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Abstract. We present a framework for embedding graph structured
data into a vector space, taking into account node features and topology
of a graph into the optimal transport (OT) problem. Then we propose
a novel distance between two graphs, named linearFGW, defined as the
Euclidean distance between their embeddings. The advantages of the
proposed distance are twofold: 1) it can take into account node feature
and structure of graphs for measuring the similarity between graphs in
a kernel-based framework, 2) it can be much faster for computing kernel
matrix than pairwise OT-based distances, particularly fused Gromov-
Wasserstein, making it possible to deal with large-scale data sets. After
discussing theoretical properties of linearFGW, we demonstrate experi-
mental results on classification and clustering tasks, showing the effec-
tiveness of the proposed linearFGW. A longer version of this paper was
recently published in the Pattern Recognition journal (Volume 138, June
2023, 109351).

Keywords: linear optimal transport · graph structured data · graph
kernel.

1 Introduction

Many applications of machine learning involve learning with graph structured
data such as bioinformatics [17], social networks [16], chemoinformatics [23],
and so on. To deal with graph structured data, many graph kernels have been
proposed in literature for measuring the similarity between graphs in a kernel-
based framework. Most of them are based on R-framework, which focuses on
comparing graphs based on their substructures such as subtree [18], shortest path
[2], random walk [7], and so on. However, these methods have several limitations:
1) they do not consider feature and structure distributions of graphs, 2) they
require to define substructures based on the domain knowledge, which might not
be available in many practical applications.

Optimal Transport (OT) [24] has received much attention in the machine
learning community and has been shown to be an effective tool for comparing
probability measures in many applications. In recent years, several studies have



2 D. H. Nguyen et al.

attempted to use the OT distance for learning graph structured data by consid-
ering the problem of measuring the similarity of graphs as an instance of comput-
ing OT distance for graphs. Togninalli et al. [22] introduced the Wasserstein dis-
tance to compare graphs based on their node embeddings obtained by Weisfeiler-
Lehmann labeling framework [18]. Titouan et al. [21] proposed fused Gromov-
Wasserstein (FGW) which combines Wasserstein and Gromov-Wasserstein [10, 14]
distances in order to jointly take into account features and structures of graphs.
These OT-based distances have achieved great performance for graph classifica-
tion. However, they have several limitations: 1) kernel matrices converted from
the OT-based distances are generally not valid, so they are not ready to use
for the kernel-based framework, 2) calculating the similarity between each pair
of graphs is computationally expensive, so the need for computing the kernel
matrix of all pairwise similarity can be a burden for large-scale data sets.

In order to overcome the aforementioned limitations, inspired by the linear
optimal transport framework introduced by Wang et al. [25], we propose an OT-
based distance, named linearFGW, for learning with graph structured data. As
the name suggests, our distance is a generalization of the linear optimal trans-
port framework and FGW distance. The basic idea is to embed the node features
and topology of a graph into a linear tangent space through a fixed reference
measure graph. Then the linearFGW distance between two graphs is defined as
the Euclidean distance between their two embeddings, which approximates their
FGW distance. Therefore, the linearFGW distance has the following advantages:
1) it can take into account node features and topologiesb of graphs for the OT
problem in order to calculate the dissimilarity between graphs, 2) we can derive
a valid graph kernel from the embeddings of graphs for the downstream tasks
such as graph classification and clustering, 3) by using the linearFGW as an
approximate of the FGW, we can avoid expensive computation of the pairwise
FGW distance for large-scale graph data sets. Finally, we conduct experiments on
graph data sets to show the effectiveness of the proposed distance in terms of
classification and clustering accuracies.

The remainder of the paper is organised as follows: in Section 2, we present
some related work. In Section 3, we present the idea of the proposed distance
for learning with structured data and its theoretical properties. In Section 4,
experimental results on benchmark graph data sets are provided. Finally, we
summarize this work and discuss possible extensions in Section 5.

2 Related Work

2.1 Kernels for Graphs

Graph is a standard representation for relational data, which appear in various
domains such as bioinformatics [17], chemoinformatics [23], social network anal-
ysis [16]. Making use of graph kernels is a popular approach to learning with
graph structured data. Essentially, a graph kernel is a measure of the similarity
between two graphs and must satisfy two fundamental requirements to be a valid
kernel: 1) symmetric and 2) positive semi-definite (PSD). There are a number
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of kernels for graphs with discrete attributes such as random walk [7], shortest
path [7], Weisfeiler-Lehman (WL) subtree [18] kernels, just to name a few. There
are several kernels for graphs with continuous attributes such as GraphHopper
[6], Hash Graph [12] kernels.

2.2 Optimal Transport Frameworks for Graphs

Optimal Transport (OT) [24] has received much attention from the machine
learning community as it provide an effective way to measure the distance be-
tween two probability measures. Some OT-based graph kernels have been pro-
posed and achieved great performance in comparison with traditional graph
kernels. Wasserstein Weisfeiler-Lehman (WWL) [22] used OT for measuring dis-
tance between two graphs based on their WL embeddings (discrete feature vec-
tors of subtree patterns). Nguyen et al. [13] extends WWL by proposing an
efficient algorithm for learning subtree pattern importance, leading to higher
classification accuracy on graph data sets. However, they are not valid kernels
for graphs with continuous attributes. Following the work in [10], Peyre et al. [14]
proposed a Gromow-Wasserstein distance to compare pairwise similarity matri-
ces from different spaces. Then, Titouan et al. [21] proposed a fused Gromov-
Wasserstein distance which combine Wasserstein and Gromov-Wasserstein dis-
tances in order to jointly leverage feature and structure information of graphs.
To reduce computational complexity, OT-based distances are often computed
using a Sinkhorn algorithm [19, 4]. Due to the nature of optimal assignment
problem, these OT-based graph kernels are indefinite similarity matrices so they
are invalid kernels, leading to the use of support vector machine (SVM) with
indefinite kernels introduced in [9].

2.3 Linear Optimal Transport

Wang et al. [25] proposed a simplified version of OT in 2-Wasserstein space, called
linear optimal transport. In the sense of geometry, the basic idea is to transfer
probability measures from the geodesic 2-Wasserstein space to the tangent space
with respect to some fixed base or reference measure. One advantage is that
we can work on a linear tangent space instead of the complex 2-Wasserstein
space so that the downstream tasks such as classification, clustering can be done
in the linear space. Another advantage is the fast approximation of pairwise
Wasserstein distance for large-scale data sets. In the context of graph learning,
Kolouri et al. [8] leveraged the above framework and introduced the concept of
linear Wasserstein embedding for learning graph embeddings. In a concurrent
work, Mialon et al. [11] proposed a similar idea for learning set of features.
In this paper, we extend the idea of linear optimal transport framework from
the 2-Wasserstein distance to the Fused Gromov-Wasserstein distance (FGW), and
define a valid graph kernel for learning with graph structured data. Furthermore,
we derive theoretical understandings of the proposed distance.
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3 Proposed Distance for Graphs: Linear Fused
Gromov-Wasserstein

We denote a measure graph as G(X,A, µ), where X = {xi}mi=1 ∈ Rm×d is the
set of m node features with dimensionality of d, A = [a]ij ∈ Rm×m is a square
matrix to encode the topology of the given graph such as the adjacency matrix
or the matrix of pairwise distances between nodes, µ = [µi] ∈ ∆m (probability
simplex) is a Borel probability measure defined on the nodes (note that when
no additional information is provided, all probability measures can be set as
uniform).

3.1 FGW: A Distance for Matching Node Features and Structures

In [21], a graph distance, named Fused Gromov-Wasserstein (FGW), is proposed
to take into account both node feature and topology information into the OT
problem for measuring the dissimilarity between two graphs. Formally, given
two graphs G1(X,A, µ) and G2(Y,B, ν), the FGW distance between G1 and G2 is
defined for a trade-off parameter α ∈ [0, 1] as:

FGWq,α(G1,G2) = min
π∈Π(µ,ν)

∑
i,j,k,l

(1− α)∥xi − yj∥q + α|Ai,k −Bj,l|qπi,jπk,l (1)

where Π(µ, ν) = {π ∈ Rm×n
+ s.t.

∑m
i=1 πi,j = νj ,

∑n
j=1 πi,j = µi} is the set of all

admissible couplings between µ and ν. The FGW distance acts as a generalization
of the Wasserstein [24] and Gromov-Wasserstein [10], which allows balancing the
importance of matching the node features and topologies between two graphs.
However, similar to the existing OT-based graph distances, it is challenging to
define a valid kernel from the FGW for the graph-related prediction task, due
to the nature of optimal assignment problem. In the following, we restrict our
attention to the OT with q = 2 and for the ease of presentation, we use the
notation FGWα instead of FGWq,α.

3.2 linearFGW: A New Distance for Comparing Graphs

In order to overcome the limitations of the FGW distance, we propose to approx-
imate it by a linear optimal transport framework, which we call Linear Fused
Gromov-Wasserstein (LinearFGW). Computing the LinearFGW distance requires
a reference, which we choose to be also a measure graph G(Z,C, σ). How the
reference measure graph is chosen is described later in Subsection 3.3. To pre-
cisely define the LinearFGW distance, we first define the barycentric projections
for node features and structures of graphs as follows:

Definition 1. (Barycentric projections for nodes and edges of graphs). For a
reference measure graph G(Z,C, σ) with K nodes and a transport plan π =
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k,i πk,iδ(zk,xi). Then the barycentric projections for nodes and edges of the

measure graph G using the transport plan π are defined as follows:

Tn,π(zk) =
1

σk

∑
i

πkixi and Te,π(Ck,l) =
1

σkσl

∑
i,j

πk,iπl,jCij , where k, l = 1,K

(2)

The definitions of these projections are extended from [25, 1]. Furthermore,
we derive their properties in the following lemma.

Lemma 1. Given two measure graphs G(X,A, µ) and G(Z,C, σ), we denote
π∗ as the optimal transport plan from G to G with respect to the FGW distance,
and G̃(Z̃, C̃, σ) as the probability measure graph obtained by applying barycentric
projections for nodes and edges Tn,π∗(.) and Te,π∗(.), respectively (see Definition
1). Then, we have the following claims:

1. diag(σ) =

σ1 0 0

0
. . . 0

0 0 σK

 is the optimal transport plan from G to G̃ in the

sense of the FGW distance.
2. FGWα(G, G̃) ≤ FGWα(G,G).

The proof is given in the Appendix section. An important implication of the
above lemma is that G̃ can be considered as a surrogate measure graph for G with
respect to the reference G. Thus we propose to define the LinearFGW distance
between two measure graphs G1 and G2 with respect to the reference measure
graph G as follows:

linearFGWα(G1,G2) =(1− α)
∑
k

∥Tn,π1(zk)− Tn,π2(zk)∥2

+α
∑
k,l

|Te,π1(Ck,l)− Te,π2(Ck,l)|2
(3)

where π1 and π2 denote the optimal transport plans from G to G1 and G2, re-
spectively, in the sense of the FGW distance. We call this distance linearFGW as
it acts as a generalization of linear optimal transport [25] and FGW [21]. Further-
more, the proposed distance also suggests a Euclidean embedding of the measure
graph G1 with respect to the reference measure graph G becomes: ΦG,α(G1) =(√

1− αTn,π1(z1), ...,
√
1− αTn,π1(zK), ...,

√
αTe,π1(Ck,l), ...

)
with dimension of

K +K2. So we can derive a valid kernel for graph-related prediction tasks. The
computation of the linearFGW can be illustrated in Figure 1.

3.3 Selection of Reference Measure Graph

Selecting the reference measure graph in Subsection 3.2 is important. We em-
pirically observe that if the reference is randomly selected or distant from all
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Fig. 1. Illustration of the computation of the linearFGW distance between G1(X,A, µ)
and G2(Y,B, ν), given the fixed reference measure graph G(Z,C, σ). First, we find the
optimal transport plans π1 and π2 from G to G1 and G2, respectively, in the sense of
the FGW. Then we transport G with the barycentric projections for nodes and edges (see
Definition 1) using the optimal plans π1 and π2 to get the surrogate measure graphs
G̃1(Z̃

(1), C̃(1), σ) and G̃2(Z̃
(2), C̃(2), σ) for G1 and G2, respectively. Finally, the Euclidean

distance between G̃1 and G̃2 can be directly calculated using Equation (3).

measure graphs, the approximation error between FGW and linearFGW is likely
to increase. In the lemma presented below, we show the relation between FGW
and linearFGW with respect to the reference measure graph.

Lemma 2. We denote the mixing diameter of a graph G(X,A, µ) by diamα(G) =
αmaxi,j∥xi − xj∥2 + (1− α)maxi,j,i′,j′ |Ai,j −Ai′,j′ |2. Then, given a fixed ref-
erence measure graph G(Z,C, σ), for two input measure graphs G1(X,A, µ) and
G2(Y,B, ν), we have the following inequality:

|FGWα(G1,G2)− linearFGWα(G1,G2)| ≤4min{FGWα(G1,G), FGWα(G2,G)}
+2diamα(G1) + 2diamα(G2)

(4)

The proof is given in the Appendix section. A corollary of the above lemma sug-
gests how to select a good reference measure graph G: given N graphs (G1, ...,GN ),
the total approximation error is upper bounded by:

N∑
i=1

N∑
j=i+1

|FGWα(Gi,Gj)−linearFGWα(Gi,Gj)| ≤ 4

N∑
i=1

FGWα(Gi,G)+4

N∑
i=1

diamα(Gi)

(5)
where the right-hand side has two terms: the first term is the objective of the
fused Gromov-Wasserstein barycenter problem [21] while the second term is
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constant with respect to the reference measure graph G, suggesting that we can
use the fused Gromov-Wasserstein barycenter of N given measure graphs as the
reference.

3.4 Implementation Details

The FGW is the main component of our method. We use the proximal point
algorithm (PPA) [26] to implement the FGW. Specifically, given two graphs G1

and G2, we solve (1) iteratively ( with maximum T iterations) as follows:

π(t+1) = arg min
π∈Π(µ,ν)

⟨(1− α)D12 + α(C12 − 2Aπ(t)B), π⟩+ ηKL(π||π(t)) (6)

where ⟨·, ·⟩ denote the inner product of matrices, D12 = (X⊙X)1d1
⊤
n+1m1⊤

d (Y⊙
Y)⊤, C12 = (A⊙A)µ1⊤

n +1mν⊤(B⊙B)⊤ and ⊙ denotes the Hadamard product
of matrices. KL(π||π(t)) is the Kullback-Leibler divergence between the optimal
transport plan and the previous estimation. We can approximately solve the
above problem by Sinkhorn-Knopp update (see [26] for the algorithmic details).

Table 1. Statistics of data sets used in experiments

Dataset #graphs #classes Ave. #odes Ave. #edges #attributes
COX2 467 2 41.22 43.45 3
BZR 405 2 35.75 38.36 3

ENZYMES 600 6 32.63 62.14 18
PROTEINS 1113 2 39.06 72.82 1

PROTEINS-F 1113 2 39.06 72.82 29
AIDS 2000 2 15.69 16.20 4

IMDB-B 1000 2 19.77 96.53 -

4 Experimental Results

We now show the effectiveness of our proposed graph distance on real world data
sets in terms of graph classification and clustering. Our code can be accessed via
the following link: https://github.com/haidnguyen0909/linearFGW.

4.1 Data sets

In this work, we focus on graph kernels/distances for graphs with continuous
attributes. So we consider the following seven widely used benchmark data sets:
BZR [20], COX2 [20], ENZYMES [5], PROTEINS [3], PROTEINS-F [3], AIDS
[15] contain graphs with continous attributes, while IMDB-B [27] contains un-
labeled graphs obtained from social networks. The details of the used data sets
are shown in Table 1.
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4.2 Experimental settings

To compute numerical features for nodes of graphs, we consider two main set-
tings: 1) we keep the original attributes of nodes (denoted by suffix RAW), 2) we
consider Weisfeiler-Lehman (WL) mechanism by concatenating numerical vec-
tors of neighboring nodes (denoted by the suffix WL−H where H means we repeat
the procedure H times to take neighboring vertices within H hops into account
to obtain the features, see [18] for more detail). For the matrix A, we restrict
our attention to the adjacency matrices of the input graphs. For solving the op-
timization problem (6), we fix η as 0.1 and the number of iterations T as 5. We
carry out our experiments on a 2.4 GHz 8-Core Intel Core i9 with 64GB RAM.

For the classification task, we convert a distance into a kernel matrix through
the exponential function, i.e. K = exp(−γD) (Gaussian kernel). We compare
the classification accuracy with the following state-of-the-art graph kernels (or
distances): GraphHopper kernel (GH, [6]), HGK-WL [12], HGK-SP [12], RBF-
WL [22], Wasserstein Weisferler-Lehman kernel (WWL, [22]), FGW [21], GWF
[26]. We divide them into two groups: OT-based graph kernels including WWL,
FGW, GFW and linearFGW (ours) and non-OT graph kernels including GH,
HGK-WL, HGK-SP, RBF-WL. Note that our proposed graph kernel converted
from the linearFGW is the only (valid) positive definite kernel among OT-based
graph kernels.

We perform 10-fold cross validation and report the average accuracy of the
experiment repeated 10 times. The accuracies of other graph kernels are taken
from the original papers. We use SVM for classification and cross-validate the
parameters C = {2−5, 2−4, ..., 210}, γ = {10−2, 10−1, ..., 102}. The range of the
WL parameter H = 1, 2. For our proposed linearFGW, α is cross-validated via a
search in {0.0, 0.3, 0.5, 0.7, 0.9, 1.0}. Note that the linear optimal transport [25]
is a special case of the linearFGW with α = 0.

We also compare the clustering accuracy with OT-based graph distances: FGW,
GWB-KM, GWF on four real world data sets: AIDS, PROTEINS, PROTEINS-
F, IMDB-B. For fair comparison, we use K-means and spectral clustering on the
Euclidean embedding and Gaussian kernel of the proposed linearFGW distance
(denoted by linearFGW-Kmeans and linearFGW-SC, respectively). We fix the
parameters H = 1, α = 0.5 for data sets of graphs with continuous attributes
and γ = 0.01 for the Gaussian kernel.

4.3 Results

Classification: The average classification accuracies shown in Table 2 indicate
that the linearFGW is a clear state-of-the-art method for graph classification. It
achieved the best performances on 4 out of 6 data sets. In particular, on two
data sets ENZYMES and PROTEINS, the linearFGW outperformed all the rest
by large margins (around 12% and 6%, respectively) in comparison with the
second best ones. On COX2 and BZR, the linearFGW achieved improvements
of around 2% and 1.5%, respectively, over WWL which is the second best one.
Note that the Gaussian kernel derived from WWL is not valid for the data
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Table 2. Average classification accuracy on the graph data sets with vector attributes.
The best result for each column (data set) is highlighted in bold and the standard
deviation is reported with the symbol ±.

Kernels/Data sets COX2 BZR ENZYMES PROTEINS IMDB-B

Non OT

GH 76.41± 1.39 76.49± 0.9 65.65± 0.8 74.48± 0.3 -
HGK-WL 78.13± 0.45 78.59± 0.63 63.04± 0.65 75.93± 0.17 -
HGK-SP 72.57± 1.18 76.42± 0.72 66.36± 0.37 75.78± 0.17 -
RBF-WL 75.45± 1.53 80.96± 1.67 68.43± 1.47 75.43± 0.28 -

OT-based

WWL 78.29±0.47 84.42± 2.03 73.25± 0.87 77.91± 0.8 -
FGW 77.2±4.7 84.1 ±4.1 71.0± 6.7 75.1± 2.9 64.2± 3.3
GWF - - - 73.7±2.0 63.9±2.7
linearFGW-RAW (Ours) 79.74 ± 1.99 86.07±1.64 83.25 ± 2.44 82.49± 1.75 63.62±1.9
linearFGW-WL1 (Ours) 79.98 ± 3.21 84.80±2.95 85.28±1.64 83.29 ± 1.63 -
linearFGW-WL2 (Ours) 79.50±3.29 84.37±2.75 83.13± 1.56 83.95 ± 1.12 -

sets of graphs with continuous attributes (see [22]). On IMDB-B, the average
accuracies of the compared methods are comparable. Interestingly, despite that
our linearFGW is an approximate of the FGW distance, the linearFGW consistently
achieved significantly higher performance than FGW. This can be explained by
the fact that the kernel derived from the linearFGW distance is valid.

Clustering: The average clustering accuracies shown in Table 3 also in-
dicate that the linearFGW could achieve high performance on clustering. On
PROTEINS and PROTEINS-F, the linearFGW achieved the highest accura-
cies by margins of around 2% and 3%, respectively, over the second best one.
On AIDS and IMDB-B, the linearFGW achieved comparable performances with
GWF-PPA which is the best performer.

Table 3. Average clustering accuracy on the graph data sets with continuous attributes.
The best result for each column (data set) is highlighted in bold and the standard
deviation is reported with the symbol ±.

Methods/Data sets AIDS PROTEINS PROTEINS-F IMDB-B
FGW 91.0 ±0.7 66.4±0.8 66.0±0.9 56.7±1.5
GWB-KM 95.2±0.9 64.7±1.1 62.9±1.3 53.5±2.3
GWF-BADMM 97.6±0.8 69.2±1.0 68.1±1.1 55.9±1.8
GWF-PPA 99.5±0.4 70.7±0.7 69.3±0.8 60.2±1.6
linearFGW-Kmeans (Ours) 98.7±1.2 70.58±0.57 71.46±1.03 54.49±0.3
linearFGW-SC (Ours) 98.2 ±0.83 72.70±0.03 73.33±0.82 58.3±0.8

Runtime Analysis: By using the linearFGW, we can reduce the computa-
tional complexity of calculating the pairwise FGW distance for a data set of N
graphs from a quadratic complexity in N i.e. N(N − 1)/2) to linear complexity
i.e. N calculation of the FGW distances from graphs to the reference measure
graph. We compare the running time of linearFGW and FGW with the same set-
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ting as in the classification task with fixed α of 0.5 and 0.0 for labeled graph
data sets and IMDB-B (unlabeled), respectively. In Table 4, we report the total
running time of methods (both training time and inference time) on 5 data sets
used for classification experiments . It is shown that the linearFGW is much
faster than FGW on all considered data sets (roughly 7 times faster on COX2,
BZR, ENZYMES, PROTEINS and 3 times faster on IMDB-B). These numbers
confirm the computational efficiency of linearFGW, making it possible to analyze
large-scale graph data sets.

Table 4. The total training time and inference time (in seconds) averaged over 10-
folds of cross-validation (with fixed α) for different data sets. The standard deviation
is reported with the symbol ±.

Methods/Data COX2 BZR ENZYMES PROTEINS IMDB-B
FGW 520.21±21.15 347.78±5.21 817.31±7.49 3224.36±125.02 1235.33±83.28
linearFGW 72.43 ± 0.16 53.81 ± 0.2 146.26 ±1.64 431.25±9.25 358.92±10.41

5 CONCLUSION AND FUTURE WORK

We have developed an OT-based distance for learning with graph structured
data. The key idea of this method is to embed node feature and topology of a
graph into a linear tangent space, where the Euclidean distance between two
embeddings of two graphs approximates their FGW distance. In fact the proposed
distance is a generalization of the linear optimal transport [25] and FGW. Thus
it has the following advantages: 1) like FGW, the proposed distance allows to
take into account node features and topologies of graphs into the OT problem
for computing the dissimilarity between two graphs, 2) we can derive a valid
kernel from the proposed distance for graphs while the existing OT-based graph
kernels are invalid, and 3) it provides the fast approximation of pairwise FGW
distance, making it more efficient to deal with large-scale graph data sets. We
conducted experiments on some benchmark graph data sets on both classification
and clustering tasks, demonstrating the effectiveness of the proposed distance.

In this work, we suggested to use the fused Gromov-Waserstein barycenter
[21] as the reference measure graph. Thanks to the differentiablity of OT frame-
works using techniques such as entropic regularization [4], one possibility for
future work is to learn the reference measure graph by updating the reference to
minimize the supervision loss. The classification performance will be improved
with the label information of graphs used in the training process. Another pos-
sibility would be to incorporate the linearFGW into graph-based deep learning
models for learning with graph structured data.

Acknowledgements This work was supported by JSPS KAKENHI Grant
Number 23K16939.
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A Appendix

A.1 Proof of Lemma 1

.

Proof. By the definition of barycentric projections for nodes and edges (see Def-
inition 1), we denote z̃k = Tn,π∗(zk) and C̃k,l = Te,π∗(Ck,l) with k, l = 1,K. In
order to prove the first claim, in contrary we assume that π ( ̸= diag(σ)) is the
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optimal transport plan with respect to FGWα(G, G̃). Then, we have the following
inequality:∑

k,l

(1− α)σk∥zk − z̃k∥2 + ασkσl|Ck,l − C̃k,l|2 >
∑

k,l,k′,l′

(1− α)∥zk − z̃k′∥2

+α|Ck,l − C̃k′,l′ |2πk,k′πl,l′

(7)

We rewrite the FGW distance between G(Z,C, σ) and G(X,A, µ) as follows:

FGWα(G,G) =
∑
i,j,k,l

(1− α)∥xi − zk∥2 + α (Ai,j −Ck,l)
2
π∗
k,iπ

∗
l,j

=(1− α)
∑
i

µi∥xi∥2 + (1− α)
∑
k

σk∥zk∥2 − 2(1− α)
∑
i,k

π∗
k,i⟨xi, zk⟩

+α
∑
i,j

µiµjA
2
i,j + α

∑
k,l

σkσlC
2
k,l − 2α

∑
i,j,k,l

Ck,lAi,jπ
∗
k,iπ

∗
l,j

Using the definition of barycentric projections for nodes and edges in Defini-
tion 1, we have:

FGWα(G,G) =(1− α)
∑
i

µi∥xi∥2 + (1− α)
∑
k

σk∥zk∥2 − 2(1− α)
∑
k

σk⟨zk, z̃k⟩

+α
∑
i,j

µiµjA
2
ij + α

∑
k,l

σkσlC
2
kl − 2α

∑
k,l

σkσlCklC̃kl

=(1− α)
∑
i

µi∥xi∥2 − (1− α)
∑
k

σk∥z̃k∥2 + (1− α)
∑
k

σk∥zk − z̃k∥2

+α
∑
i,j

µiµjA
2
ij − α

∑
k,l

σkσlC̃
2
kl + α

∑
k,l

σkσl|Ckl − C̃kl|2

By using the inequality (7), we have:

FGWα(G,G) >(1− α)
∑
i

µi∥xi∥2 − (1− α)
∑
k

σk∥z̃k∥2 + α
∑
i,j

µiµjA
2
i,j − α

∑
k,l

σkσlC̃
2
k,l

+
∑

k,l,k′,l′

(1− α)∥zk − z̃k′∥2 + α|Ck,l − C̃k′l′ |2πk,k′πl,l′

=(1− α)
∑
i

µi∥xi∥2 − (1− α)
∑
k′

(
σk′∥z̃k′∥2 −

∑
k

∥zk − z̃k′∥2πkk′

)
︸ ︷︷ ︸

(a)

+α
∑
i,j

µiµjA
2
ij − α

∑
k′,l′

σk′σl′C̃
2
k′l′ −

∑
k,l

|Ck,l − C̃k′l′ |2πkk′πll′


︸ ︷︷ ︸

(b)
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We first process the part (a) by using Jensen inequality as follows:

(a) ≥(1− α)
∑
i

µi∥xi∥2 − (1− α)
∑
k′,i

π∗
k′i

σk′

(
σk′∥xi∥2 −

∑
k

∥zk − xi∥2πk,k′

)

=(1− α)
∑
k,k′,i

∥zk − xi∥2
πkk′π∗

k′i

σk′
= (1− α)

∑
k,i

∥zk − xi∥2π∗∗
k,i

where π∗∗
k,i =

∑
k′

πk,k′π∗
k′,i

σk′
and π∗∗ is an admissible transport map from G to G.

We then process the part (b) in a similar way and obtain:

(b) ≥α
∑
i,j,k,l

|Ai,j −Ck,l|2π∗∗
k,iπ

∗∗
l,j

Combining parts (a) and (b), we have:

FGWα(G,G) >
∑
i,j,k,l

(1− α)∥xi − zk∥2 + α (Ai,j −Ck,l)
2
π∗∗
k,iπ

∗∗
l,j

which contradicts the optimality of π∗. So we can conclude here that:

FGWα(G, G̃) =
∑
k,l

(1− α)σk∥zk − z̃k∥2 + ασkσl|Ck,l − C̃k,l|2 (8)

Proving the second claim is straight-forward by applying Jensen inequality
for Equation (8). Indeed, we have:

FGWα(G, G̃) ≤
∑
k,l

(1− α)σk

∑
i

π∗
k,i

σk
∥zk − xi∥2 + ασkσl

∑
i,j

π∗
k,iπ

∗
l,j

σkσl
|Ck,l −Ai,j |2

=
∑
k,l,i,j

(1− α)∥zk − xi∥2 + α|Ck,l −Ai,j |2π∗
k,iπ

∗
l,j = FGWα(G,G)

A.2 Proof of Lemma 2

.

Proof. Let denote π1 and π2 be the optimal transport plans from G to G1 and G2,
respectively, in the sense of the FGW distance. We also denote G̃1 and G̃2 be the
measure graphs which are transported from G using the barycentric projections
{Tn,π1

, Te,π1
} and {Tn,π2

, Te,π2
}, respectively.

By using triangle inequality, we have:
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|FGWα(G1,G2)− linearFGWα(G1,G2)| ≤ |FGWα(G1,G2)− 2FGWα(G̃1,G2)|
+|2FGWα(G̃1,G2)− FGWα(G̃1, G̃2)|+ |FGWα(G̃1, G̃2)− linearFGWα(G1,G2)|
≤2FGWα(G1, G̃1) + 2FGWα(G2, G̃2) + |FGWα(G̃1, G̃2)− linearFGWα(G1,G2)|︸ ︷︷ ︸

(c)

The last inequality is obtained by using the relaxed triangle inequality of the
FGW with q = 2 (see [21]). It is obvious to see that FGWα(G1, G̃1) ≤ diam(G1) and
FGWα(G2, G̃2) ≤ diam(G2). In order to process the part (c), we notice that:

|2FGWα(G̃1,G)− linearFGWα(G1,G2)| = |(1− α)
∑
k

2σk∥zk − Tn,π1
(zk)∥2

+α
∑
k,l

2σkσl|Ck,l − Te,π1
(Ck,l)|2 − (1− α)

∑
k

σk∥Tn,π1
(zk)− Tn,π2

(zk)∥2

−α
∑
k,l

σkσl|Te,π1
(Ck,l)− Te,π2

(Ck,l)|2|

≤(1− α)
∑
k

σk|2∥zk − Tn,π1
(zk)∥2 − ∥Tn,π1

(zk)− Tn,π2
(zk)∥2|

+α
∑
k,l

σkσl|2|Ck,l − Te,π1
(Ck,l)|2 − |Te,π1

(Ck,l)− Te,π2
(Ck,l)|2|

≤(1− α)
∑
k

2σk∥zk − Tn,π2(zk)∥2 + α
∑
k,l

2σkσl|Ckl − Te,π2(Ck,l)|2

=2FGWα(G̃2,G)

(9)

The last inequality is obtained by applying the following inequality: |2(a− b)2−
(b− c)2| ≤ (a− c)2, for all a, b, c ∈ R. Finally, we have:

(c) =|FGWα(G̃1, G̃2)− linearFGWα(G1,G2)| ≤ |FGWα(G̃1, G̃2)− 2FGWα(G̃1,G)|
+|2FGWα(G̃1,G)− linearFGWα(G1,G2)|
≤2FGWα(G̃2,G) + 2FGWα(G̃2,G) = 4FGWα(G̃2,G)
≤4FGWα(G2,G)

The second inequality is obtained by applying the relaxed triangle inequality of
the FGW with q = 2 (see [21]) and the inequality (9) while the last inequality is
obtained by the second claim of Lemma 1. We also have (c) ≤ 4FGWα(G1,G) by
the symmetry of G1 and G2 with respect to G, which concludes the proof.
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