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Abstract. Drug-target interaction (DTI) prediction is a relevant but
challenging task in the drug repurposing field. In-silico approaches have
drawn particular attention as they can reduce associated costs and time
commitment of traditional methodologies. Yet, current state-of-the-art
methods present several limitations: existing DTI prediction approaches
are computationally expensive, thereby hindering the ability to use large
networks and exploit available datasets, and the generalization to unseen
datasets of DTI prediction methods remains unexplored, which could po-
tentially improve the development processes of DTI inferring approaches
in terms of accuracy and robustness. In this work, we introduce GeN-
Nius (Graph Embedding Neural Network Interaction Uncovering Sys-
tem), a Graph Neural Network (GNN)-based method that outperforms
state-of-the-art models in terms of both accuracy and time efficiency
across a variety of datasets. We also demonstrated its prediction power
to uncover new interactions by evaluating not previously known DTIs for
each dataset. We further assessed the generalization capability of GeN-
Nius by training and testing it on different datasets, showing that this
framework can potentially improve the DTI prediction task by training
on large datasets and testing on smaller ones. Finally, we investigated
qualitatively the embeddings generated by GeNNius, revealing that the
GNN encoder maintains biological information after the graph convolu-
tions while diffusing this information through nodes, eventually distin-
guishing protein families in the node embedding space.

Keywords: drug repurposing · drug-target interaction · bioinformatics.

1 Introduction

The process of identifying new drugs to treat a specific disease can be simpli-
fied by seeking a chemical compound that modulates a pharmacological target
implicated in that disease, with the goal of altering its biological activity. Even
though different biological entities can be chosen as targets, such as RNA or
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proteins, the latter are the most common pharmacological targets [24]. Target-
ing proteins allows the modulation of many biological processes implicated in
maintaining health and potentially preventing or treating diseases. For example,
drugs targeting metabolic enzymes can alter how cells process nutrients [4].

Although high-throughput wet-lab techniques were developed to accelerate
drug discovery pipelines, these approaches are costly and time-consuming [2].
Computational methods have arisen as promising tools to reduce the time and
resources required to bring new treatments to market. The field of drug repurpos-
ing involves predicting novel drug-target interactions (DTIs) that will ultimately
enable the discovery of new uses for already approved drugs [22].

Specific to DTI prediction, several different machine learning architectures
have been proposed in recent years. However, most of these technologies do not
consider the global view of how proteins and drugs are connected, which could be
informative towards the discovery of novel relationships. To allow for modeling
the network topology, recent works have been proposed to represent DTI data
as a graph [18,21]. Specifically, DTIs can be modeled as a heterogeneous graph
connecting drugs and proteins (both represented as nodes) based on recorded
interactions in wet-lab experiments (edges). The DTI prediction model is then
trained to predict whether a drug has the potential to interact with a protein.

Advances in machine learning for graphs have highlighted Graph Neural Net-
works (GNNs) as a powerful tool to model these complex networks. The defining
characteristic of a GNN is that it uses a form of neural message passing, where
at each iteration the hidden embeddings of the nodes are updated [9]. Recently,
entire libraries have been developed to work with GNNs. Special mention should
be made to PyTorch Geometric (PyG), a geometric deep learning library built
on top of PyTorch [5]. Among other functions and layers, PyG implements the
SAGEConv layer, which corresponds to the GraphSAGE operator that was orig-
inally designed to allow the training of GNNs in large networks [10]. SAGEConv
simultaneously learns the topological structure of the neighborhood of each node,
as well as the distribution of the features of the nodes in the neighborhood.

In this work, we present a novel DTI prediction method, termed GeNNius
(Graph Embedding Neural Network Interaction Uncovering System), built upon
SAGEConv layers followed by a neural network (NN)-based classifier. GeNNius
outperforms state-of-the-art (SOTA) methods across several datasets, not only in
the evaluation metrics but also in execution time. Additionally, we evaluated the
ability of GeNNius to predict unseen DTI interactions, yielding promising re-
sults, and we assessed its generalization capability by training in one dataset and
testing in a different one. Finally, we analyzed qualitatively how drug and pro-
tein features are combined during the GNN encoder, revealing that it maintains
biological information while diffusing this information through nodes, eventually
distinguishing protein families in the node embeddings.

Overall, the results of our evaluation provide strong support for the effective-
ness of GeNNius, and introduce relevant guidelines to build GNN-based drug
repurposing approaches.
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2 Materials and Methods

2.1 Methods

Model architecture GeNNius architecture is composed of a Graph Neural
Network (GNN) encoder that generates node embeddings and a Neural Network
(NN)-based classifier that aims to learn the existence of an edge (i.e., an interac-
tion) given the concatenation of a drug and protein node embeddings (Figure 1).

In GNNs, nodes in the graph exchange messages with their neighbors to
update their feature representation, which is formulated with two fundamental
functions: the message and the update functions.[31]:

mk
v =

∑
u∈N(v)

Mk(hk−1
v ,hk−1

u , evu). (1)

hk
v = Uk(hk−1

v ,mk
v), (2)

where k ∈ {1, ...,K} represents the layer, mv the aggregated message vector
for node v, N(v) the neighbor nodes of v, and hv ∈ Rd the node v embedding,
of dimension d. Mk(hv,hu, evu) defines the message between node v and its
neighbor node u, which depends on the edge information evu. Finally, Uk is
the node update function, which combines aggregated messages from the node’s
neighbors with the node’s own representation.

GeNNius’s encoder is composed of four SAGEConv layers, which are re-
sponsible for generating network-preserving node embeddings h ∈ Rd (d = 17 in
our case) by aggregating information from the embeddings of each node’s local
neighborhood. Thus, in GeNNius, the embedding of node v at SAGEConv layer
k is given by:

hk
v = f(Wk

0h
k−1
v + AGG(Wk

1{h
k−1
u , u ∈ N (v)})), (3)

where f is the activation function (Tanh in our case) and AGG represents the
aggregation function (SUM in our case). Wk

0 and Wk
1 are the learnable weight

matrices; since we are working with heterogeneous graphs, where a drug is only
connected to proteins and vice versa, if W1

0 ∈ Rd×dP then W1
1 ∈ Rd×dN , or the

other way around, being dP (dN ) the initial dimension of proteins (drugs) node
features. For k > 1, both matrices have dimension d× d.

The NN-based classifier is composed of two dense layers, both using ReLu
as the activation function, followed by the output layer, which is composed of
a single neuron with a sigmoid activation function. The input to the classifier
is a vector of dimension 2d (corresponding to the concatenation of a drug and
protein embeddings), and the output is the estimated probability of having an
interaction (positive edge).

GeNNius architecture (depicted in Figure 1) and hyperparameters were cho-
sen through a grid search with ten independent runs, using different types and
number of GNN layers, different embedding dimension d, activation functions,
aggregation functions, and different number of heads for layers with attention.
This approach helped us to fine-tune the model (see Supplementary Material
(SM), Section 1 for a detailed description of the process and hyperparameters).
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Fig. 1: Schematic of GeNNius architecture. GeNNius inputs a graph containing
drug (red) and protein (blue) nodes, where Nd and Np represent the number of
drugs and proteins, respectively. First, a GNN generates node embeddings of
dimension d = 17. Second, a NN-based classifier aims at learning the existence
of an edge given a set of concatenations of drug and protein embeddings.

Model configuration The model was trained with the Adam optimizer [15]
and a learning rate of 0.01. We use a loss that combines the sigmoid of the
output layer and the binary cross entropy in a single function. Given a dataset
divided into batches of size N, the loss ln for sample n in the batch is computed
as follows:

ln = − [yn · log σ (xn) + (1− yn) · log (1− σ (xn))] , (4)

where yn ∈ {0, 1} is the associated label for sample n, ŷn = σ(xn) the esti-
mated probability of the sample belonging to the positive class (i.e., existence
of an interaction), and xn the output of the last linear layer (before the ac-
tivation function). The final batch loss L is then computed as the average of
(l1, . . . , lN ). Finally, a dropout of 0.2 is used at the encoder stage (the GNN) to
address potential collinearities of node features [29] (dropout rate chosen through
hyperparameter-tuning, see SM, Section 1).

The model is implemented with early stopping, calculated on validation data,
with a minimum of 40 training epochs. The latter is especially useful for small
datasets where an early stop may occur during the first epochs, eventually caus-
ing underfitting. The model was built with the latest version of PyTorch Ge-
ometric (2.3.0), with PyTorch 2.0.0-cuda11.7, and the following packages: pyg-
lib (0.2.0), torch-scatter (2.1.1) and torch-sparse (0.6.17). GeNNius code (incl.
Dockerfile) is available at https://github.com/ubioinformat/GeNNius.

Model training and evaluation In the standard setting in which a single
dataset is used to evaluate model performance, the input graph is randomly
split into a 70:10:20 ratio for train, validation, and testing, respectively, via
the random link split function of PyG. This function also randomly selects the
negative edges needed for training and testing the NN-based classifier in a 1:1
positive/negative ratio. The training set requires further shuffling of positive and
negative edges. Only 70% of training edges are used for training the encoder,
while the rest are kept apart for the edge prediction part (i.e., the edge classifier).

https://github.com/ubioinformat/GeNNius
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To assess the performance of the models in the edge classification task on
test data, we use the area under the Receiver Operating Characteristic curve
(AUROC), as well as the area under the precision-recall curve (AUPRC), both
widely used for evaluating DTI prediction models. We refer to SM Section 2 for
a more extended description of these metrics.

Node features Due to the different nature of drugs and proteins, we choose a
vastly different set and dimension of features for drug and protein nodes. The
protein node features are encoded as a 20-dimensional vector, accounting for
the 20 different amino acids, where each feature indicates the proportion of the
corresponding amino acid in the protein sequence associated to the node. Drug
node features are well-known molecular descriptors, calculated with RDKit [16]
from their SMILES. Specifically, the 12 selected features for drug nodes are:
LogP value, molecular weight, topological polar surface area, and the number
of H-bond acceptors, H-bond donors, heteroatoms, rotatable bonds, rings and
aromatic rings, NHs and OHs, Ns and Os, heavy atoms, and valence electrons.
While some of the above-mentioned features are related, model learning and
performance is not expected to deteriorate as a dropout layer was introduced to
reduce the potential effect of features’ collinearity (the correlation matrices are
provided in SM Section 3). While other node features could be considered, such
as protein pre-computed embeddings, training the model with those features
showed almost no increase in performance. Moreover, these embeddings were
not available for all proteins, hindering the model’s generalization capabilities,
specially when trained in small networks (SM Section 4).

Related work In order to benchmark our proposed method GeNNius, we
focus on the latest DTI prediction models that have been shown to outperform
previously developed models in their respective publications.

– DTINet [18] considers a heterogeneous graph with four node types (drugs,
proteins, side effects and diseases) and six edge types (DTIs, protein-protein
and drug-drug interactions, drug-disease, protein-disease, and drug-side-effect
associations, plus a calculation of drug/protein similarities). After compact
feature learning on each network drugs/proteins, it calculates the best pro-
jection of one space onto another using a matrix completion method, and
then infers interactions according to the proximity criterion.

– EEG-DTI [21] considers a heterogeneous network similar to DTINet (see
above). The model first generates a low-dimensional embedding for drugs
and proteins with three Graph Convolutional Networks (GCN) layers. Then,
it concatenates them for drugs and proteins separately, and calculates the
inner product to get the protein-drug score.

– HyperAttentionDTI [35]. This method only requires the SMILES string
for drugs and the amino acid sequence for proteins. Then, it embeds each
character of the different sequences into vectors. The model is based on the
attention mechanism and Convolutional Neural Networks (CNNs).
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– Moltrans [12]. As HyperAttentionDTI above, it needs the SMILES for drugs
and amino acid sequences for proteins. Then, it makes use of unlabeled data
to decompose both drug and nodes into high-quality substructures, to later
create an augmented embedding using transformers. The model is able to
identify which substructures are contributing more to the DTI.

2.2 Materials

Datasets In this work we selected various datasets that have been widely used
for DTI prediction tasks:

– DrugBank [30]. Drug-Target interactions collected from DrugBank Database
Release 5.1.9. Its first release was in 2006, although it has had significant
upgrades during the following years.

– BioSNAP [19]. Dataset created by Stanford Biomedical Network Dataset
Collection. It contains proteins targeted by drugs on the U.S. market from
DrugBank release 5.0.0 using MINER [26].

– BindingDB [17]. Database that consists of measured binding affinities, fo-
cusing on protein interactions with small molecules. The binarization of the
dataset was done by considering interactions positive if their Kd was lower
than 30. Data downloaded from Therapeutics Data Commons (TDC) [11].

– Davis [1]. Dataset of kinase inhibitors with kinases covering >80% of the
human catalytic protein kinome. The binarization of the dataset has been
done considering as positive interactions with a Kd lower than 30. Data
downloaded from Therapeutics Data Commons (TDC) [11].

– Yamanishi et al. [33]. It is composed of four subsets of different pro-
tein families: Enzymes (E), Ion-Channels (IC), G-protein-coupled receptors
(GPCR) and nuclear receptors (NR). Yamanishi dataset has been considered
the golden standard dataset for DTI prediction and has been used in several
published models [36,21]. DTIs in this dataset come from KEGG BRITE
[14], BRENDA [25], SuperTarget [8] and DrugBank.

Note that the above-mentioned datasets, with the exception of BindingDB
and Davis, contain only positive samples, i.e., positive links in the network. Nev-
ertheless, when choosing negative samples, we performed random subsampling
to have a balanced dataset prior to training the model. Datasets statistics are
summarized in Table 1. These datasets were released in different years, and thus
some drug-target interactions can be shared across datasets (See SM Section 5).

Dataset configuration for inferring unknown positives DTI datasets con-
tain information from diverse sources, have been released in different years, and
may be curated in various ways. As a result, negatively labeled edges in one
dataset may be reported as positive in other datasets. We evaluate these un-
known positive edges for each dataset to asses if GeNNius can predict them
(see SM Section 5 for details on the number of these DTIs). Importantly, we
ensured that testing edges do not appear as negatives during training to asses
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Table 1: Dataset Statistics.
Yamanishi

DrugBank BIOSNAP BindingDB Davis E GPCR IC NR
Number of drugs 6823 4499 3084 59 444 222 210 53
Number of proteins 4652 2113 718 218 660 94 203 25
Total number of nodes 11475 6612 3802 277 1104 316 413 78
Total number of edges 23708 13838 5937 673 2920 634 1471 86
Sparsity (%) 0.07 0.15 0.27 5.52 1.01 3.13 3.57 6.94
# Connected components 412 174 231 1 44 18 3 10
Avg degree drug nodes 3.47 3.08 1.93 11.41 6.58 2.86 7.00 1.62
Avg degree protein nodes 5.10 6.55 8.27 3.09 4.42 6.74 7.25 3.44

how well GeNNius predicts these specific interactions; we repeated the process
ten independent times, enabling us to investigate the variability of the prediction
depending on training edges, which is often not reported in DTI models.

Data leakage prevention during evaluation on unseen datasets Con-
trary to previously proposed models, we assess the generalization capability of
GeNNius by training it on one dataset and testing it on another.

Let us consider two nodes that are present both in the training and test
datasets. There are four possible scenarios for an edge connecting these nodes.
A positive edge in both datasets is a clear example of data leakage from the train
to the test set, as we already informed the model about that positive edge during
training. Hence those repeated DTIs are removed during training. On the other
hand, edges that appear in one dataset but not on the other one are kept. Keeping
the negative edges in the training data makes sense from a usability perspective
since a non-reported DTI in a given dataset does not necessarily mean that
that pair does not interact, and we aim to test GeNNius’ capabilities under
this general scenario. Further, a negative edge may be shared in both datasets;
however, since negative edges are randomly selected when generating the training
and testing sets, the probability of picking the same edge in both datasets is very
low. As an illustrative example, when training in DrugBank and testing in NR,
the probability of selecting the same negative edge is approximately 3e−6.

We performed five independent training runs on each dataset, i.e., randomly
selecting each time a different set of edges for training the model. Next, for
each trained model, we performed five independent testing runs. We report the
average and standard deviation of the AUROC and AUPRC metrics, of the test
set, across the total 25 runs per training-testing dataset pair.

Protein and Drug Annotation Protein family and enzyme annotation was
retrieved from the ChEMBL database (release 31), as its family hierarchy is man-
ually curated and according to commonly used nomenclature [6]. Drug chemical
annotation was generated using ClassyFire [3].

Hardware All simulations were performed on a server with 64 intel xeon gold
6130 2.1Ghz cores with 754Gb of RAM and a NVIDIA GeForce RTX 3080,
driver version 515.43.04, with cuda 11.7. version
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3 Results

3.1 GeNNius outperforms state-of-the-art methods

The proposed model was run on the eight selected datasets with five independent
runs. The resulting AUROC and AUPRC metrics on the test sets across all
datasets, as well as running times (corresponding to train, validation and test),
are presented in Figure 2 (see also SM Section 6 where we included AUPRC
results). GeNNius returned AUROC and AUPCR performance close to 1 (>0.9)
for large datasets, and while smaller datasets reported worse results, they are
still compelling (>0.8 in almost all runs). NR, being the smallest one, achieved
the worst results (>0.7). Additionally, the large datasets showed stable results,
with a low standard deviation, across the five independent runs. Further, the
model execution time was ultrafast for all datasets (less than a minute). Note
that the time variance in the large datasets is due to early stopping.
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Fig. 2: Boxplots of GeNNius for five independent runs using the eight selected
datasets. Upper. AUROC results. Lower. Time results in minutes.

Next, we compared the performance of GeNNius with previously proposed
methods. Table 2 shows the performance results of GeNNius and the SOTA
methods for both DrugBank and BIOSNAP, the largest standard DTI datasets.
We focus on these datasets as they better characterize the current size of testable
available drugs. GeNNius outperformed all benchmarked methods in terms of
AUROC and AUPRC. Importantly, the execution time is significantly reduced,
even when executed without GPU (see SM Section 7). Previous methods’ running
time was in the order of tens of minutes (except DTINet, which took 4.23 min),
while GeNNius took less than 0.6 minutes to perform the training, validation,
and testing. The closest performance in AUROC and AUPRC to GeNNius was
achieved by EEG-DTI. However, EGG-DTI took four orders of magnitude more
time to run (917.39 min versus 0.58 min in DrugBank). Finally, we also compared
GeNNius to off-the-shelf machine learning baselines Logistic Regression (LR)
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Table 2: Benchmarking results of GeNNius against four SOTA DTI methods
and machine learning baselines, for BIOSNAP and DrugBank datasets. Best
values are highlighted in bold, excluding baseline results. AUROC/AUPRC re-
sults correspond to test set, execution time correspond to train/validation/test.
SOTA models were run in their default configuration, i.e., Moltrans correspond
to 5 independent runs, while DTINet and EEG-DTI to a 10-Fold Cross Valida-
tion, and HyperAttentionDTI to 10-times repeated 5-fold Cross-Validation.

BIOSNAP DrugBank
Method AUROC AUPRC Time (min) AUROC AUPRC Time (min)
DTINet 0.8557 ± 0.0011 0.8856 ± 0.0009 4.23 0.8154 ± 0.0004 0.8569 ± 0.0005 7.99
HyperAttentionDTI 0.8616 ± 0.0026 0.7716 ± 0.0627 66.57 0.8624 ± 0.0034 0.7756 ± 0.0456 610.45
Moltrans 0.7921 ± 0.0084 0.6452 ± 0.0037 43.35 0.7982 ± 0.0079 0.6622 ± 0.0053 122.09
EEG-DTI 0.9021 ± 0.0094 0.9046 ± 0.0098 41.39 0.8886 ± 0.0049 0.8795 ± 0.0066 917.39
GeNNius 0.9340 ± 0.0032 0.9349 ± 0.0021 0.34 0.9371 ± 0.0033 0.9392 ± 0.0041 0.58
Logistic Regression 0.6173 ± 0.0026 0.5731 ± 0.0020 0.02 0.6196 ± 0.0048 0.5747 ± 0.0035 0.06
Random Forest 0.7910 ± 0.0050 0.7519 ± 0.0056 0.05 0.7698 ± 0.0032 0.7212 ± 0.0031 0.09

and Random Forest (RF), to assess the actual improvement in accuracy using
the same features (see SM Section 8 for further details). Comparing our model
with LR and RF, we observed an increase in AUROC of 31.75% and 16.73%,
respectively, indicating that GeNNius is superior due to its architecture: it not
only uses node features but also incorporates network’s topology.

3.2 GeNNius prediction capabilities for inferring previously
unreported drug-target interactions

To analyze the capability of GeNNius to detect unknown interactions, we first
identified those target-protein pairs lacking an edge in one dataset (negative
label) but connected in the other datasets (positive label). Then, we assessed
whether GeNNius was able to annotate these edges as positive. We trained the
model ensuring that the edges for testing were not seen during the training pro-
cess and repeated the process ten times. More detailed in Methods (Section 2.2).

The ratio of correctly predicted edges for each dataset is presented in Fig-
ure 3. When trained with large datasets, GeNNius returned good prediction
capabilities, detecting more than 80% of edges in almost all cases. It is worth
noting that with DrugBank it successfully predicted more than 90% of these
edges.Further, when using Yamanishi datasets (E, GPCR, IC, and NR), GeN-
Nius returned satisfactory results, predicting 70% of DTIs on average across
different runs, although with higher variability than when using large datasets.
This suggests that training on a small dataset hinders the inference of new in-
teractions, as the random choice of edges for training has larger impact on the
predictive power in these cases. We note that the observed outliers could be
due to a non-informative random selection of training edges. Finally, the Davis
dataset yielded significantly worst results than the other datasets. At first sight,
this behavior could be due to the origin of the Davis dataset, as it is generated
from affinity experiments. However, BindingDB, which is also generated from
affinity data, does not yield such low performance. Hence, this may indicate
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Fig. 3: Boxplot of the ratio of correctly identified positive edges in 10 independent
runs. Note that e is the number of edges to be evaluated.

that the problem comes from the significant difference in the topology of Davis:
it is the only dataset formed as a uniquely connected network (see Table 1).

3.3 GeNNius generalization capabilities

We evaluated GeNNius performance when training and testing on different
datasets. In order to ensure that there is no data leakage that might oversimplify
the prediction task, DTIs that were common to train and test datasets were
discarded prior to applying the model (see Methods, Section 2.2).

AUROC results are presented in Figure 4 (AUPRC results are similar, see SM
Section 9), where each entry of the heatmap shows the performance of GeNNius
on the row dataset when trained on the column dataset. The reported values
correspond to 25 runs, where statistical deviation in AUROC and AUPRC arise
from the random selection of edges.

In general terms, GeNNius returned compelling results in its generalization
capabilities; however, there was a strong dependence on the training dataset.
GeNNius reported the best generalization capabilities when trained on larger
datasets, such as DrugBank, BIOSNAP, and E. On the other hand, when the
model is trained on the smallest dataset, NR, it cannot generalize, resulting
in lower AUROC/AUPRC values compared to others (whiter colors in the NR
column). Additionally, despite the Davis dataset being similar in size to other
Yamanishi datasets, it returned the second-to-worst results for both training and
testing. As mentioned previously, Davis’ topology is different from the rest of
the networks. In addition, Davis and BindingDB, unlike other datasets, come
from affinity experiments. However, the latter seems to perform similarly, albeit
slightly worse, than DrugBank when used for training.

We also found that, for smaller networks, our method obtains better results
when trained on large datasets and tested on smaller ones compared to when
trained and tested on the same small dataset. For instance, GeNNius obtained
an AUROC of 0.86 when trained on DrugBank and tested on NR (lower left
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corner of heatmap), while it achieved an AUROC of 0.73, using NR for training
and testing (Section 3.1). This suggests that training on large networks helps
the model learn and generalize to unseen and smaller datasets.

In addition, to assess how much these results depend on the node features,
we compared them with a random forest model that has no information on
network topology. RF showed incapability to generalize, contrasting with the
results obtained when training and testing on the same dataset (Table 2). The
presented results indicate that GeNNius is capable of generalizing by employing
both features and the network’s topology (see SM Section 9).

Fig. 4: Performance of GeNNius in terms of AUROC when training in one
dataset (column) and testing in other (row). Train datasets do not contain pos-
itive edges that appear in the test dataset.

3.4 GeNNius encoder preserves biological information in edges
and diffuses it in nodes

To qualitatively interpret the generated embeddings by GeNNius’s GNN en-
coder, we computed the t-SNE of both the input features and the computed
embeddings for all nodes and DTI edges. We focused on the DrugBank dataset,
since as shown in previous sections, it reports one of the best AUROC/AUPRC
results (Sections 3.1 and 3.3) and yields one of the lowest variability during DTI
evaluation (Section 3.2). We aimed at shedding some light on whether the embed-
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dings generated by GeNNius carry meaningful biological information beyond
the ability to uncover new DTIs.

Firstly, we observe that the edge space with the input features contains in-
formation about drug chemical categories and protein families (see SM Section
10 Figures 7a,7b,7c). Using the generated embeddings instead, we observe that
despite the new shapes, the biological information is conserved after graph con-
volutions, i.e., we can still distinguish groups by drug chemical classification but
especially by protein families (see SM Section 10 Figures 7d, 7e, 7f).

Secondly, when analyzing the nodes, we found that node input features con-
tain almost no information about protein families, i.e., nodes do not form groups
by protein families, conversely to drug nodes grouped by chemical categories (see
SM Section 10 Figures 8a, 8b, 8c). The next emerging question is whether the
GNN encoder diffuses the biological information such that the embedding of
nodes reflects it. The grouping of drug nodes concerning their chemical classifi-
cation spread after applying the encoder; this is an awaited result, as we desire
drugs in a DTI prediction model to be promiscuous (SM Section 10 Figure 8d).
However, protein node embeddings displayed better identifiable groups than be-
fore (SM Section 10 Figure 8e). Protein families, such as membrane receptors and
ion channels, revealed some grouping at the top of the figure, despite not being
evident. Moreover, enzymes gathered in separate groups and, further, upon its
annotation, we found a more clear grouping, e.g., kinases formed a small group
on the right of the t-SNE (SM Section 10 Figure 8f).

Ultimately, the encoder maintains biological information in edge space while
spreading biological information through nodes, such as protein family classifi-
cation in protein nodes and sub-classification of enzymes.

4 Conclusion

We introduced a novel Drug-Target Interaction (DTI) model, termed GeNNius,
composed of a GNN encoder followed by an NN-edge classifier. GeNNius out-
performed state-of-the-art models in terms of AUROC and AUPRC while being
several orders of magnitude faster. Further, we showed that the generalization
capabilities of GeNNius and demonstrated its ability to infer previously un-
reported drug-target interactions. In addition, we showed that GeNNius GNN
encoder exploits both node features and graph topology to maintain biological
information in edge space while spreading biological information through nodes.
Ultimately, GeNNius ’s ability to generalize and predict novel DTIs reveals its
suitability for drug repurposing. Additionally, its remarkable speed is key in its
usability as it enables fast validation of multiple drug-target pairs.
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Supplementary Material

1 Hyperparameter tuning for GeNNius’s GNN encoder

We performed a grid search to asses which hyperparameters are more effective for the
DTI prediction task. The grid search was performed using the DrugBank dataset, for
being the largest dataset available, under the idea that it may be easier for the model
to generalize. The grid search tested several hyperparameters, repeating ten times each
hyperparameter configuration. In all cases the dataset was randomly split into train,
validation and test sets with a 70/10/20 ratio. For selecting the best-performing archi-
tecture, we used the validation set to prevent overfitting to the test set, the latter used
to report results in the main text. The script used to perform the hyperparameter tun-
ing is provided in the GitHub repository (https://github.com/ubioinformat/GeNNius),
as well as a CSV file with the obtained results.

We evaluated the following hyperparameters:

– Type of layer: SAGEConv, GraphConv, GATConv, Tranformerconv. For further in-
formation about the layers and their implementation visit the PyG webpage (https:
//pytorch-geometric.readthedocs.io/en/latest/modules/nn.html). Note even if there
are several layers implemented in PyG, not all can be used in the scenario of an
heterogeneous bipartite network.

– Number of layers: from one to five, as with more than 4 layers the AUROC/AUPRC
decreased considerably due to the over smoothing problem.

– Embedding dimension: from 6 to 24.
– Dropout rate: 0, 0.2, and 0.5.
– Number of heads for those models with attention (GATConv, Transformerconv):

1, 2, 4.
– Aggregators for SAGEConv and GraphConv layers: sum, mean, max.
– Activation functions: ReLu and Tanh.

The best model (i.e., hyperparameter configuration) was selected as the one with
the highest average AUROC (and AUPRC) on the validation set across the ten inde-
pendent runs. While the variation of some hyperparameters, such as the embedding
dimension, did not affect AUROC results, others as the aggregator function of the
convolutional layer and the dropout rate did. Figures 1a, and 1b show the obtained
results as a function of the layer type, the aggregator function, and the dropout rate,
respectively. The SUM aggregator function provided the highest AUROC values, and
the dropout rate of 0.2 enhances the model’s learning compared to higher values (0.5)
and to no dropout at all.
The selected hyperparameters for GeNNius’s GNN architecture are summarized in
Table 3.

https://github.com/ubioinformat/GeNNius
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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Fig. 1: Boxplot of the AUROC values obtained on the validation set with GeN-
Nius selected architecture but varing two different hyperparameters. (a) AUROC
boxplot as a function of the aggregator function., and (b) Boxplots of the AU-
ROC as a function of the dropout rate.

Table 3: Summary of GeNNius hyperparameters.
Parameter type Value
Layer type SAGEConv
Number of hidden layer 4
Activation function Tanh
Aggregation type Sum
Embedding dimension 17
Learning rate 0.01
Dropout 0.2
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2 Evaluation metrics

To assess the performance of the models in the classification task, we used the area
under the ROC (Receiver Operating Characteristic) curve (AUROC), as well as the
area under the precision-recall curve (AUPRC), both widely used for evaluating DTI
prediction models. The ROC curve depicts the false positive rate (FPR) versus the
true positive rate (TPR), defined as:

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
, (5)

where TP, FN, and FP stand for true positives, false negatives, and false positives,
respectively. The precision-recall (PR) curve plots instead the precision (P) versus the
recall (R), defined as follows:

P =
TP

TP + FP
; R = TPR =

TP

TP + FN
. (6)

Recall that for a given input corresponding to the information of a drug and protein
node, the classifier outputs a number between 0 and 1, indicating the probability of
existence of and edge between the two nodes (i.e., a positive outcome). By modifying
the threshold for which a decision between negative and positive outcomes is made, we
can generate the ROC and PR curves.

The AUROC and AUPRC are then given by the area under the ROC or PR curves,
respectively, and ranges between 0 and 1, with 0.5 corresponding to a random classifier
and 1 to a perfect one. This value helps to evaluate the reliability and confidence of
the models. Intuitively, positive (negative) inputs should produce high (low) probabili-
ties. Sorting the inputs by their probability should therefore result in positive samples
appearing before negative ones. In other words, a high (low) threshold should produce
few FPs (FNs). Hence, the considered AUROC and AUPRC metrics show how well
the model separates both classes.
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3 Node Features correlation

Correlation maps of drug node features for DrugBank dataset in Figure 2a. For com-
pleteness, Figure 2b presents the correlation matrix of protein features, also for Drug-
Bank.
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Fig. 2: Correlation of node features in DrugBank. (a) Drug nodes feature corre-
lation and (b) protein node features correlation.
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4 Using pre-computed protein embeddings

To test other protein features that could be more standard in other tasks or informa-
tive to the model, we trained and tested the model using pre-computed embeddings of
protein sequences, specifically embeddings retrieved from the UniProt database, corre-
sponding to those generated using the ProtT5 model (https://www.uniprot.org/help/
embeddings).

The use of those features, with the same architecture selected with GeNNius, did
not increase considerably the resulting AUROC (see Table 4). Further, it seems that
for smaller models such as NR the model is overfitting; for 2 out of 5 runs, NR returned
1.000 in AUROC. Moreover, in terms of generalization seemed to hamper the model.
Firstly, smaller networks such as NR pre-computed embeddings were not available
at Uniprot, leading to a network with not enough edges for training. Secondly, the
generalization results for the rest of the available datasets were worse for some datasets
(see heatmap in Figure 3). These results validate the use of amino acid ratio for the
initial protein features, being also faster to generate, and available for all proteins.

Table 4: Results with protein pre-computed embedding as protein node features
for the selected datasets.

Dataset AUROC AUPRC Time
DrugBank 0.9304 ± 0.0072 0.9329 ± 0.0070 0.15 ± 0.09
BIOSNAP 0.9263 ± 0.0061 0.9306 ± 0.0070 0.10 ± 0.01
BindingDB 0.9475 ± 0.0094 0.9445 ± 0.0110 0.04 ± 0.02
Davis 0.6325 ± 0.0561 0.6554 ± 0.0806 0.02 ± 0.00
E 0.9382 ± 0.0060 0.9278 ± 0.0080 0.03 ± 0.01
GPCR 0.8212 ± 0.0163 0.8257 ± 0.0240 0.02 ± 0.00
IC 0.8609 ± 0.0107 0.8506 ± 0.0145 0.02 ± 0.01
NR 0.8625 ± 0.1556 0.8767 ± 0.1323 0.02 ± 0.00

https://www.uniprot.org/help/embeddings
https://www.uniprot.org/help/embeddings
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Fig. 3: Performance of GeNNius in terms of AUROC using pre-computed em-
beddings as initial features (d = 17 for GNN encoder) when training in one
dataset (column) and testing in other (row). Train datasets do not contain pos-
itive edges that appear in the testing dataset. Set-up similar to that explained
in Main Section 2.2.
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5 Edge analysis between datasets

In order to asses the similarities and dissimilarities between datasets, we generated
four different heatmaps summarizing the percentage of shared edges (Figure 4a), and
the amount of edges not reported as positive in one dataset but that were found to be
positive in others (Figure 4b).
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(b) Heatmap of negative edges.

Fig. 4: Datasets comparison statistics. (a) heatmap of repeated edges, where each
entry represents the percentage of edges that the dataset in the column shares
with the one in the row. (b) Heatmap of negative edges. Each entry represents
first the number of negative edges from the dataset in the column that has been
registered as positives in the one in the row, and second, the percentage of edges
per dataset compared to the total number to evaluate, numbers that correspond
to those in Main Section 3.2. Note that some edges may be repeated, for that
reason the total number may be lower than the sum of edges per dataset.
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6 Additional results

Table 5 provides the average and standard deviation of the AUROC and AUPRC
metrics obtained by GeNNius on the different datasets (always in the test set) across
five independent runs. The running time corresponds to training, validation and testing.
The same results are represented in main text Figure 2.

Table 5: Results corresponding to main text Figure 2.
Dataset AUROC AUPRC Time (min)
DrugBank 0.9371 ± 0.0033 0.9392 ± 0.0041 0.58 ± 0.09
BIOSNAP 0.9339 ± 0.0032 0.9349 ± 0.0021 0.34 ± 0.18
BingingDB 0.9576 ± 0.0045 0.9552 ± 0.0019 0.15 ± 0.05
Davis 0.8607 ± 0.0338 0.8596 ± 0.0238 0.02 ± 0.00
E 0.9440 ± 0.0117 0.9321 ± 0.0190 0.03 ± 0.02
GPCR 0.8273 ± 0.0428 0.8189 ± 0.0540 0.02 ± 0.00
IC 0.8704 ± 0.0189 0.8557 ± 0.0260 0.02 ± 0.01
NR 0.7304 ± 0.0536 0.7207 ± 0.0378 0.02 ± 0.00
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7 Running time in CPU

GeNNius was also run without GPU to check the difference in time with respect to
GPU (see main text Table 6). Reported running times correspond to train, test and
validation.

Table 6: Time results (average and std) in minutes when running the model with
CPU for all considered datasets. Presented results correspond to an average of
5 runs.

Time
Dataset Average std
DrugBank 0.9188 0.3297
BIOSNAP 0.6690 0.2445
BindingDB 0.1911 0.0845
Davis 0.0188 0.0001
E 0.0534 0.0295
GPCR 0.0188 0.0001
IC 0.0240 0.0068
NR 0.0159 0.0002
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8 Baseline models

To assess whether the node features or the model itself (which includes information
on network topology) play an essential role, i.e., if the obtained performance metrics
are mostly due to the used features, we used two baseline models that use only node
features for prediction: Logistic Regression (LR) and Random Forest (RF).

For hyperparameter tuning, we used the DrugBank dataset, for being the largest
dataset used in this work. The models were implemented with the sklearn Python
package. Both baselines take edges (concatenation of protein and drug features) as
input to classify whether they are labeled as positive (interaction) or negative (not
interaction). Those edges were selected by using the same function as in GeNNius, i.e.,
using the RandomLinkSplit function by PyG. Code available in the GitHub repository.

8.1 Logistic Regression

Logistic regression (LR) is a statistical model used for binary classification problems,
where the goal is to predict the probability of a binary outcome. It estimates the
relationship between the input and the output variable, using a logistic function to
transform the input into a probability value between 0 and 1. The selected hyperpa-
rameters are presented in Table 7.

Table 7: Summary of LR hyperparameters
Parameter type Value
C 3.16
Max_iter 100
Penalty ‘l2’

8.2 Random Forest

Random forest (RF) is an ensemble model that trains multiple decision trees and
combines their outputs to make predictions. Each decision tree is built using a random
subset of features and training data, which helps to reduce overfitting and increase
accuracy. The selected hyperparameters are presented in Table 8.

Table 8: Summary of RF hyperparameters
Parameter type Value
criterion gini
max_depth 10
max_features auto
min_samples_leaf 6
min_samples_split 5
n_estimators 50
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9 Additional generalization results

The generalization AUPRC results of GeNNius are shown in Figure 5. For completeness,
we also tested the generalization ability when no network topology is used. The results
when using the RF baseline model in terms of AUROC and AUPRC are depicted
in Figures 6a and 6b, respectively. We selected the RF model as it exhibited better
performance than the LR model (see main Table 2). Details on the RF model and
hyperparameters are provided in Supplementary Section 8.

Fig. 5: Performance of GeNNius in terms of AUPRC when training in one
dataset (column) and testing in other (row). Train datasets do not contain pos-
itive edges that appear in the testing dataset.
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(a) AUROC Heatmap Baseline RF

(b) AUPRC Heatmap Baseline RF

Fig. 6: Generalization performance of Random Forest in terms of (a) AUROC
and (b) AUPRC (average and std), when training in one dataset (column) and
testing in other (row). Train datasets do not contain positive edges that appear
in the testing dataset. Results correspond to 25 runs, see methods in main article
for further details on edge selection.
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10 Edge and node embedding analysis

We wanted to qualitatively interpret how our GeNNius’ encoder manages biological
information in the network. For this, we used the DrugBank dataset; it is the largest
dataset and also returned satisfactory results during all our experiments.

Firstly, we retrieved all edges in the network and concatenated the node features to
get a view of the possible biological information stored in the network’s topology. Then,
with the resulting data, we performed a dimensionality reduction. The results indicate
that the network contains information about protein families and drug classification. It
is clear to distinguish edges annotated by drug classification grouping together (Figure
7a). It also happened for edges annotated by protein classification, such as groups of
secreted enzymes (red), transporters (green), and (ion channels). These three examples
of proteins show that the information on protein families in the network appears on the
edges (Figure 7e). Similarly, this grouping appeared in the enzyme annotated Figure
7c. Next, we generated the t-SNE of the embedding space of edges to inspect whether
the encoder maintains the biological information in this space and we verified that,
despite the new shapes in the t-SNE, the biological information is conserved after
graph convolutions, i.e., we can still distinguish groups by drug chemical classification
but especially by protein families (see Figures 7d, 7e, 7f).
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(b) Edges colored by pro-
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Isomerase
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Hydrolase
Transferase
Ligase
Phosphatase
Phosphodiesterase
Kinase
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(c) Edges colored by en-
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(f) edge embedding enzyme
annot

Fig. 7: Edges. t-SNE paramteres for all t-SNEs: perplexity = 30, niter= 1000,
selected metric was cosine with random initialization. For drugs, removed un-
classified drugs, those who belong to "Other" group and those with less than 20
appearances together. For proteins removed unclassified proteins and those with
less than 10 appearances.
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Drug features grouped in the reduced space in a manner that resembled family
branches or leaves, as expected due to the high relation between molecular descriptors
and drug chemical categories (Figure 8a). Protein features, conversely, showed little
to no evidence of containing information about their respective families. We could
only distinguish a separation for proteins corresponding to transporters and membrane
receptors; for those, this is an expected behavior, as those proteins evolved to 3D struc-
tures with membrane-bound functions, including more presence of hydrophobic amino
acids (attach the protein in the lipid bilayer) and less of charged amino acids (avoid
repulsion) (Figure 8b). Further, enzymes are soluble proteins that catalyze chemical
reactions in the cell and contain specialized active sites. Hence, it may be expected an
amino acid ratio with a higher proportion of polar or charged amino acids in the active
site to interact with and stabilize, which may also depend on the type of enzyme. Some
slight displacement of kinases, in pink, in Figure 8c) can be appreciated, but no strong
grouping was found.

After applying GeNNius’ encoder, we proceeded similar but plotting the embedded
space of protein and drug nodes. We found that the grouping of drug nodes concerning
their chemical classification spread after applying the encoder; this is a compelling
result, as we desire drugs in a DTI prediction model to be promiscuous (8d). However,
protein node embeddings displayed better identifiable groups (8e). Protein families,
such as membrane receptors (orange) and ion channels (violet), revealed some grouping
at the top of the Figure, despite not forming evident groups. Further, enzymes now
gather in separate groups across the embedding space and, further, upon its annotation,
we found a more clear group; kinases (fuchsia) formed a small group on the right of
the plot; relatively similar, cytochrome P450 (red) appeared in a small group at the
top; proteases (light blue) form a small group in the middle, and some oxidoreductases
(brown) grouped at the left of the plot (8f).

Ultimately, the encoder maintains biological information in edge space while spread-
ing biological information through nodes, such as protein family classification in protein
nodes and sub-classification of enzymes.
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Fig. 8: Nodes. t-SNE paramteres: (a,b,c) perplexitiy = 45, niter= 850, using eu-
clidean metric with random initialization. t-SNE parameters; (d,e,f,) perplexitiy
= 30, number of iterations= 1000, using cosine metric and random initialization.
For drugs, removed unclassified drugs, those who belong to "Other" group and
those with less than 20 appearances together. For proteins removed unclassified
proteins and those with less than 10 appearances.
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