
The expressive power of pooling in Graph Neural
Networks

Filippo Maria Bianchi1[0000−0002−7145−3846] and Veronica
Lachi2[0000−0002−6947−7304]

1 UiT the Arctic University of Norway
2 University of Siena

Abstract. In Graph Neural Networks (GNNs), hierarchical pooling
operators generate local summaries of the data by coarsening the graph
structure and the vertex features. Considerable attention has been devoted
to analyzing the expressive power of message-passing (MP) layers in GNNs,
while a study on how graph pooling affects the expressiveness of a GNN
is still lacking. Additionally, despite the recent advances in the design of
pooling operators, there is not a principled criterion to compare them. In
this work, we derive sufficient conditions for a pooling operator to fully
preserve the expressive power of the MP layers before it. These conditions
serve as a universal and theoretically-grounded criterion for choosing
among existing pooling operators or designing new ones. Based on our
theoretical findings, we analyze several existing pooling operators and
identify those that fail to satisfy the expressiveness conditions. Finally,
we introduce an experimental setup to verify empirically the expressive
power of a GNN equipped with pooling layers, in terms of its capability
to perform a graph isomorphism test.

Keywords: Pooling operators · Graph Neural Networks · Expressive
power of Graph Neural Networks.

1 Introduction

In recent years, there has been extensive research focused on studying the theoreti-
cal properties of Graph Neural Networks (GNNs), including generalization [24,21],
explainability [2,26] and scalability [13]. In particular, significant effort has been
devoted to characterizing the expressive power of GNNs in terms of their capa-
bilities for testing graph isomorphism [33]. GNNs with appropriately formulated
message-passing (MP) layers are as effective as the Weisfeiler-Lehman (WL) test
in distinguish graphs [36], while higher-order GNN architectures can match the
expressiveness of the k-WL test [31]. Despite the progress made in understanding
the expressive power of GNNs, the results are still limited to flat GNNs consisting
of a stack of MP layers followed by a final readout [36,6].

Inspired by pooling in convolutional neural networks, recent works introduced
hierarchical pooling operators that enable GNNs to learn increasingly abstract
and coarser representations of the input graphs [37,11]. By interleaving MP with

2 F.M. Bianchi and V. Lachi

pooling layers that gradually distill global graph properties through the compu-
tation of local graph summaries, it is possible to build deep GNNs that improve
the accuracy in graph classification [10,4] and node classification tasks [20,27].

It is not straightforward to evaluate the power of a graph pooling operator and
the quality of the coarsened graphs it produces. The most common approach is to
simply measure the performance of a GNN with pooling layers on a downstream
task, such as graph classification. However, such an approach is highly empirical
and provides a rather indirect evaluation that is affected by external factors.
One factor is the overall GNN architecture: the pooling layers are combined
with different MP layers, activation functions, normalization or dropout layers,
and specific optimization algorithms, which makes it difficult to disentangle the
contribution of the individual components. Another factor is the dataset at hand:
some classification tasks only require isolating a specific motif in the graph [24,8],
while others require considering global properties that depend on the whole
graph structure [17]. Two new criteria were recently proposed to evaluate a graph
pooling operator in terms of the spectral similarity between the original and
the coarsened graph topology and its capability of reconstructing the features
of the original graph from the coarsened one [23]. While providing valuable
insights, these criteria give results that are, to some extent, contrasting and in
disagreement with the traditional evaluation based on the performance of the
downstream task.

To address this issue, we introduce a universal and principled criterion that
quantifies the power of a pooling operator as its capability to retain the in-
formation in the graph from an expressiveness perspective. In particular, we
show that when certain conditions are met in the MP layers and in the pooling
operator, their combination produces an injective function between graphs. This
implies that the GNN can effectively coarsen the graph to learn high-level data
descriptors, without compromising its expressive power. Based on our theoretical
analysis, we identify commonly used pooling operators that do not satisfy these
conditions and may lead to failures in certain scenarios. Finally, we introduce a
simple yet effective experimental setup for measuring, empirically, the expressive
power of any GNN in terms of its capability to perform a graph isomorphism
test. Besides providing a criterion for choosing among existing pooling opera-
tors and for designing new ones, our findings allow us to debunk criticism and
misconceptions about graph pooling.

2 Background

2.1 Graph neural networks

Let G = (V, E) be a graph with node features X 0 =
{
x0
i

}N

i=1
, where {·} denotes a

multiset and |V| = N . The principal operations performed by GNNs are those of
the MP layers [22], which implement a local computational mechanism to process
graphs. Specifically, the information related to a node v that is stored in a feature
vector hv, is updated by combining the features of neighboring nodes. After l

The expressive power of pooling in Graph Neural Networks 3

iterations, the vector hl
v embeds both the structural information and the node

content of the l–hop neighborhood of v. With enough iterations, the node feature
vectors can be used to classify the nodes or the entire graph. More rigorously,
the output of the l-th layer of a MP-GNN is:

xl
v = COMBINE(l)(xl−1

v , AGGREGATE(l)(xl−1
u , u ∈ N [v]})) (1)

where AGGREGATE(l) is a function that aggregates the node features from the
neighborhood N [v] at the (l − 1)–th iteration, and COMBINE(l) is a function that
combines the own features with those of the neighbors.

2.2 Expressive power of graph neural networks

When analyzing the expressive power of GNNs, the primary objective is to
evaluate their capacity to produce different outputs for non-isomorphic graphs.
While an exact test for graph isomorphism has a combinatorial complexity [3], the
WL test for graph isomorphism [35] is an effective and computationally efficient
test that can distinguish a broad range of graphs, with some exceptions, such as
strongly regular graphs [12]. The algorithm assigns to each graph vertex a color
that depends on the multiset of labels of its neighbors and on its own color. At
each iteration, the colors of the vertices are updated until convergence is reached.

There is a strong analogy between an iteration of the WL-test and the
aggregation scheme implemented by MP in GNNs. In fact, it has been proved
that MP-GNNs are at most as powerful as the WL test in distinguishing different
graph-structured features [36,31]. Moreover, if the MP operation is injective,
then the resulting MP-GNN is as powerful as the WL test [36]. The Graph
Isomorphism Network (GIN) implements such injective multiset function as
follows:

xl
v = MLP(l)

(1 + ϵl)xl−1
v +

∑
u∈N [v]

xl−1
u

 . (2)

Under the condition that the nodes’ features are a countable multiset, the
representational power of GIN equals that of the WL test. Some GNNs can surpass
the discriminative power of the WL test by using higher-order generalizations
of MP operation [31], or by using a composition of invariant and equivariant
functions [28], at the price of higher computational complexity. In this work, we
focus on the standard MP-GNN, which remains the most widely adopted due to
its computational efficiency.

2.3 Graph pooling operators

A graph pooling operator implements a function POOL : G 7→ GP = (VP , EP) such
that |VP | = K, with K ≤ N and XP = {xPi}

K
i=1 is the multiset of the pooled

nodes features. To formally describe the POOL function, we adopt the Select-
Reduce-Connect (SRC) framework [23], that expresses a graph pooling operator
through the combination of three functions: selection, reduction, and connection.

4 F.M. Bianchi and V. Lachi

The selection function (SEL) clusters the nodes of the input graph into subsets

called supernodes, namely SEL : G 7→ S = {S1, . . . ,SK} with Sj =
{
sji

}N

i=1

where sji is a membership score that measures how much node i contributes to
supernode j. Typically, a node can be assigned to zero, one, or several supernodes,
each with different scores. The reduction function (RED) creates the pooled vertex
features multiset by aggregating the features of the vertices assigned to the
same supernode, that is, RED : (G,S) 7→ XP . Finally, the connect function
(CON) generates the edges (and, potentially, the edge features) by connecting the
supernodes EP = {CON(G,Sm,Sl)}Km,l=1.

Most of the existing graph pooling operators can be specified by a particular
implementation of the SRC functions. It is worth noting that the input and
output of the SRC functions can be represented as both multisets and matrices.
In Section 3.1 we use the multisets representation as it facilitates presenting our
main result, while in the rest of the paper, we adopt the matrix representation.

3 Expressive power of graph pooling operators

We define the expressive power of a graph pooling operator as its capability
of preserving the expressive power of the MP layers that came before it. We
first present our main result, which is a formal criterion to verify the expressive
power of a pooling operator. In particular, we provide three sufficient (though
not necessary) conditions ensuring that if the MP and the pooling layers meet
certain criteria, then the latter retains the same level of expressive power as the
former. Then, we analyze several existing pooling operators and analyze their
expressive power based on those criteria.

3.1 Conditions for expressiveness

Theorem 1. Let G1 = (V1, E1) with |V1| = N and G2 = (V2, E2) with |V2| = M
with node features X1 and X2 respectively, such that G1 ̸=WL G2. Let GL

1 and GL
2 be

the graph obtained after applying a block of L MP layers such that XL
1 =

{
xL
i

}N

i=1

and XL
2 =

{
yL
i

}M

i=1
are the new multisets of nodes features. Let POOL be a pooling

operator expressed by the functions SEL, RED, CON, which is placed after the MP
layers. Let G1P = POOL(G1) and G2P = POOL(G2) with |V1P | = |V2P | = K. Let

X1P = {xPi
}Kj=1 and X2P =

{
yPj

}K

j=1
be the nodes features of the pooled graphs.

If the following conditions hold:

1.
∑N

i xL
i ̸=

∑M
i yL

i ;
2. For each node i, the memberships generated by SEL satisfy

∑K
j=1 s

j
i = λ, with

λ > 0;

3. The function RED is of type RED :

{{
(xL

i , s
j
i)
}N

i=1

}K

j=1

7→ XP =
{∑N

i=1 x
L
i · sji

}K

j=1
;

The expressive power of pooling in Graph Neural Networks 5

then X1P ̸= X2P .

The proof can be found in Appendix A and a schematic summary is in Fig. 1.

Cond. 1

Cond. 2

Cond. 3

Fig. 1: A GNN with expressive MP layers (condition 1) extracts different features
XL

1 and XL
2 for two graphs G1, G2 that are WL-distinguishable. A pooling layer

satisfying the conditions 2 and 3 generates coarsened graphs G1P and G2P that
are still WL-distinguishable.

When the three conditions are satisfied, the combination of the MP layers and
pooling operator results in an injective function between graphs. When using a
powerful MP layer such as GIN [36], there are theorems for functions defined on
sets that guarantee condition 1 to be met. In particular, the sum over a multiset
that is countable is an injective function [38]. When G1 ̸=WL G2 a GNN block
with enough GIN layers produces different multisets of node features XL

1 ̸= XL
2 .

Note that this is true also when G1 and G2 have the same number of nodes, i.e.,
Th. 1 holds for |V1| = |V2| = N .

If the pooling operator satisfies conditions 2 and 3, it will also produce
multisets of node features so that X1P ̸= X2P . Due to the injectiveness of the
coloring function of the WL algorithm, two graphs with different multisets of
node features will be classified as non-isomorphic by the WL test and, therefore,
G1P ̸=WL G2P . This means that the pooling operator effectively coarsens the
graphs while retaining all the information necessary to differentiate between
them and that the composition of GIN layers and appropriate pooling operator
maps non-WL equivalent graphs G1 ̸=WL G2 into non-WL equivalent graphs
G1P ̸=WL G2P .

Condition 2 implies that all nodes in the original graph must contribute
to the supernodes. Moreover, letting the sum of the memberships sji to be
a constant λ (usually, λ = 1), places a restriction on the formation of the
super-nodes. Condition 3 requires that the features of the supernodes XP are
a convex combination of the node features XL. It is important to note that
the conditions for the expressiveness only involve SEL and RED, but not the
CON function. Indeed, both the graph’s topology and the nodes’ features are
embedded in the features of the supernodes by MP and pooling layers satisfying
the conditions of Th. 1. Nevertheless, even if a badly-behaved CON function does

6 F.M. Bianchi and V. Lachi

not affect the expressiveness of the pooling operator, it can still compromise the
effectiveness of the MP layers that come afterward. This will be discussed further
in Sections 3.3 and 4.

3.2 Expressiveness of existing pooling operators

The SRC framework allows building a comprehensive taxonomy of the existing
pooling operators, based on the density of supernodes, the trainability of the SEL,
RED, and CON functions, and the adaptability of the number of supernodes K [23].
The density of a pooling operator is defined as the expected value E[|Sk|/N],
which is the ratio between the cardinality of a supernode Sk and the number
of nodes in the graph G. A method is referred to as dense if the supernodes
have cardinality O(N), whereas a pooling operator is considered sparse if the
supernodes generated have constant cardinality O(1) [23].

Pooling methods can also be distinguished according to the number of nodes
K of the pooled graph. If K is constant and independent of the input graph size,
the pooling method is fixed. On the other hand, if the number of supernodes is a
function of the input graph, the method is adaptive. Finally, the in some pooling
operators the SEL, RED, and CON functions can be learned end-to-end along with
the other components of the GNN architecture. In this case, the method is said
to be trainable, meaning that the operator has parameters that are learned by
optimizing a task-driven loss function. Otherwise, the methods are non-trainable.

Dense pooling operators Prominent methods in this class of pooling operators
are DiffPool [37], MinCutPool [10], and DMoN [34]. Besides being dense, all
these operators are also trainable and fixed. DiffPool, MinCutPool, and DMoN
compute a cluster assignment matrix S ∈ RN×K either with an MLP or an
MP-layer, which are fed with the node features XL and end with a softmax.
The main difference among these methods is in how they define unsupervised
auxiliary loss functions, which are used to inject a bias in how the clusters are
formed. Thanks to the softmax normalization, the cluster assignments sum up
to one, ensuring condition 2 of Th. 1 to be satisfied. Moreover, the pooled node
features are computed as Xp = STXL, making also condition 3 satisfied.

There are dense pooling operators that use algorithms such as non-negative
matrix factorization [5] to obtain a cluster assignment matrix S, which may
not satisfy condition 2. Nonetheless, it is always possible to apply a suitable
normalization to S to ensure that its rows sum up to one. Therefore, we claim
that all dense methods preserve the expressive power of the preceding MP layers.

Non-expressive sparse pooling operators Members of this category are Top-
k [20,24] ASAPool [32], SAGPool [25] and PanPool [27], which are also trainable
and adaptive. These methods reduce the graph by selecting a subset of its
nodes based on a ranking score and they mainly differ in how their SEL function
computes such a score. Specifically, the Top-k method ranks nodes based on
a score obtained by multiplying the node features with a trainable projection
vector. A node i is kept (si = 1) if is among the top-K in the ranking and is

The expressive power of pooling in Graph Neural Networks 7

discarded (si = 0) otherwise. SAGPool simply replaces the projection vector
Top-k with an MP layer to account for the graph’s structure when scoring nodes.
ASAPool, instead, examines all potential local clusters within the input graph
given a fixed receptive field and it employs an attention mechanism to compute
the cluster membership of the nodes. The clusters are subsequently scored using
a GNN. Finally, in PanPool the scores are obtained from the diagonal entries of a
maximal entropy transition matrix, which is a transition matrix that generalizes
the graph Laplacian.

Regardless of how the score is computed, all these methods generate a cluster
assignment matrix S where not all the rows sum to one. Indeed, if a node is not
selected, it is not assigned to any supernode in the coarsened graph. Therefore,
these methods fail to meet condition 2 of Theorem 1. Additionally, all these
methods share the same RED, which involves multiplying the features of each
selected node by its ranking score, making condition 3 also unsatisfied.

Fig. 2: Example of failure of Top-k pooling operator. Regardless of the value
learned for the projector p, two WL-distinguishable graphs are mapped into the
same coarsened graph.

Intuitively, these operators produce a pooled graph that is a subgraph of the
original graph and discard the content of the remaining parts. This hinders the
ability to retain all the necessary information for preserving the expressiveness
of the preceding MP layers. The limitation of Top-k is exemplified in Fig. 2:
regardless of the projector p, Top-k maps two WL-distinguishable graphs into
two isomorphic graphs, meaning that it cannot preserve the partition on graphs
induced by the WL test.

Expressive sparse pooling operators Not all sparse pooling operators coarsen the
graph by selecting a subgraph. In fact, some of them assign each node in the
original graph to exactly one supernode and, thus, satisfy condition 2 of Th. 1. In
matrix form, the cluster assignment would be represented by a sparse matrix S
that satisfies S1K = 1N and where every row has one entry equal to one and the

8 F.M. Bianchi and V. Lachi

others equal to zero. Within this category of sparse pooling operators, notable
examples include Graclus [15], ECPool [16], and k-MISPool [4].

Graclus is a non-trainable, greedy bottom-up spectral clustering algorithm,
which matches each vertex with the neighbor that is closest according to the
graph connectivity [15]. When Graclus is used to perform graph pooling, the RED
function is usually implemented as a max_pool operation between the vertices
assigned to the same cluster [14]. In this work, to ensure condition 3 of Th. 1
to be satisfied, we use a sum_pool operation instead. Contrarily from Gralcus,
ECPool and k-MISPool are trainable. ECPool first assigns to each edge ei→j a
score rij = f(xi,xj ;Θ). Then, iterates over each edge ei→j , starting from those
with higher scores, and contracts it if neither nodes i and j are attached to an
already contracted edge. The endpoints of a contracted edge are merged into a
new supernode Sk = rij(xi + xj), while the remaining nodes become supernodes
themselves. Since each supernode either contains the nodes of a contracted edge
or is a node from the original graph, all columns of S have either one or two
entries equal to one, while each row sums up to one. The RED function can be
expressed as r⊙ STXL, where r[k] = rij if k is the contraction of two nodes i j,
otherwise r[k] = 1. As a result, ECPool met the expressiveness conditions of Th. 1.
Finally, k-MISPool identifies the supernodes with the centroids of the maximal
k-independent sets of a graph [7]. To speed up computation, the centroids are
selected with a greedy approach based on a ranking vector π. Since π can be
obtained from a trainable projector p applied to the vertex features, π = XLpT ,
k-MISPool is a trainable pooling operator. k-MISPool assigns each graph vertex
to one of the centroids and aggregates the features of the vertex assigned to the
same centroid with a sum_pool operation to create the features of the supernodes.
Therefore, k-MISPool satisfies the expressiveness conditions of Th. 1.

A common characteristic of these methods is that the number of supernodes
K cannot be directly specified. Graclus and ECPool achieve a pooling ratio of
approximately 0.5 by roughly reducing each time the graph size by 50%. On
the other hand, k-MISPool can control the coarsening level by computing the
maximal independent set from Gk, which is the graph where each node of G is
connected to its k-hop neighbours. As the value of k increases, the pooling ratio
decreases.

3.3 Criticism on graph pooling

Recently, the effectiveness of graph pooling has been questioned using as an
argument a set of empirical results aimed at exposing the weaknesses of certain
pooling operators [29]. The experiments showed that using a randomized cluster
assignment matrix S (followed by a softmax normalization) gives comparable
results to using the assignment matrices learned by Diffpool [37] and MinCut-
Pool [10]. Similarly, applying Graclus [15] on the complementary graph would
give a performance similar to using the original graph.

We identified potential pitfalls in the proposed evaluation, which considered
only pooling operators that are expressive and that, even after being modified,
retain their expressive power. Clearly, even if expressiveness ensures that all the

The expressive power of pooling in Graph Neural Networks 9

information is preserved in the pooled graph, its structure is corrupted when
using a randomized S or a complementary graph. This hinders the effectiveness
of the MP layers that come after pooling, as their inductive biases no longer
match the data structure they receive. Notably, this might not affect certain
classification tasks, e.g., when the goal is to detect small structures that are
already captured by the MP layers before pooling.

To address these limitations, first, we propose to corrupt a pooling operator
that is not expressive. In particular, we design a Top-k pooling operator where
the nodes are ranked based on a score that is sampled from a Normal distribution
rather than being produced by a trainable layer applied to the vertex features.
Second, we evaluate all the modified pooling operators in a setting where the
MP layers after pooling are essential for the task and show that the performance
drop is significant.

4 Experimental Results

To empirically confirm the theoretical results presented in Section 3, we designed
a synthetic dataset that is specifically tailored to evaluate the expressive power
of a GNN. We considered a GNN with MP layers interleaved with 10 different
pooling operators: DiffPool [37], DMoN [34], MinCut [10], ECPool [16], Graclus,
k-MISPool [4], Top-k [20], PanPool [27], ASAPool [32], and SAGPool [25]. For
each pooling method, we used the implementation in Pytorch Geometric [19]
with the default configuration. In addition, following the setup used to criticize
the effectiveness of graph pooling [29], we considered the following pooling
operators: Rand-Dense, a dense pooling operator where the cluster assignment is
a normalized random matrix; Rand-Sparse, a sparse operator that ranks nodes
based on a score sampled from a Normal distribution; Cmp-Graclus, an operator
that applies the Graclus algorithm on the complement graph.

4.1 The EXPWL1 dataset

Our experiments aim at evaluating the expressive power of MP layers when com-
bined with pooling layers. However, existing real-world and synthetic benchmark
datasets are unsuitable for this purpose as they are not specifically designed to
relate the power of GNNs to that of the WL test. Recently, the EXP dataset
was proposed to test the capability of special GNNs to achieve higher expres-
sive power than the WL test [1], which, however, goes beyond the scope of our
evaluation. Therefore, we introduce a modified version of EXP called EXPWL1,
which comprises a collection of graphs {G1, . . . ,GN ,H1, . . . ,HN} that represent
propositional formulas that can be satisfiable or unsatisfiable. Each pair (Gi,Hi)
in EXPWL1 consists of two non-isomorphic graphs distinguishable by a WL
test, which encode formulas with opposite SAT outcomes. Therefore, any GNN
that has an expressive power equal to the WL test can distinguish them and
achieve approximately 100% classification accuracy on the dataset. Compared to
the original EXP dataset, we increased the size of the dataset to a total of 3000

10 F.M. Bianchi and V. Lachi

graphs and we also increased the size of each graph from an average of 55 nodes
to 76 nodes. This was done to make it possible to apply an aggressive pooling
without being left with a trivial graph structure. The EXPWL1 dataset and the
code to reproduce the experimental results are publicly available 3.

4.2 Experimental procedure

To empirically evaluate which pooling operator maintains the expressive power of
the MP layers preceding it, we first identified a GNN architecture without pooling
layers, which achieves approximately 100% accuracy on the EXPWL1. We found
that a GNN with three GIN layers followed by a global_sum_pool reaches the
desired accuracy. Then, we inserted a pooling layer between the second and third
GIN layers, which performs an aggressive pooling by using a pooling ratio of 0.1
that reduces the graph size by 90%. The details of the GNN configuration are
in Appendix B.1. To ensure a fair comparison, when testing each method we
shuffled the datasets and created 10 different train/validation/test splits using
the same random seed. We trained each model on all splits for 500 epochs and
reported the average training time and the average test accuracy obtained by
the models that achieved the lowest loss on the validation set.

To validate our experimental approach, we also measured the performance
of the proposed GNN architecture equipped with the different pooling layers on
popular benchmark datasets for graph classification. In particular, we consid-
ered six TUD datasets [30] (NCI1, Proteins, Mutagenicity, COLLAB, Reddit-B,
COLORS-3) and an additional synthetic dataset, B-Hard [9].

4.3 Experimental Results

Table 1 reports the performances of different pooling operators on EXPWL1.
These results are consistent with our theoretical findings: pooling operators that
satisfy the conditions of Th. 1 achieve the highest average accuracy among all the
pooling operators. Despite the aggressive pooling, these operators retain all the
necessary information and achieve the same performance as the GNN without a
pooling layer. On the other hand, non-expressive pooling operators achieve lower
accuracy as they are not able to correctly distinguish all graphs.

Table 1 also show that employing a pooling operator based on a normalized
random cluster assignment matrix (Rand-dense) or the complement graph (Cmp-
Graclus) gives a lower performance. First of all, this result disproves the argument
that such operators are comparable to the regular ones [29]. Additionally, we
notice that the reduction in performance is less significant for Rand-Dense and
Cmp-Graclus than for Rand-sparse. This outcome is expected because, in terms of
expressiveness, Rand-dense and Cmp-Graclus still satisfy the conditions of Th. 1.
Nevertheless, their performance is still lower than the original pooling operators.
The reason is that even if a badly-behaved CON function does not compromise
the expressiveness of the pooling operator, the structure of the pooled graph
3 https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs

https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs

The expressive power of pooling in Graph Neural Networks 11

Table 1: Classification on EXPWL1 Dataset.

Pooling s/epoch GIN layers Pool Ratio Test Acc Expr.
No-pool 0.33s 2+1 – 99.3±0.3 –
DiffPool 0.69s 2+1 0.1 97.0±2.4 ✓
DMoN 0.75s 2+1 0.1 99.0±0.7 ✓
MinCut 0.72s 2+1 0.1 98.8±0.4 ✓
ECPool 4.79s 2+1 0.5 99.5±0.5 ✓
Graclus 1.00s 2+1 0.1 99.9±0.1 ✓
k-MIS 1.17s 2+1 0.1 99.9±0.1 ✓
Top-k 0.47s 2+1 0.1 67.9±13.9 ✗
PanPool 3.82s 2+1 0.1 63.2±7.7 ✗
ASAPool 1.11s 1+1 0.1 83.5±2.5 ✗
SAGPool 0.59s 1+1 0.1 79.5±9.6 ✗

Rand-dense 0.41s 2+1 0.1 91.7±1.3 ✓
Cmp-Graclus 7.42s 2+1 0.5 91.0±1.6 ✓
Rand-sparse 0.47s 2+1 0.1 62.8±1.8 ✗

is corrupted when utilizing a randomized S or a complementary graph. This,
in return, reduces the effectiveness of the last GIN layer, which is essential to
correctly classify the graphs in EXPWL1.

There are two remarks about the experimental evaluation. As discussed in
Section 3.2, it is not possible to explicitly specify the pooling ratio in Graclus,
ECPool, and k-MISPool. For k-MISPool, setting k = 5 gives a pooling ratio of
approximately 0.1 on EXPWL1. However, for Graclus and ECPool, the only
feasible option is to apply the pooling operator recursively until the desired
pooling ratio of 0.1 is reached. Unfortunately, this approach is demanding, both
in terms of computing time and memory usage. While it was possible to do this
with Graclus in EXPWL1, we encountered an out-of-memory error after a few
epochs when using ECPool on an RTX A6000 with 48GB of VRAM. Thus, the
results for ECPool on the EXPWL1 are obtained with a single pooling layer that
gives a pooling ratio of approximately 0.5 rather than 0.1. Clearly, a pooling
ratio of 0.5 retains more information from the original graph, greatly simplifying
the training in ECPool with respect to the other methods. Nevertheless, due
to its expressiveness, we argue that ECPool would have reached approx 100%
accuracy on EXPWL1 if implementing a more aggressive pooling was feasible.

The second remark is that in EXPWL1 when using too many MP layers, at
least one node ends up containing enough information to accurately classify the
graphs. This was demonstrated by using a model with 3 GIN layers followed by
global_max_pool, which achieved an accuracy of 0.983±0.006. It should be noted
that the baseline model with 3 GIN layers equipped with the more expressive
global_sum_pool achieves a slightly higher accuracy of 0.993±0.003. In contrast,
a model with only 2 GIN layers and global_max_pool gives a significantly lower
accuracy of 0.665±0.018. Therefore, to ensure that our evaluation is meaningful,
no more than 2 MP layers should precede the pooling operator. Since ASAPool
and SAGPool implement an additional MP operation internally, we used only 1
GIN layer before them, rather than 2 as for the other pooling methods.

12 F.M. Bianchi and V. Lachi

65
70
75
80

ac
cu

ra
cy

PanPool SAGPool ASAPool Top-k DiffPool k-MIS ECPool Graclus DMoN MinCut

2.5
5.0
7.5

10.0s/
ep

oc
h

Fig. 3: Average accuracy and average runtime across the benchmark graph classi-
fication datasets.

Finally, Fig. 3 shows the average accuracy and the average run-time obtained
on the seven benchmark datasets (the detailed results are in Appendix B.3).
These benchmarks are not designed to test the expressive power and, thus, a GNN
equipped with a non-expressive pooling operator could achieve good performance.
This happens, for example, in those datasets where all the necessary information
is captured by the first two GIN layers that come before pooling or in datasets
where only a small part of the graph is what determines the class. Nevertheless,
this second experiment serves two purposes. First, it demonstrates the soundness
of the GNN architecture used in the first experiment, which achieves results
comparable to those of models carefully optimized on the benchmark datasets [18].
Second, and most importantly, it shows that the performances on the benchmark
datasets and EXPWL1 are aligned; this underlines the relevance of our theoretical
result on the expressiveness in practical applications.

As a concluding remark, we comment on the training time of the dense and
sparse pooling methods. A popular argument in favor of sparse pooling methods
is their computational advantage compared to the dense ones. Our results show
that this is not the case in modern deep-learning pipelines. In fact, ECPool and
PanPool are approximately 10 times slower than dense pooling methods, ASAPool
is twice as slow, and the only sparse method with training times lower than the
dense ones is k-MIS. While it is true that the sparse methods save memory by
avoiding computing intermediate dense matrices, such an advantage is relevant
only for extremely large graphs that are rarely encountered in applications.

5 Conclusions

In this work, we studied for the first time the expressive power of pooling operators
in GNNs. We identified the sufficient conditions that a pooling operator must
satisfy to fully preserve the expressive power of the original GNN model. Based
on our theoretical results, we proposed a principled approach to evaluate the
expressive power of existing graph pooling operators by verifying whether they
met the conditions for expressiveness.

To empirically test the expressive power of a GNN, we introduced a new
dataset that allows verifying if a GNN architecture achieves the same discrimina-
tive power of the WL test. We used such a dataset to evaluate the expressiveness
of a GNN equipped with different pooling operators and we found that the
experimental results were consistent with our theoretical findings.

The expressive power of pooling in Graph Neural Networks 13

Acknowledgements We gratefully acknowledge the support of Nvidia Corpo-
ration with the donation of the RTX A6000 GPUs used in this work. We also
thank Daniele Zambon, Caterina Graziani, and Antonio Longa for the useful
discussions.

References

1. Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The
surprising power of graph neural networks with random node initialization. In
Proceedings of the Thirtieth International Joint Conference on Artifical Intelligence
(IJCAI), 2021.

2. Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini.
Global explainability of gnns via logic combination of learned concepts. arXiv
preprint arXiv:2210.07147, 2022.

3. László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 684–697, 2016.

4. Davide Bacciu, Alessio Conte, and Francesco Landolfi. Graph pooling with
maximum-weight k-independent sets. In Thirty-Seventh AAAI Conference on
Artificial Intelligence, 2023.

5. Davide Bacciu and Luigi Di Sotto. A non-negative factorization approach to node
pooling in graph convolutional neural networks. In AI* IA 2019–Advances in
Artificial Intelligence: XVIIIth International Conference of the Italian Association
for Artificial Intelligence, Rende, Italy, November 19–22, 2019, Proceedings 18,
pages 294–306. Springer, 2019.

6. Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph
representations with graph multiset pooling. In Proceedings of the 9th International
Conference on Learning Representations, 2021.

7. Stephen T Barnard and Horst D Simon. Fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency: Practice
and experience, 6(2):101–117, 1994.

8. Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan,
Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, and Haggai Maron. Equiv-
ariant subgraph aggregation networks. In International Conference on Learning
Representations, 2022.

9. Filippo Maria Bianchi, Claudio Gallicchio, and Alessio Micheli. Pyramidal reservoir
graph neural network. volume 470, pages 389–404. Elsevier, 2022.

10. Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering
with graph neural networks for graph pooling. In International conference on
machine learning, pages 874–883. PMLR, 2020.

11. Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Hi-
erarchical representation learning in graph neural networks with node decimation
pooling. IEEE Transactions on Neural Networks and Learning Systems, 33(5):2195–
2207, 2020.

12. Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the
number of variables for graph identifications. Combinatorica, 12(4):389–410, 1992.

13. Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-
Rong Wen. Scalable graph neural networks via bidirectional propagation. Advances
in neural information processing systems, 33:14556–14566, 2020.

14 F.M. Bianchi and V. Lachi

14. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional
neural networks on graphs with fast localized spectral filtering. Advances in neural
information processing systems, 29, 2016.

15. Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without
eigenvectors a multilevel approach. IEEE transactions on pattern analysis and
machine intelligence, 29(11):1944–1957, 2007.

16. Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990, 2019.

17. Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. 2020.

18. Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair compari-
son of graph neural networks for graph classification. In International Conference
on Learning Representations, 2020.

19. Matthias Fey and Jan E. Lenssen. Fast graph representation learning with Py-
Torch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019.

20. Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on
machine learning, pages 2083–2092. PMLR, 2019.

21. Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representa-
tional limits of graph neural networks. In International Conference on Machine
Learning, pages 3419–3430. PMLR, 2020.

22. Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In International conference
on machine learning, pages 1263–1272. PMLR, 2017.

23. Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi.
Understanding pooling in graph neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 2022.

24. Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention
and generalization in graph neural networks. Advances in neural information
processing systems, 32, 2019.

25. Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In
International conference on machine learning, pages 3734–3743. PMLR, 2019.

26. Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro Liò, Bruno
Lepri, and Andrea Passerini. Explaining the explainers in graph neural networks: a
comparative study. arXiv preprint arXiv:2210.15304, 2022.

27. Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral
based convolution and pooling for graph neural networks. Advances in Neural
Information Processing Systems, 33:16421–16433, 2020.

28. Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably
powerful graph networks. Advances in neural information processing systems, 32,
2019.

29. Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph
neural networks. Advances in Neural Information Processing Systems, 33:2220–2231,
2020.

30. Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. Tudataset: A collection of benchmark datasets for learning
with graphs. arXiv preprint arXiv:2007.08663, 2020.

31. Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 4602–4609, 2019.

The expressive power of pooling in Graph Neural Networks 15

32. Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure
aware pooling for learning hierarchical graph representations. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 5470–5477, 2020.

33. Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(9), 2011.

34. Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph
clustering with graph neural networks. arXiv preprint arXiv:2006.16904, 2020.

35. Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form
and the algebra which appears therein. nti, Series, 2(9):12–16, 1968.

36. Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

37. Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling.
Advances in neural information processing systems, 31, 2018.

38. Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. Advances in neural information
processing systems, 30, 2017.

16 F.M. Bianchi and V. Lachi

A Proof of Theorem 1

Proof. Let SEL(GL
1) =

{{
sji

}N

i=1

}K

j=1

and SEL(GL
2) =

{{
tji

}M

i=1

}K

j=1

with
∑k

j=1 s
j
i =

1 ∀i = 1, . . . , N and
∑K

j=1 t
j
i = 1 ∀i = 1, . . . ,M .

Suppose:

X1P =

{
N∑
i=1

xL
i · sji

}K

j=1

=

{
M∑
i=1

yL
i · tji

}K

j=1

= X2P .

This implies that there exists a permutation π : {1, . . . ,K} → {1, . . . ,K}
such that

N∑
i=1

xL
i · sji =

M∑
i=1

yL
i · tπ(j)i ∀j = 1, . . . ,K

which implies

K∑
j=1

N∑
i=1

xL
i · sji =

K∑
j=1

M∑
i=1

yL
i · tπ(j)i ⇔

N∑
i=1

xL
i ·

K∑
j=1

sji =

M∑
i=1

yL
i ·

K∑
j=1

t
π(j)
i

2⇔
N∑
i=1

xL
i =

M∑
i=1

yL
i

which contradicts 1.

B Experimental details

B.1 Hyperparameters of the GNN architecture

The GNN architecture used in all experiments consists of: [2 GIN layers] – [1
pooling layer with pooling ratio 0.1] – [1 GIN layer] – [global_sum_pool] –
[dense readout].

Each GIN layer is configured with an MLP with 2 hidden layers of 64 units
and ELU activation functions. The readout is a 3-layer MLP with units [64, 64,
32], ELU activations, and dropout 0.5. The GNN is trained with Adam optimizer
with an initial learning rate of 1e-4 using batches with size 32. The pooling
ratio is set to 0.5 for EdgePool and Cmp-Graclus. For SAGPool or ASAPool
we used only one GIN layer before pooling. For PanPool we used 2 PanConv
layers with filter size 2 instead of the first 2 GIN layers. The auxiliary losses
in DiffPool, MinCutPool, and DMoN are added to the cross-entropy loss with
weights [0.1,0.1], [0.5, 1.0], [0.3, 0.3, 0.3], respectively. For k-MIS we used k = 5
and we aggregated the features with the sum. For Graclus, we aggregated the
node features with the sum.

B.2 Statistics of the datasets

Table 2 reports the information about the datasets used in the experimental
evaluation. Since the COLLAB and REDDIT-BINARY datasets lack vertex
features, we assigned a constant feature value of 1 to all vertices.

The expressive power of pooling in Graph Neural Networks 17

Table 2: Details of the graph classification datasets.

Dataset #Samples #Classes Avg. #vertices Avg. #edges Vertex attr. Vertex labels

EXPWL1 3,000 2 76.96 186.46 – yes
NCI1 4,110 2 29.87 64.60 – yes
Proteins 1,113 2 39.06 72.82 1 yes
COLORS-3 10500 11 61.31 91.03 4 no
Mutagenicity 4,337 2 30.32 61.54 – yes
COLLAB 5,000 3 74.49 4,914.43 – no
REDDIT-B 2,000 2 429.63 995.51 – no
B-hard 1,800 3 148.32 572.32 – yes

B.3 Detailed performance on the benchmark datasets

The average test accuracy of the GNNs configured with the different pooling
operators on the graph classification benchmarks is reported in Table 3, while
Table 4 reports the run-time of each model expressed in seconds per epochs. The
average accuracy and average run-time computed across all datasets are presented
in Table 5. For each dataset we use the same GNN configured as described in
B.1, including the pooling ratio of 0.1 (except for Graclus and EdgePool, where
is 0.5), as the goal is to validate the architecture used in the first experiment.
Clearly, by using less aggressive pooling, carefully configuring the GNN models,
and increasing their capacity it is possible to improve the results on several
datasets. We refer the reader to the original papers introducing the different
pooling operators for such results.

Table 3: Graph classification test accuracy on benchmark datasets.

Pooling NCI1 PROTEINS COLORS-3 Mutagenity COLLAB REDDIT-B B-hard

DiffPool 77.8±3.9 72.8±3.3 87.6±1.0 80.0±1.9 76.6±2.5 89.9±2.8 70.2±1.5

DMoN 78.5±1.4 73.1±4.6 88.4±1.4 81.3±0.3 80.9±0.7 91.3±1.4 71.1±1.0

MinCut 80.1±2.6 76.0±3.6 88.7±1.6 81.2±1.9 79.2±1.5 91.9±1.8 71.2±1.1

ECPool 79.8±3.3 69.5±5.9 81.4±3.3 82.0±1.6 80.9±1.4 90.7±1.7 74.5±1.6

Graclus 81.2±3.4 73.0±5.9 77.6±1.2 81.9±1.6 80.4±1.5 92.9±1.7 72.3±1.3

k-MIS 77.6±3.0 75.9±2.9 82.9±1.7 82.6±1.2 73.7±1.4 90.6±1.4 71.7±0.9

Top-k 72.6±3.1 73.2±2.7 57.4±2.5 74.4±4.7 77.9±2.1 87.4±3.5 68.1±7.7

PanPool 66.1±2.3 75.2±6.2 40.7±11.5 67.2±2.0 78.2±1.5 83.6±1.9 44.2±8.5

ASAPool 73.1±2.5 75.5±3.2 43.0±4.7 76.5±2.8 78.4±1.6 88.0±5.6 67.5±6.1

SAGPool 79.1±3.0 75.2±2.7 43.1±11.1 77.9±2.8 78.1±1.8 84.5±4.4 54.0±6.6

18 F.M. Bianchi and V. Lachi

Table 4: Graph classification test run-time in s/epoch.

Pooling NCI1 PROTEINS COLORS-3 Mutagenity COLLAB REDDIT-B B-hard

DiffPool 0.83s 0.23s 1.67s 0.90s 1.68s 1.74s 0.29s
DMoN 1.01s 0.28s 1.94s 1.06s 1.83s 1.04s 0.33s
MinCut 0.95s 0.28s 1.82s 1.10s 1.82s 1.78s 0.35s
ECPool 4.39s 1.97s 10.30s 4.22s 44.11s 3.17s 6.90s
Graclus 0.95s 0.27s 2.47s 0.98s 3.01s 0.75s 0.31s
k-MISPool 0.88s 0.25s 2.48s 0.95s 1.38s 0.48s 0.43s
Top-k 1.04s 0.29s 2.78s 1.04s 2.79s 0.47s 0.30s
PanPool 2.81s 0.81s 7.16s 5.48s 7.67s 46.15s 6.27s
ASAPool 1.83s 0.52s 4.48s 1.80s 3.97s 0.79s 0.52s
SAGPool 1.09s 0.30s 2.52s 1.07s 2.81s 0.43s 0.28s

Table 5: Average run-time in seconds per epoch (first row) and average classifi-
cation accuracy (second row) achieved by the different pooling methods on the
benchmark datasets.

DiffPool DMoN MinCut ECPool Graclus k-MIS Top-k PanPool ASAPool SAGPool

1.04s 1.07s 1.15s 10.72s 1.24s 0.97s 1.24s 10.90s 1.98s 1.21s
79.2±2.4 80.6±1.5 81.1±2.0 79.8±2.6 79.9±2.3 79.2±2.1 73.0±3.7 65.0±4.8 71.7±3.7 70.2±4.6

	The expressive power of pooling in Graph Neural Networks

