparable number
of samples between the two classes (cross/no-cross). We trained a Neural Aes-
thete implemented as a Multi-Layer Perceptron (MLP) with two hidden layers
of 100 nodes each and ReLu activation functions, minimizing the cross-entropy
loss function with respect to the targets and leveraging the Adam optimizer [37].
We tested the generalization capabilities of the learned model on a test dataset
composed of 50K entries, achieving a test accuracy of 97%8. Hence, the learned
7 Which are defined as x := [eu, ev] = [pi, pj , ph, pk], given two arcs eu = (pi, pj) and
ev = (ph, pk).

8 For comparison, a Decision Tree model, trained on the same dataset, only reaches a
test accuracy of 78.7%.

C. DRAWING GRAPHS WITH THE HELP OF THE NEURAL AESTHETE 21

start stress na-cross combined

Fig. 4. Neural Aesthete for edge crossing. Left-to right, Graph layouts with
starting random node coordinates (start), optimized by minimizing stress function
with Gradient Descent (stress), optimized by Gradient Descent applied on the Neural
Aesthete for edge-crossing loss (NA-cross), optimized by alternating stress loss and
Neural Aesthete loss in subsequent iterations (combined).

model constitutes the Neural Aesthete for the task of edge crossing. Given an un-
seen input composed of a couple of arcs, the learned model outputs a probability
distribution representing a degree of intersection. Following the common pipeline
of Graph Drawing methods with Gradient Descent, the Neural Aesthete output
represent a differentiable function that provides an admissible descent direction
for the problem parameters P .

To test the capability of the proposed solution, we leverage an artificial
dataset of random graphs with a limited number of nodes (N ∈ [20, 40]). We
generated Erdős-Rényi graphs with the method presented in [5] for efficiently
creating sparse 9 random networks, implemented in NetworkX [32]. We selected
the connected component of the generated graph having the biggest size (max
node number).

Figure 4 reports a qualitative example of the proposed method in three graphs
from the aforementioned dataset. To generate the graph layout, we carried on an
optimization process on mini-batches of 10 arc-couples for an amount of 2K iter-
ations (gradient steps). The first column depicts the starting random positions
of the nodes; second column reports the graph layout obtained with an in-house
implementation of the Stress function (see Eq. 1), optimized via Gradient De-
scent as done in [3]; third column contains the results obtained by optimizing the
loss provided by the proposed Neural Aesthete for edge-crossing; fourth column
reports the layouts obtained alternating the optimization of the Stress function

9 The probability of edge creation has been set to p = 0.01.

22 M. Tiezzi et al.

and edge-crossing in subsequent update steps. It is noticeable to see how the so-
lution provided by our approach is capable to avoid any arc intersection in these
simple graphs. Moreover, the fact that the Neural Aesthete output represents a
form of degree-of-intersection, seems to provide a good gradient direction that
easily moves the arcs into a recognizable angle pattern, even when combined
with other criteria (fourth column). The proposed proof-of-concept proves that
Neural Aesthetes represent a feasible, general and efficient solution for Graph
Drawing. In the following, we prove that this same approach can be used to
guide the training process of different kind of Deep Neural Models.

D Experimental Details

We employed two different graph drawing datasets with different peculiarities.
We chose to address small-size graphs (≤ 100 nodes) to assure the graph layout
readability, since prior works highlighted node-link layouts are more suitable
to small-size graphs [60,28]. The former one is the Rome dataset10, a Graph
Drawing benchmarking dataset containing 11534 undirected graphs with het-
erogeneous structures and connection patterns. We preprocessed the dataset
removing three disconnected graphs11. Each graph contains a number of nodes
between 10 and 100. Some samples of the dataset are reported in the first column
of Figures 1 and 6, drawn with different layouts (see the following).

We built a second dataset, which we refer to as Sparse, with the same
technique described in Appendix C.1. We generated 10K Erdős-Rényi graphs
following the method presented in [5] for efficient sparse random networks and
implemented in NetworkX [32]. We randomly picked the probability of edge
creation in the interval (0.01, 0.05) and the number of nodes from 20 to 100. To
improve the sparsity and readability, we discarded all the created graphs having
both more than 60 nodes and more than 120 edges. Afterwards, we selected the
connected component of the generated graph having the biggest size.

In order to carry out the training process and afterwards evaluate the ob-
tained performances, we split each of the datasets into three sets, (i.e. training,
validation, test) with a ratio of (75%, 10%, 15%).

All GNN models considered are characterized by the ReLU non-linearity.
The GAT model is composed by four attention heads. The ϵ variable in the GIN
aggregation process is set to 0, as suggested in [63]. We leverage the PyTorch
implementation of the models provided by the Deep Graph Library (DGL)12.

We searched for the best hyper-parameters selecting the models with the
lowest validation error obtained during training, in the following grid of values:
size of node hidden states xi in {10, 25, 50}; learning rate η in {10−4, 10−3, 10−2};
the number of GNN layers in {2, 3, 5}; PE dimension k in {5, 8} (20 is added
10 http://www.graphdrawing.org/data.html
11 Stress-based Graph drawing techniques cannot take into account disconnected

graphs. However, one can easily draw each connected component separately and
then plot them side by side.

12 https://www.dgl.ai/

D. EXPERIMENTAL DETAILS 23

to the grid in the case of the Sparse dataset, given its greater node number
lowerbound); drop-out rate in {0.0, 0.1}. We considered 100 epochs of training
with an early stopping strategy given by a patience on the validation loss of 20
epochs. For each epoch, we sampled non-overlapping mini-batches composed by
β graphs, until all the training data were considered. We searched for the best
mini-batch size β in {32, 64, 128}.

We employed two different graph drawing datasets with different peculiari-
ties. We chose to address small-size graphs (≤ 100 nodes) to assure the graph
layout readability, since prior works highlighted node-link layouts are more suit-
able to small-size graphs [60,28]. The former one is the Rome dataset13, a Graph
Drawing benchmarking dataset containing 11534 undirected graphs with het-
erogeneous structures and connection patterns. We preprocessed the dataset
removing three disconnected graphs14. Each graph contains a number of nodes
between 10 and 100. Some samples of the dataset are reported in the first column
of Figures 1 and 6, drawn with different layouts (see the following).

We built a second dataset, which we refer to as Sparse, with the same
technique described in Appendix C.1. We generated 10K Erdős-Rényi graphs
following the method presented in [5] for efficient sparse random networks and
implemented in NetworkX [32]. We randomly picked the probability of edge
creation in the interval (0.01, 0.05) and the number of nodes from 20 to 100. To
improve the sparsity and readability, we discarded all the created graphs having
both more than 60 nodes and more than 120 edges. Afterwards, we selected the
connected component of the generated graph having the biggest size (max node
number). We report in Figure 5 a visual description of the datasets composition.

25 50 75 100
0

500

1000

Graphs order (nodes)
Sparse
Rome

100 200 300
0

250

500

750

Graphs size (edges)
Sparse
Rome

Fig. 5. Datasets composition statistics. On the left, the histogram of the graph order
(number of nodes for each graph |V|) for both the analyzed datasets. On the right, the
histogram of the graphs sizes (number of edges |E|). The Sparse dataset is character-
ized by a sparse connection pattern.

13 http://www.graphdrawing.org/data.html
14 Stress-based Graph drawing techniques cannot take into account disconnected

graphs. However, one can easily draw each connected component separately and
then plot them side by side.

24 M. Tiezzi et al.

Furthermore, in order to provide a qualitative proof-of-concept of our claims,
we built a synthetic dataset, which we refer to as SmallSparse, composed of
1000 graphs, with the same procedure as for the Sparse dataset. It only differs
for the graph size, ranging in the interval [10, 30] with the purpose of facilitating
the task of edge-crossing avoidance.15 We split the dataset in training, validation,
test partitions with ratio (75%, 10%, 15%) and early stop the learning on the
validation loss with a patience of 20 epochs.

E Additional Experiments

Figure 6 shows a qualitative evaluation obtained by the best performing models
for each different GNN architecture on two randomly picked graphs from the
test set of the Rome dataset, in the case of the Spectral layouts.

In general, the Spectral layout is easier to be learned by the models. This
can be due to the fact that the Laplacian PE represent an optimal feature for this
task, given the common spectral approach. Even from a qualitative perspective
generated layouts are almost identical to the Ground Truth.

GT GCN GAT GIN

Fig. 6. Spectral layout. Predicted node coordinates for the Rome dataset. Each
row depicts the Ground-Truth positions (GT), the graph layout produced by GCN,
GAT, GIN model, left-to-right. We report the predictions on two different test graphs.

F Scaling to bigger graphs

Common Graph Drawing techniques based on multidimensional scaling [17] or
SGD [68] require ad-hoc iterative optimization processes for each graph to be

15 We built a dataset characterized by a sparse topology from the edge point of view.
The task of edge-crossing avoidance is inherently connected with the graph size.

F. SCALING TO BIGGER GRAPHS 25

drawn. Additionally, dealing with large scale graphs – both in terms of number
of nodes and number of involved edges – decreases the time efficiency of these ap-
proaches. Conversely, once a GND has been learned, the graph layout generation
consist solely in the extraction of Laplacian PE followed by a forward pass on
the chosen GNN backbone. In this Section, we prove the ability of GND to scale
to real-world graphs, providing quantitative results in terms of computational
times and a qualitative analysis on the obtained graph layouts, with respect to
SOTA Graph Drawing techniques. We employed the best performing GAT model
trained to minimize the stress loss on the Rome dataset (Section 4.2). We test
the model inference performances on bigger scale graphs from the SuiteSparse
Matrix Collection16. We report in Figure 7 the computational times required
by the different techniques to generate graph layouts of different scale, from the
dwt_n graph family. We analyze both the correlation on graph order (left – vary-
ing number of nodes) and size (right – varying number of edges). We compare
the GND execution times against those of the NetworkX-GraphViz implemen-
tation of neato and sfdp, the latter being a multilevel force-directed algorithm
that efficiently layouts large graphs. We also tested the Fruchterman-Reingold
force-directed algorithm implemented in NetworkX (denoted with FR) and the
PivotMDS implementation from the NetworKit C++ framework [54]. The tests
where performed in a Linux environment equipped with an Intel(R) Core(TM)
i9-10900X CPU @ 3.70GHz, 128 GB of RAM and an NVIDIA GeForce RTX
3090 GPU (24 GB).

600 1200 1800 2400
Nodes

0

15

30

45

Ti
m

e
(s

)

3K 6K 9K 12K
Edges

0

15

30

45

Ti
m

e
(s

)

GND neato sfdp PivotMDS FR

Fig. 7. Computational time comparison on dwt_n graphs. Left: correlation between the
number of nodes in the graph and the layout generation timings of the analyzed Graph
Drawing methods. Right: correlation between number of edges available in the graphs
and the corresponding layout generation timings.

16 https://sparse.tamu.edu

https://sparse.tamu.edu

26 M. Tiezzi et al.

We report the average execution times over three runs (we omit the vari-
ances due to their negligible values). These results confirm the advantages of
the proposed approach. While all the competitors require expensive optimiza-
tion process that increase their impact with bigger graph scale, the fast inference
step carried on by GNDs assures small timings even with big graphs. Computing
Laplacian PE is scalable and does not hinder the time efficiency of the proposed
method. To asses the quality of the generated layouts, we report in Figure 8
a comparison among the ones yielded by GND the framework, sfdp and Piv-
otMDS on several graphs from the SuiteSparse collection (we report the graph
name, its order |V| and size |E|). While we remark that in this experiment we
exploited a GND model trained on a smaller scale dataset (i.e., Rome), the per-
formances show a significant ability of the model to generalize the learned laws
(e.g., the stress minimization in this case) to unseen graphs, even when dealing
with diverging characteristics. However, we also remark that graphs having very
diverse structures from the training distribution may be not correctly plotted.
The causes of such performances drop are twofold. First, the intrinsic dependance
of neural models on the inductive biases learned during the training process leads
to an inability to generalize to unseen graph topologies. On the other hand, the
limitations of Laplacian PE to discriminate certain graph simmetries or struc-
tures [23] may be further compounded with larger scale datasets, which is an
active area of research [18].

F. SCALING TO BIGGER GRAPHS 27

SuiteSparse Matrix Collection

GND sfdp PivotMDS

dwt_162
|V| = 162
|E| = 672

dwt_307
|V| = 307
|E| = 1415

dwt_503
|V| = 503
|E| = 3k

dwt_992
|V| = 992
|E| = 9k

dwt_1005
|V| = 1k
|E| = 5k

rdist3a
|V| = 2k
|E| = 57k

Fig. 8. Large scale graphs from the SuiteSparse Matrix collection. Left to right: layouts
produced by a GAT-based GND (trained to minimize stress on the Rome dataset),
layout produced by the sfdp algorithm for large scale graphs and outcome of the
PivotMDS method. We report for each row the name of the graph from the dataset
collection, its order (|V|) and size (|E|).

	Graph Neural Networks for Graph Drawing

