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Abstract. Our study reveals new theoretical insights into over-smoothing
and feature over-correlation in deep graph neural networks. We show the
prevalence of invariant subspaces, demonstrating a fixed relative behavior
that is unaffected by feature transformations. Our work clarifies recent
observations related to convergence to a constant state and a potential
over-separation of node states, as the amplification of subspaces only de-
pends on the spectrum of the aggregation function. In linear scenarios,
this leads to node representations being dominated by a low-dimensional
subspace with an asymptotic convergence rate independent of the feature
transformations. This causes a rank collapse of the node representations,
resulting in over-smoothing when smooth vectors span this subspace, and
over-correlation even when over-smoothing is avoided. Guided by our the-
ory, we propose a sum of Kronecker products as a beneficial property that
can provably prevent over-smoothing, over-correlation, and rank collapse.
We empirically extend our insights to the non-linear case, demonstrating
the inability of existing models to capture linearly independent features.

Keywords: Graph Neural Networks · Rank Collapse · Expressivity

1 Introduction

Despite the great success of Graph Neural Networks (GNNs) for homophilic
tasks [1–4], their performance for more complex and heterophilic tasks is largely
unsatisfying [5]. Two leading causes are over-smoothing [6, 7] and feature over-
correlation [8], resulting in primarily shallow models with small receptive fields.
The conditions under which over-smoothing and over-correlation occur and in
which cases they can be prevented are well-understood in some instances but not
in the general case. Some works argue that all node representations converge to
a constant state and have discarded the interaction with feature transformations
in their analysis [9–11]. Other works have proven that over-smoothing only oc-
curs when the feature transformations satisfy some constraints [6, 12, 13], and
choosing suitable parameters can mitigate over-smoothing and even cause an
over-separation of node representations [6, 12, 13]. Over-correlation refers to
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all feature columns becoming strongly correlated, which was only recently em-
pirically observed [8]. While Jin et al. [8] showed that this occurs even when
over-smoothing is prevented, its theoretical understanding is limited.

This work clears up different views on over-smoothing and provides a theo-
retical investigation of the underlying reason behind both over-smoothing and
over-correlation. We show that graph convolutions of a common type induce in-
variant subspaces, each demonstrating distinct predefined behaviors. Critically,
this behavior only depends on the spectrum of the aggregation function and
not on the learnable feature transformations or the initial node features. When
considering the limit in the linear case, a low-dimensional subspace dominates
the results, leading to over-smoothing when this subspace aligns with smooth
signals. More importantly, node representations suffer from rank collapse for
all aggregation functions, explaining the effect of over-correlation. This severely
limits the expressivity of deep GNNs, as we cannot optimize these models for
tasks that require multiple independent features, which we empirically extend
to the non-linear case. We propose a simple but provably more expressive family
of models based on the sum of Kronecker products (SKP) that can maintain the
rank of its features.

We summarize our key contributions as follows:

– We establish the presence of invariant subspaces, characterized by fixed rel-
ative behaviors that remain unaffected by feature transformations, across all
graph convolutions of a common type. This discovery allows us to lift con-
straints on existing proofs related to over-smoothing, providing enhanced
insights into this phenomenon.

– Our work bridges the gap between rank collapse, over-smoothing, and over-
correlation, as these are caused by a low-dimensional subspace dominating
the node representations.

– Theoretically and empirically, we demonstrate the effectiveness of utilizing
a sum of Kronecker products (SKP) to counteract this limited expressivity
of deep GNNs.

2 Preliminaries

Notation We consider a graph G = (V, E) consisting of a set of n nodes V =
{v1, . . . , vn} and a set of edges E . The adjacency matrix A ∈ {0, 1}n×n has binary
entries indicating whether an edge between two nodes exists or not. We assume
graphs to be irreducible and aperiodic. We denote the set of nodes neighboring
node vi as Ni = {vj |aij = 1}. The degree matrix D ∈ Nn×n is a diagonal matrix
with each entry dii = |Ni| representing the number of neighboring nodes. For
a given matrix M, we denote its eigenvalues with λM

1 , . . . , λM
n that are sorted

with decreasing absolute value |λM
1 | ≥ · · · ≥ |λM

n |. A matrix is vectorized vec(M)
by stacking its columns into a single vector. The identity with d dimensions is
denoted by Id ∈ Rd×d.
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Graph neural networks Given a graph G and a graph signal X ∈ Rn×d repre-
senting d features at each node, the goal of a graph neural network (GNN) is to
find node representations that can be used effectively within node classification,
edge prediction or various other challenges. Within these, graph convolutional
operations repeatedly update the state of each node by combining the state of
all nodes with the states from their neighbors [14].

We consider graph convolutions that iteratively transform the previous node
states of the form

X(k+1) = ÃX(k)W(k) . (1)

At each iteration k, we consider distinct feature transformations W(k) ∈ Rd×d of
the node representations and a homogeneous neighbor aggregation represented
by Ã ∈ Rn×n. Popular instantiations covered by this notation include the graph
convolutional network (GCN) [15], the graph isomorphism network (GIN) [16],
and the graph attention network (GAT) [17] with a single head.

3 Related Work

Over-smoothing in GNNs Over-smoothing arises when node representations
X(k) exhibit excessive similarity to one another as the number of layers k in-
creases. As our study extends prior analyses, we first familiarize readers with the
presently available theoretical insights concerning over-smoothing when consid-
ering the linear case. Li et al. [9] connected over-smoothing in GCNs to a special
form of Laplacian smoothing when ignoring the feature transformation. While
some methods similarly ignore the feature transformation [10, 11], its role is
more complicated. The pioneering work of Oono and Suzuki [6] showed that the
feature transformation must not be ignored by bounding the distance

dM(AXW) ≤ λA
2 σW

1 dM(X) (2)

of the representations to a smooth subspace M that is induced by the dominant
eigenvector v1. The bound uses the second largest eigenvalue λA

2 and the largest
singular value σW

1 of W. Intuitively, each aggregation step A reduces this dis-
tance, while W can increase the distance arbitrarily. Thus, they consequently
claim potential over-separation when σW

1 > 1
λA
2

, which refers to node representa-
tions differing strongly. As an interpretable metric to determine the smoothness
of a graph signal, Cai and Wang [12] introduced the Dirichlet energy

E(X) = tr(XT∆X) =
1

2

∑
(i,j)∈E

∥∥∥ xi√
di

− xj√
dj

∥∥∥2
2

(3)

using the symmetrically normalized graph Laplacian ∆ = In −D− 1
2AD− 1

2 . A
low energy value corresponds to similar neighboring node states. Similarly to
Oono and Suzuki [6], they provided the bound

E(AXW) ≤
(
λA
2

)2 (
σW
1

)2
E(X) (4)
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(a) Dirichlet energy converges to zero. (b) Dirichlet energy does not converge.

Fig. 1: Comparison of the Dirichlet energy Erw(X
(l)) and the norm ||X(l)||2F of

the representations after l layers for three commonly used models (Graph Con-
volutional Network (GCN) [15], Graph Attention Network (GAT) [17], Graph-
SAGE [28]) on the Cora dataset [29]. For 1a, we used random weights, for 1b,
we scaled these weights by a factor of 2.

for each convolution and prove an exponential convergence in the limit. As
their proof again only holds in case σW

1 ≤ 1
λA
2

, they similarly claim poten-
tial over-separation. Zhou et al. [13] provide a lower bound on the energy to
show that the Dirichlet energy can go to infinite. All of these works conclude
that over-smoothing only occurs with high probability and propose to find suit-
able feature transformations W to trade-off between over-smoothing and over-
separation [6, 12, 13, 18]. Di Giovanni et al. [19] and Maskey et al. [20] studied
the case when all feature transformations are restricted to be the same symmet-
ric matrix. It remains unclear which feature transformations reduce or increase
the Dirichlet energy in the unconstrained case. Another line of work found node
representations to converge to a constant state [11, 21–23], though it remains
unclear for which aggregation functions and feature transformations this holds.
While various methods to mitigate over-smoothing have been proposed, the un-
derlying issue persists [24–27].

Over-correlation in GNNs Another notable issue, termed feature over-correlation,
has been empirically observed in a recent analysis by Jin et al. [8]. As the
model depth increases, the node features become excessively correlated, thereby
limiting the performance of deep GNNs. The study highlights that while over-
smoothing leads to over-correlation, over-correlation also arises independently.
However, the theory behind over-correlation remains unexplored, which could
guide the design of new methods to prevent this phenomenon.

4 Over-Smoothing and Convergence to a Constant State

We begin by clarifying distinctions in the current comprehension of over-smoothing.
Recent research [11, 21–23] defines over-smoothing as the exponential conver-
gence to a constant state using the Dirichlet energy Erw(X) = tr(XT∆rwX)
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based on the random walk Laplacian ∆rw = In −D−1A as the constant state
corresponds to its nullspace. We validate this empirically for various GNNs in
Figure 1a. In contrast, other studies provided theoretical insights into conver-
gence toward the dominant eigenvector of the aggregation function [6, 12, 13],
which is not constant for the GCN. As two linearly independent vectors only
intersect at the origin, we compute the distance to the origin ||X||2F , illustrated
in Figure 1a. Detailed information is provided in Appendix B, and the supple-
mentary material contains a reproducible implementation. We observe a close
alignment between both metrics, indicating that the norm overshadows poten-
tial insights from the Dirichlet energy. Analogous to the Dirichlet energy (see
Eq. 4), the norm is likewise bounded by the largest singular value of the feature
transformation:

Proposition 1. (Node representations vanish.) Let Ã ∈ Rn×n be symmetric
with maximum absolute eigenvalue |λÃ

1 | = 1, W ∈ Rd×d be any matrix with
maximum singular value σW

1 , and ϕ a component-wise non-expansive mapping
satisfying ϕ(0) = 0. Then,

||ϕ(ÃXW)||F ≤ σW
1 · ||X||F . (5)

We present all proofs in Appendix A. When σW
1 < 1 for all W this implies

convergence to the zero matrix: liml→∞ X(l) = 0. With all node states close to
zero, the Dirichlet energy becomes also zero, irrespective of the chosen graph
Laplacian. This elucidates deviations between directions claiming either conver-
gence of the GCN to constant columns [11, 21, 22] or values proportional to each
node’s degree [6, 12, 13]. Repeating this experiment for scaled feature transfor-
mations to prevent vanishing norms, we observe the Dirichlet energy also avoids
convergence to zero, as shown in Figure 1b.

Since the norm of the node representations heavily influences the Dirichlet en-
ergy, we question whether assessing the energy of an unnormalized state provides
sufficient insights into over-smoothing. Other metrics, such as MAD [18] and
SMV [30], already incorporate feature normalization to quantify over-smoothing.
Several theoretical studies base their findings about over-smoothing on assump-
tions on the singular values of the feature transformations [6, 12, 13, 23], which
might oversimplify the cases. Our insights prompt a deeper exploration of over-
smoothing and its interaction with feature transformations, aiming to better
comprehend its causes, mitigate its impacts, and advance the development of
more powerful GNNs.

5 Understanding Graph Convolutions using Invariant
Subspaces

We delve into the underlying cause for over-smoothing and over-correlation while
analyzing the role of feature transformations in these phenomena. We consider
the linearized update function from Eq. 1 employing any symmetric aggregation
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function Ã ∈ Rn×n and time-inhomogeneous feature transformations W(k) ∈
Rd×d for each layer k. Leveraging the vectorized form

vec(ÃX(k)W(k)) = (W(k)T ⊗ Ã) vec(X(k)) = T(k) vec(X(k)) (6)

allows us to combine the aggregation and transformation steps through the Kro-
necker product T(k) = (W(k)T ⊗ Ã) ∈ Rnd×nd. Further information about the
Kronecker product can be found in Appendix A. For clarity, we will omit the
transpose.

Initially, we demonstrate that for a fixed aggregation Ã, all transformations
T(k) induce the same invariant subspaces that only depend on the eigenvectors of
Ã. Formally, the vectorization operation enables the decomposition of vectorized
node representations

T(k) vec(X(k)) = T(k)Sc =

m∑
i=1

T(k)S(i)c(i) (7)

into a linear combination c ∈ Rnd of basis vectors S ∈ Rnd×nd. We further
split these into a sum of n invariant components across disjoint subspaces Qi =
span(S(i)) ⊂ Rnd with their direct sum

⊕n
i=1 Qi = Rnd covering the entire space.

The linearity of T(k) allows us to apply the transformation on each subspace
separately. We construct our bases as S(i) = Id ⊗ vi ∈ Rn×d, utilizing the
eigenvectors vi of Ã, as these are invariant to any T(k):

Lemma 1. (The subspaces are invariant to any T(k).) Let T = W ⊗ Ã with
Ã ∈ Rn×n symmetric with eigenvectors v1, . . . ,vn and W ∈ Rd×d any matrix.
Consider the subspaces Qi = span(Id ⊗ vi) for i ∈ [n]. Then,

∀ i ∈ [n] : z ∈ Qi ⇒ Tz ∈ Qi .

This discovery is pivotal in our investigation, enabling us to dissect each
subspace individually and relate their differences.

5.1 Relating Dynamics in Subspaces

Our investigation now delves into the effect T(k) has on each these subspaces.
Previous work considered the impact of graph convolutions on coefficients c,
deriving coarse bounds based on the singular values of W were found [6, 12, 13]
(see Section 3). We instead analyze how T(k) alters the basis vectors S(i) of
each subspace while maintaining the coefficients c constant, leading to a more
streamlined analysis of the underlying process. When applying only the aggre-
gation function Ã, each basis S(i) gets scaled by the corresponding eigenvalue
λÃ
i . By construction, all transformations W(k) act the same on each subspace,

nullifying when assessing the relative norm change amongst pairs of subspaces:

Theorem 1. (The relative behavior is fixed.) Let T = W ⊗ Ã with Ã ∈ Rn×n

symmetric with eigenvectors v1, . . . ,vn and eigenvalues λÃ
1 , . . . , λÃ

n and W ∈
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Rd×d any matrix. Consider the bases S(i) = Id ⊗ vi and S(j) = Id ⊗ vj for
i, j ∈ [n]. Then,

∥TS(i)∥F
∥TS(j)∥F

=
|λÃ

i |
|λÃ

j |
. (8)

We underline the significance of this key property. As the right-hand side
is independent of W with equality, the amplification or reduction of individual
subspaces cannot be affected by any feature transformation or the graph signal.
The outcome is predefined exclusively by the eigenvalues of the aggregation
function. The functions learnable by each operation are inherently restricted.

We spotlight the distinctions between our research on over-smoothing and
previous studies. Prior work bounded the effect of each operation using the
maximal singular value σW

1 , while we provide a statement that holds exactly
and does not rely on W. Our statement offers deeper insights into the behavior
of GNNs rather than only presenting a single value for the energy.

5.2 Implications in the Limit

Considering the case where graph convolutions are repeatedly applied, we extend
our results directly to the iterated case and different transformations T(k) at each
layer k, yielding the dominance of fixed subspaces:

Proposition 2. (Fixed subspaces dominate.) Let T(k) = W(k) ⊗ Ã with Ã ∈
Rn×n symmetric with eigenvectors v1, . . . ,vn and eigenvalues λÃ

1 , . . . , λÃ
n and

W(k) ∈ Rd×d any matrix. Consider the bases S(i) = Id ⊗ vi for i ∈ [n]. Then,

lim
l→∞

∥T(l) . . .T(1)S(i)∥F
maxp∥T(l) . . .T(1)S(p)∥F

= lim
l→∞

|λÃ
i |l · ∥S(i)∥F

maxp |λÃ
p |l · ∥S(p)∥F

=

{
1, if|λÃ

i | = |λÃ
1 |

0, otherwise

with convergence rate |λÃ
i |

|λÃ
1 |

.

As depth increases, only signals corresponding to the largest eigenvalue of the
aggregation function significantly influence representations, while those in other
subspaces become negligible. The feature transformations only affect the scale
of all subspaces by a shared scalar. As previous studies did not have insights
into this dominance of a subspace, they claimed potential over-separation of
node representations when this scalar diverges to infinity [6, 12, 13]. Contrarily,
considering the normalized representations X(l)

||X(l)||F
seems to be necessary given

our insights.
We now assume that |λÃ

2 | < |λÃ
1 | is strict, so that a single subspace dom-

inates. While representations may not converge as each W(l) can introduce
changes, they converge to the set Q1. This type of convergence and its prop-
erties were introduced by [31].
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Theorem 2. (Representations converge to a fixed set.) Let X(k+1) = ÃX(k)W(k)

with Ã ∈ Rn×n symmetric with eigenvectors v1, . . . ,vn and W(k) ∈ Rd×d any
matrix. Consider the subspaces Qi = span(Id ⊗ vi) for i ∈ [n]. Then,

∀ ϵ > 0.∃ N ∈ N.∀ l ∈ N with l > N.∃ m(l) ∈ Q1 :

∥∥∥∥ X(l)

∥X(l)∥F
−m(l)

∥∥∥∥
2

< ϵ .

We emphasize that smoothing has yet to be part of our analysis. Our analy-
sis and proofs are more general, relying solely on the symmetry of the aggrega-
tion function Ã. Smoothing occurs only for specific aggregations for which Q1

consists of smooth signals. The symmetrically normalized aggregation function
D− 1

2AD− 1
2 has this property, as its dominant eigenvector is v1 = D

1
21 and λÃ

1

is unique [32]. These novel insights enable us to frame our findings using the
well-established Dirichlet energy of the normalized node representations, which
corresponds to the Rayleigh quotient E( X

||X||F ) = tr(XT∆X)
||X||2F

[12]. The key prop-
erty needed is the equivalence of the dominating subspace Q1 and the nullspace
of Id⊗∆, allowing us to provide the novel proof for unconstrained feature trans-
formations:

Proposition 3. (Over-smoothing happens for all W(k).) Let X(k+1) = ÃX(k)W(k)

with Ã = D− 1
2AD− 1

2 and W(k) ∈ Rd×d any matrix. We consider E(H) =
tr(HT∆H) for ∆ = I− Ã. Then,

lim
l→∞

E

(
X(l)

∥X(l)∥F

)
= 0 (9)

with convergence rate
(

λÃ
2

λÃ
1

)2

independently of all W(k).

We note that Proposition 3 can be similarly applied to the sum aggrega-
tion A. This emphasizes the importance of considering the normalized signal to
determine over-smoothing.

5.3 Layer-wise Bounds are Insufficient

It remains open whether existing layer-wise bounds on the Dirichlet energy [12,
13] would similarly benefit from normalized representations as their assumption
for over-smoothing, i.e., σW

1 < 1

λÃ
2

, would be satisfied when applying a nor-

malized feature transformation W
∥W∥F

. However, these statements do not benefit
from normalization, and the Dirichlet energy of the normalized representations
can increase after applying a graph convolution:

Proposition 4. (Layer-wise bounds are insufficient.) There exist X ∈ Rn×d,W ∈
Rd×d, for which

E

(
XW

||XW||F

)
> E

(
X

||X||F

)
.

This underscores the need for a novel approach to analyze over-smoothing.
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5.4 Extending the Analysis to Arbitrary Aggregations

We now expand our analysis to encompass all possible aggregation matrices and
the graph structures they induce. While prior investigations (e.g., [6, 12, 13])
focused on specific types of aggregations that were not easily generalizable, our
approach provides a more versatile framework. Here, we drop the assumption
of a symmetric graph and allow for arbitrary edge weights between any pair
of nodes, a concept recently proposed to account for attraction or repulsion
between nodes [5, 33–35]. We find that Theorem 1 can be extended to arbitrary
aggregation matrices Ã, revealing that the dominating signal for these graph
convolutions depends solely on the dominating signal of Ã:

Proposition 5. (Signal amplification only depends on Ã.) Let two bases be
S(i) = (Id ⊗ P(i)) ∈ Rnd×qd and S(j) = (Id ⊗ P(j)) ∈ Rnd×qd for any P(i) ∈
Rn×q,P(j) ∈ Rn×r with q, r ≤ n. Further let T = W ⊗ Ã ∈ Rnd×nd consisting
of any W ∈ Rd×d and any Ã ∈ Rn×n. Then,

||TS(i)||F
||TS(j)||F

=
||ÃP(i)||F
||ÃP(j)||F

.

This result illustrates that the dominating signal remains unaffected by fea-
ture transformations and relies solely on the dominant eigenvalues of Ã. Impor-
tantly, invariant bases always exist, as given by the Jordan normal form [36].
Preventing over-smoothing can therefore be achieved by selecting or learning an
aggregation matrix Ã with a well-suited spectrum.

5.5 Stochastic Aggregation Functions

Our findings can be readily extended to cases where we have knowledge about
the dominance of a particular signal for the aggregation function itself. This
applies to all row-stochastic aggregations, also referred to as the weighted mean,
where the values in each row of Ã ∈ Rn×n are non-negative and sum up to one.
This analysis covers models such as the Graph Attention Network (GAT) [17,
37] with a single attention head. Edge weights may be dynamically computed
based on their adjacent nodes, so we consider the case of time-inhomgeneous
aggregation matrices Ã(0) ̸= Ã(1) ̸= . . . ̸= Ã(l). Assuming the underlying
graph is ergodic, each Ã(k) possesses the same right-eigenvector p1 = 1 with
corresponding eigenvalue λÃ(k)

1 = 1. All other eigenvalues are strictly less in
absolute value as given by the Perron-Frobenius theorem [38] and stochastic
processes [39]. Given a minimum edge weight bound ϵ > 0, we build on the
insight from Wu et al. [23] that any product Π∞

k=0Ã
(k) also converges to a matrix

with constant rows. This subspace dominates the representations as given by
Proposition 5, and we show over-smoothing using the Dirichlet energy:

Proposition 6. (GAT and Graph Transformer over-smooth.) Let X(k+1) =
Ã(k)X(k)W(k) where all Ã(k) ∈ Rn×n row-stochastic, representing the same er-
godic graph, and each non-zero entry (Ã(k))pq ≥ ϵ for some ϵ > 0 and all i ∈ [h],
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k ∈ N, p, q ∈ [n]. We further allow all W(k)
i ∈ Rd×d to be any matrices. We con-

sider E(X) = tr(XT∆rwX) using the random walk Laplacian ∆rw = I−D−1A.
Then,

lim
l→∞

E

(
X(l)

∥X(l)∥F

)
= 0 .

6 Rank Collapse and Over-Correlation

We have seen that the choice of the aggregation function leads to over-smoothing,
which can therefore be prevented by selecting an aggregation with a different
spectrum. However, the representations are always dominated by some low-
dimensional subspace Q1 = span(Id⊗V1) based on some matrix V1 ∈ Rn×j and
the algebraic multiplicity j of all eigenvalues with the maximal absolute value
|λÃ

1 |. However, node representations in Q1 cannot exceed the rank of j:

Theorem 3. (The rank collapses.) Let Qi = span(Id ⊗ Vi) for any matrix
Vi ∈ Rn×j with j ≤ n. Then,

∀ vec(X) ∈ Qi : rank(X) ≤ j . (10)

This implies that, regardless of the aggregation function chosen, the repre-
sentations collapse to a low-rank state bounded by the algebraic multiplicity j
of the dominant eigenvalue. This poses a significant challenge for the expressive-
ness of deep graph neural networks, as node representations can only contain, at
most, j relevant features. It also leads to a perfect correlation among features if
rank(Vi) = 1, e.g., when the dominant eigenvalue is unique. [8] empirically ob-
served this phenomenon and termed it over-correlation. Due to the exponential
convergence of the normalized state towards Q1, over-correlation of all features
occurs at an exponential rate. This study reveals that the fundamental issue un-
derlying over-smoothing, over-correlation, and rank collapse is the same. These
findings also establish a connection between these phenomena and recent theo-
retical insights on deep Transformer models, where rank collapse has also been
independently observed [40, 41].

7 Preventing Rank Collapse with a Sum of Kronecker
Products

The core issue leading to rank collapse is the fact that the transformation matrix
T = W ⊗ A can be factored into a single Kronecker product. To counteract
rank collapse and consequently over-smoothing and over-correlation, we need to
construct a T that cannot be decomposed into a single Kronecker product. We
highlight that any matrix

T = (W1 ⊗A1) + (W2 ⊗A2) + · · ·+ (Wp ⊗Ap) (11)
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can be decomposed into a finite sum of Kronecker products (SKP), as concate-
nation is a special case [42, 43]. While the minimum number of terms p required
is not universally determined [42], we show that at most d terms are sufficient
to amplify arbitrary signals across d columns:
Theorem 4. (Any subspace can get amplified.) Let ei ∈ Rd be the canonical ba-
sis with a single 1 at position i. For any columns s1, . . . , sd ∈ Rn and the induced
subspace S =

[
e1 ⊗ s1 . . . ed ⊗ sd

]
∈ Rnd×d, there exists an T =

∑d
1(Wi ⊗ Ãi)

such that for all orthogonal bases S′ =
[
e1 ⊗ s′1 . . . ed ⊗ s′d

]
∈ Rnd×d

∥TS∥F
∥TS′∥F

>
∥S∥F
∥S′∥F

. (12)

This is most directly achieved when the employed transformations filter the
columns used by each aggregation. Even using a sum of just two terms for T
improves the expressiveness of deep GNNs. The SKP does not add computational
complexity, as we would not compute Kronecker products, i.e., (W1 ⊗ Ã1) +
· · · + (Wp ⊗ Ãp)) vec(X) = vec(Ã1XW1 + · · · + ÃpXWp). It is important
to note that the concept of a SKP is not tied to a specific model, but rather
a guiding principle that helps design methods with favorable properties. This
understanding also provides theoretical insights into the success of many existing
methods that can be understood as SKPs, including residual connections [44–
46], mixing aggregation functions [47] or transforming signals from incoming and
outgoing edges differently [48]. In addition, we briefly discuss some important
methods:

Multi-Head Graph Attention Networks Graph attention networks (GATs) [17]
introduced the concept of using multiple attention heads to filter relevant neigh-
boring information. We denote pre-activated attention coefficients for p heads
as Ã1, . . . , Ãp ∈ Rn×n and the row-wise softmax operation by τ(·). Then, GAT
can be expressed as the SKP

T =
1

p
(W1 ⊗ τ(Ã1)) + · · ·+ 1

p
(Wp ⊗ τ(Ãp)) , (13)

where separate feature transformations W1, . . . ,Wp for each attention head.
However, rank collapse may persist, since all products of aggregation matrices
share the same dominating subspace Q1 = (Id ⊗ v1) (see Proposition 3).

Discrete Convolutions The discrete convolution, as commonly employed in
convolutional neural networks(CNN) [49], is an SKP that can avoid rank collapse.
For instance, consider a 3 × 3 kernel, and translate this operation into a graph
operation where each pixel corresponds to a node. Edges are formed between
adjacent pixels, and each neighboring state is transformed differently based on
their relative direction. We express this as an SKP

T =
1

9
(W1 ⊗ Ã1) +

1

9
(W2 ⊗ Ã2) + . . .

1

9
(W9 ⊗ Ã9) (14)

with each aggregation A1, . . . ,A9 containing edges for a single relative direction.
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Fig. 2: Mean accuracies (bold) and
standard deviations (shaded) across 50
random ER graphs for different num-
bers of layers.

Fig. 3: Loss progression during param-
eter optimization for one graph with
each model having eight convolutional
layers.

8 Empirical Validation

Our conducted empirical validation aims to confirm whether our theoretical in-
sights hold true in the non-linear case of finite depth. The theory states that
models utilizing a single Kronecker product suffer from rank collapse, limiting
their learnability of tasks that require multiple independent features per node.
Given any graph, if the feature space collapses to two or fewer dimensions, the
representations of any four nodes always form a quadrilateral in that plane. Lin-
ear decision boundaries cannot classify points on opposite sides together. The
features extracted by SKP can be linearly independent (see Theorem 6.1), so
tasks of this form are trivial when accessing another dimension. Our experimen-
tal setting follows this idea: Given a random Erdős–Rényi (ER) graph [50] with
20 nodes, we consider a 3-class classification task, where we evaluate the perfor-
mance for four random nodes, for which we assign each pair to the same class
for one of the tasks. We consider the following three model families:

T
(k)
GAT =

1

2
(W

(k)
1 ⊗ τ(Ã

(k)
1 )) +

1

2
(W

(k)
2 ⊗ τ(Ã

(k)
2 )) , (15)

T
(k)
FAGCN = W

(k)
1 ⊗ Ã

(k)
1 , (16)

T
(k)
SKP =

1

2
(W

(k)
1 ⊗ Ã

(k)
1 ) +

1

2
(W

(k)
2 ⊗ Ã

(k)
2 ) , (17)

where the edge weights Ã
(k)
1 , Ã

(k)
2 ∈ R20×20, and the feature transformations

W
(k)
1 ,W

(k)
2 ∈ R6×6 are randomly initialized and directly optimized, so that they

can represent any models of these forms. To validate that non-linear models suffer
from rank collapse, ReLU activations are applied after each T(k). T(k)

GAT extends
our theory for row-stochastic models activated by a row-wise softmax τ to the
multi-head case and T

(k)
FAGCN allows arbitrary aggregations including negative

edge weights, as in FAGCN [34] and several other methods [5, 33, 35]. T(k)
SKP is a

mix of both directions, as the edge weights are not normalized to avoid matching
spectrums. The update function is vec(X(k+1)) = ϕ(T(k) vec(X(k)) with ϕ being
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the ReLU activation function. After k such layers, the node representations are
mapped to class probabilities by separate affine transformations and a sigmoid
activation for each task. All model parameters are optimized to minimize the
binary cross-entropy of the four nodes of interest using Adam [51] until conver-
gence, i.e., the loss is not decreased for 500 steps. Node states are initialized to be
normally distributed, and we consider the best fit of three random initializations
for each graph. Our reproducible implementation is based on PyTorch [52], and
further details are provided in Appendix B.

We report the mean accuracies and standard deviations over 50 random
graphs with an edge probability of 0.2 for k ∈ [1, 2, 4, 8, 16, 32, 64] layers in
Figure 2. GAT cannot fit the data for a single graph to 100% accuracy for 8
or more layers, while FAGCN does not reach perfect accuracy for four or more
layers. With increased depth, GAT converges to a lower accuracy than FAGCN,
as it is dominated by smooth signals, while the dominating eigenspace of FAGCN
can be arbitrary. Contrarily, SKP fits the data to perfect accuracy for 341 out of
350 graphs, though it is occasionally stuck in local minima. We provide results
for the time-homogeneous and linear case in Appendix B, but find the results to
be similar. We additionally visualize the optimization process for the considered
models with eight convolutional layers in Figure 3. While SKP converges to a
loss close to zero, due to rank collapse, FAGCN converges to a loss of 0.32, and
GAT converges to a loss of 0.69. This experiment serves as proof of concept that
even non-linear GNNs suffer from rank collapse.

9 Conclusion

Our work shows that rank collapses is the underlying cause of over-smoothing
and over-correlation in GNNs. We provided novel proofs that the dominating
subspace of a graph convolution only depends on the dominating eigenspace
of the aggregation function and is independent of feature transformations. Our
work also emphasizes the importance of feature normalization when determin-
ing and quantifying over-smoothing and over-correlation, as we show that over-
separation is merely an artifact of the Dirichlet energy on unnormalized node
representations. To mitigate the limited expressivity due to this rank collapse
of node representations, we propose the sum of Kronecker products (SKP) as
a general property models should exhibit that can provably prevent rank col-
lapse. We empirically confirm this behavior for non-linear GNNs in a multi-class
classification task, which typical existing methods cannot fit, but an SKP can.

The main limitation of our work is that the limit case only applies to lin-
earized GNNs, and our empirical validation extends and confirms our theory for
the non-linear case only for synthetic tasks. Our insights show that future meth-
ods should aim to avoid rank collapse instead of dealing with over-smoothing or
over-correlation. Novel metrics to quantify the degree of rank collapse in graph
neural networks need to be designed, and these need to consider the normalized
feature representation, as the feature magnitude may otherwise overshadow the
insights.
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A Mathematical details

In this section, we provide the details of our approach and all of our statements.

A.1 Basic Operations

We start by listing the most important properties used throughout our formal
proofs.

Kronecker Product. The Kronecker product for any two matrices A ∈ Rp×q,
B ∈ Rr×s is denoted as

A⊗B =

a11B . . . a1qB
...

. . .
...

ap1B . . . apqB

 . (18)

The importance of the Kronecker product for our work stems from its powerful
properties. We briefly present the most relevant here. First, a vectorized matrix
product

vec(ÃXW) = (WT ⊗ Ã) vec(X) (19)

of any matrices Ã,X,W with matching shapes can be written using the Kro-
necker product. The Kronecker product of two orthogonal matrices results in an
orthogonal matrix, allowing us to rewrite any vector as a linear combination

vec(X) = (U⊗V)c (20)

using the singular value decomposition W = UΣNT and eigendecomposition
Ã = VΛVT . The Kronecker product also satisfies the mixed-product property

(A⊗B)(C⊗D) = (AC)⊗ (BD) . (21)

Dirichlet Energy The standard interpretation for the Dirichlet energy is the
sum of differences in representations for adjacent nodes. Another interpretation
we mainly use is based on the decomposition of the signal into eigenvectors of
the graph Laplacian ∆ = I− Ã using Ã = D− 1

2AD− 1
2 . Utilizing the Kronecker

product, only the signals not belonging to eigenvalue λÃ
1 = 1 are summed up

and weighted by the corresponding eigenvalue of ∆:

E(X) = tr(XT∆X) (22)

= vec(X)T vec(∆X) . (23)

We then use the decomposition vec(X) = (Id ⊗ V)c as described in Eq. ??,
based on the eigenvectors V of Ã and the identity matrix Id, leading to

E(X) = cT (Id ⊗V)T (Id ⊗∆)(Id ⊗V)c (24)

= cT (Id ⊗VT∆V)c . (25)
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As ∆ = V(In − Λ)V has the same eigenvectors and shifted eigenvalues as Ã,
we then write the statement as a sum of coefficients that are weighted by their
corresponding eigenvalue of the graph Laplacian:

E(X) = cT (Id ⊗ (In −Λ∆)c (26)

=

n,d∑
l,r=1

(1− λÃ
r )c2l,r . (27)

Frobenius Norm The squared Frobenius norm has a similar interpretation,
the coefficients are just not weighted by eigenvalues:

||X||2F = tr(XTX)

= cT (U⊗V)T (U⊗V)c

=

n,d∑
l,r=1

c2l,r

(28)

An important property of the Frobenius norm in conjunction with the Kronecker
product is the following:

∥A⊗B∥F = ∥A∥F · ∥B∥F (29)

A.2 Proof of Proposition 4.1

Proposition. (Node representations vanish.) Let Ã ∈ Rn×n be symmetric with
maximum absolute eigenvalue |λÃ

1 | = 1, W ∈ Rd×d be any matrix with maximum
singular value σW

1 , and ϕ a component-wise non-expansive mapping satisfying
ϕ(0) = 0. Then,

||ϕ(ÃXW)||F ≤ σW
1 · ||X||F . (30)

Proof. The key property we use is that the non-expansive property of ϕ(·)
implies the Lipschitz continuity ||ϕ(X)− ϕ(Y)|| ≤ ||X−Y||:

||ϕ(ÃXW)||F = ||ϕ(ÃXW)− ϕ(0)||F (31)

≤ ||ÃXW − 0||F (32)

= ||ÃXW||F . (33)

We then use common bounds on the norm of the matrix product for symmetric
matrices using the maximum eigenvalue λÃ

1 and for an arbitrary matrix based
on the maximum singular value σW

1 , resulting in

||ÃXW||F ≤ |λÃ
1 |σW

1 ||X||F (34)

= σW
1 ||X||F , (35)

using the assumption |λÃ
1 | = 1.
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Proof of Lemma 5.1

Lemma. (The subspaces are invariant to any T(k).) Let T = W ⊗ Ã with
Ã ∈ Rn×n symmetric with eigenvectors v1, . . . ,vn and W ∈ Rd×d any matrix.
Consider the subspaces Qi = span(Id ⊗ vi) for i ∈ [n]. Then,

∀ i ∈ [n] : z ∈ Qi =⇒ Tz ∈ Qi .

Proof. We express z as a linear combination (Id ⊗vi)c = z ∈ Qi of the given
basis vectors. Then,

(W ⊗ Ã)(Id ⊗ vi)c = (WId ⊗ Ãvi)c

= (Id ⊗ vi)(W ⊗ λÃ
i In)c

= (Id ⊗ vi)c
′ ∈ Qi

(36)

using some new coefficients c′ = (W ⊗ λÃ
i In)c.

Proof of Theorem 5.2

Theorem. (The relative behavior is fixed.) Let T = W ⊗ Ã with Ã ∈ Rn×n

symmetric with eigenvectors v1, . . . ,vn and eigenvalues λÃ
1 , . . . , λÃ

n and W ∈
Rd×d any matrix. Consider the bases S(i) = Id ⊗ vi and S(j) = Id ⊗ vj for
i, j ∈ [n]. Then,

∥TS(i)∥F
∥TS(j)∥F

=
|λÃ

i |
|λÃ

j |
. (37)

Proof.

∥TS(i)∥
∥TS(j)∥

=
∥
(
W ⊗ Ã

)
(Id ⊗ vi)∥

∥
(
W ⊗ Ã

)
(Id ⊗ vj)∥

=
∥
(
W ⊗ λÃ

i vi

)
∥

∥
(
W ⊗ λÃ

j vj

)
∥

=
|λÃ

i | · ∥W∥ · ∥vi∥
|λÃ

j | · ∥W∥ · ∥vj∥

=
|λÃ

i |
|λÃ

j |

(38)

Proof of Proposition 5.3
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Proposition. (Fixed subspaces dominate.) Let T(k) = W(k)⊗Ã with Ã ∈ Rn×n

symmetric with eigenvectors v1, . . . ,vn and eigenvalues λÃ
1 , . . . , λÃ

n and W(k) ∈
Rd×d any matrix. Consider the bases S(i) = Id ⊗ vi for i ∈ [n]. Then,

lim
l→∞

∥T(l) . . .T(1)S(i)∥F
maxp∥T(l) . . .T(1)S(p)∥F

= lim
l→∞

|λÃ
i |l · ∥S(i)∥F

maxp |λÃ
p |l · ∥S(p)∥F

=

{
1, if|λÃ

i | = |λÃ
1 |

0, otherwise

with convergence rate |λÃ
i |

|λÃ
1 |

.

Proof.

lim
l→∞

∥T(l) . . .T(1)S(i)∥
maxp∥T(l) . . .T(1)S(p)∥

= lim
l→∞

||(W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(Id ⊗ vi)||
maxp ||(W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(Id ⊗ vp)||

= lim
l→∞

||(W(l) . . .W(1) ⊗
(
λÃ
i

)l
vi)||

maxp ||(W(l) . . .W(1) ⊗
(
λÃ
p

)l
vp)||

= lim
l→∞

|λÃ
i |l · ||vi||

maxp ||λÃ
p |l| · ||vp||

=

{
1, if|λÃ

i | = |λÃ
1 |

0, otherwise

(39)

Proof of Theorem 5.4

Theorem. (Representations converge to a fixed set.) Let X(k+1) = ÃX(k)W(k)

with Ã ∈ Rn×n symmetric with eigenvectors v1, . . . ,vn and W(k) ∈ Rd×d any
matrix. Consider the subspaces Qi = span(Id ⊗ vi) for i ∈ [n]. Then,

∀ϵ > 0,∃N ∈ N,∀l ∈ Nwith l > N,∃m(l) ∈ Q1 :

∥∥∥∥ X(l)

∥X(l)∥F
−m(l)

∥∥∥∥
2

< ϵ .

Proof. Let Λ be the matrix of eigenvalues of Ã and the singular value com-
position of W(l) . . .W(1) = UΣNT . Then,∥∥∥∥ X(l)

||X(l)||
−m(l)

∥∥∥∥ =

∥∥∥∥∥ (W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(Nd ⊗V)c

||(W(l) ⊗ Ã) . . . (W(1) ⊗ Ã)(Nd ⊗V)c||
−m(l)

∥∥∥∥∥
=

∥∥∥∥ (W(l) . . .W(1) ⊗V)(Nd ⊗Λl)c

||(W(l) . . .W(1) ⊗V)(Nd ⊗Λl)c||
−m(l)

∥∥∥∥
=

∥∥∥∥∥∥∥∥
(
W(l) . . .W(1) ⊗V

) (
Nd ⊗ Λl

λÃ
1

)
c

||
(
W(l) . . .W(1) ⊗V

)(
Nd ⊗ Λl

λÃl
1

)
c||

−m(l)

∥∥∥∥∥∥∥∥
(40)
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We simplify the notation and set P(l) = W(l) . . .W(1). We now choose m(l) =

(P(l)⊗V)

(
Nd⊗ Λl

λÃl
1

)
c′

||(P(l)⊗V)

(
Nd⊗ Λl

λÃl
1

)
c||

by only replacing the c in the numerator by c′ contain-

ing the same values for coefficients corresponding to Q1 and zeros for other
subspaces, i.e., c′1,r = c1,r ∀r and c′i,r = 0∀i > 1,∀r. Continuing,

=

∥∥∥∥∥∥∥∥
(

P(l)

σP(l)

1

⊗V

)
||
(

P(l)

σP(l)

1

⊗V

)(
Nd ⊗ Λl

λÃl
1

)
c||

((
Nd ⊗

Λl

λÃl

1

)
c− c′

)∥∥∥∥∥∥∥∥
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∥∥∥∥∥
≤

√
nd

c1,1

(
λ2

λ1

)l

max
r,i

cr,i
√
(n− 1) · d

(41)

Which is smaller than any ϵ for l large enough and cos θ > 0. For the last step,
we provide the details for the upper bounds separately for each term:

∥∥∥∥ P(l)

σP(l)

1

⊗V

∥∥∥∥ =

√√√√tr

((
P(l)

σP(l)

1

⊗V

)T (
W(l) . . .W(1)

σP(l)

1

⊗V

))

=

√√√√√√tr

(P(l)
)T

P(l)(
σP(l)

1

)2 ⊗ In


=

√√√√∑
l,r

σ2
l

σ2
1

≤
√
nd

(42)
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1∥∥∥∥( P(l)
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(43)

∥∥∥∥∥
(
Nd ⊗

ΛAl

λA
1

)
c− c′

∥∥∥∥∥ =

√√√√∑
r,i
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λi

λ1
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(
λi

λ1
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c′r,i

)2

≤

√√√√ d,n∑
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≤
(
λ2
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√√√√ n,d∑
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≤
(
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c2r,i =

(
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r,i

cr,i
√
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(44)

Proof of Proposition 5.5

Proposition. (Over-smoothing happens for all W(k).) Let X(k+1) = ÃX(k)W(k)

with Ã = D− 1
2AD− 1

2 and W(k) ∈ Rd×d any matrix. We consider E(H) =
tr(HT∆H) for ∆ = I− Ã. Then,

lim
l→∞

E

(
X(l)

∥X(l)∥F

)
= 0 (45)

with convergence rate
(

λÃ
2

λÃ
1

)2

independently of all W(k).
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Proof. We again use the singular value decomposition W(1) . . .W(l) = P =
UΣNT

lim
l→∞

E

(
X(l)

||X(l)||

)
= lim

l→∞

tr(X(l)∆X(l))

||X(l)||2

= lim
l→∞

c(UT ⊗VT )(W(1) ⊗ ÃT ) . . . (W(l) ⊗ Ã)(Id ⊗ ∆̃)(W(l)T ⊗ Ã)(W(1)T ⊗ Ã)(U⊗V)c

||X(l)||2

= lim
l→∞

c(UTW(1) . . .W(l)W(l)T . . .W(1)TU⊗VT Ãl∆̃ÃlV)c

||X(l)||2

= lim
l→∞

c(Σ2 ⊗ΛlVT ∆̃VΛl)c

c(Σ2 ⊗ΛlVTVΛl)c

= lim
l→∞

c(Σ
2

σ2
1
⊗ Λl(Id−Λ)Λl

λÃ
1 λÃ

1

)c

c(Σ
2

σ2
1
⊗ ΛlΛl

λÃ
1 λÃ

1

)c

= 0

(46)

The last equality is true because (1− λA
1 ) = 0

A.3 Proof of Proposition 5.6

Proposition. There exist X ∈ Rn×d,W ∈ Rd×d, for which

E

(
XW

||XW||F

)
> E

(
X

||X||F

)
Proof. We choose the case when σd = ϵ is a small number. When the signal

X has a large value c1,d = k > 1, the denominator gets reduced by more than
the numerator, as the corresponding eigenvalue is 1 − λA

1 = 0. More formally,
we choose W = UΣWVT to have singular values σ1 = . . . σd−1 = 1,σd = ϵ for
some ϵ to be determined. We choose vec(X) = (U ⊗V)c with c1,d = k and all
other cl,r = 1. In this case, the above inequality reduces to

E

(
X

||X||

)
=

∑n,d−1
l,r=1 (1− λA

l ) +
∑n

l=2(1− λA
l )∑n,d−1

l,r=1 1 + k +
∑n

l=2 1

<

∑n,d−1
l,r=1 (1− λA

l ) +
∑n

l=2(1− λA
l )ϵ2∑n,d−1

l,r=1 1 + kϵ2 +
∑n

l=2 ϵ
2

= E

(
XW

||XW||

)

Solving for ϵ determines the values for which the inequality is fulfilled:
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2
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In the last step, we divide by (
∑n,d−1

l,r=1 (1− λA
l )k +

∑n,d−1
l,r=1 (1− λA

l )
∑n

l=2)−∑n
l=2(1− λA

l )
∑n,d−1

l,r=1 1), which is positive for k > 1.

A.4 Proof of Proposition 5.7

Proposition. (Signal amplification only depends on Ã.) Let two bases be S(i) =

(Id⊗P(i)) ∈ Rnd×qd and S(j) = (Id⊗P(j)) ∈ Rnd×qd for any P(i) ∈ Rn×q,P(j) ∈
Rn×r with q, r ≤ n. Further let T = W ⊗ Ã ∈ Rnd×nd consisting of any W ∈
Rd×d and any Ã ∈ Rn×n. Then,

||TS(i)||F
||TS(j)||F

=
||ÃP(i)||F
||ÃP(j)||F

.

Proof. We again use the property ||A ⊗ B||F = ||A||F · ||B||F and basic
properties of the Kronecker product:

||TS(i)||F
||TS(j)||F

=
||(W ⊗ Ã)(Id ⊗P(i))||F
||(W ⊗ Ã)(Id ⊗P(j))||F

(47)

=
||W||F · ||ÃP(i)||F
||W|| · ||ÃP(j)||F

(48)

=
||ÃP(i)||F
||ÃP(j)||F

(49)
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Proof of Proposition 5.8

Proposition 7. (GAT and Graph Transformer over-smooth.) Let X(k+1) =
Ã(k)X(k)W(k) where all Ã(k) ∈ Rn×n row-stochastic, representing the same er-
godic graph, and each non-zero entry (Ã(k))pq ≥ ϵ for some ϵ > 0 and all i ∈ [h],
k ∈ N, p, q ∈ [n]. We further allow all W(k)

i ∈ Rd×d to be any matrices. We con-
sider E(X) = tr(XT∆rwX) using the random walk Laplacian ∆rw = I−D−1A.
Then,

lim
l→∞

E

(
X(l)

∥X(l)∥F

)
= 0 .

Proof. The proof is mostly analogous to our proof of Theorem 3 but relies
on the fact that Π∞

l=0Ã
(l) = 1(y(l))T for all il ∈ [h] and some y(l) ∈ Rn as

established by Wu et al. [23]. The intuition behind the statement builds on the
ergodicity and minimum edge weight ϵ, which combined result in each pairwise
edge strength being larger than ϵs after a finite number of steps s. The product
of two such matrices reduces the maximum and increases the minimum, which
results in constant states in the limit.

Let ∆rw = V(In − ΛÃ)VT . As the first eigenvector v1 is constant, we can

write the limit state Π∞
l=0Ã

(l) = V


y
(l)
1 . . . y

(l)
n

q
(l)
21 . . . q

(l)
2n

...
. . .

...
q
(l)
n2 . . . q

(l)
nn

VT = VQ(l)VT using the

same eigenbasis and each qkl converging to zero. For notational simplicity we
define R = Π∞

l=0W
(l). Decomposing the state vec(X) = (Id ⊗ V)c using the

eigenbasis of ∆rw, the Dirichlet energy then simplifies to

lim
l→∞

E

(
VQ(l)VTX(0)R

||VQ(l)VTX(0)R||F

)
= lim

l→∞

c(RTR⊗VTVQ(l)VTV(In − ΛÃ)VTVQ(l)VTV)c

c(RTR⊗VTVQ(l)VTVQ(l)VTV)c

= lim
l→∞

c(RTR⊗Q(l)T (In − ΛÃ)Q(l))c

c(RTR⊗Q(l)TQ(l))c

We then use the fact that liml→∞ Q(l)T (In −ΛÃ)Q(l) = 0 as the columns of
Q(l) and the rows of Q(l)T converge to zero and the corresponding eigenvalue of
(In−ΛÃ) being also zero, leaving all entries to converge to zero. We then simply
need to factor out the growth of R, so that this convergence holds:

lim
l→∞

c(RTR⊗Q(l)T (In − ΛÃ)Q(l))c

c(RTR⊗Q(l)TQ(l))c
= ± lim

l→∞

c( RTR

|λRT R
1 |

⊗Q(l)T (In − ΛÃ)Q(l))c

c( RTR

|λRT R
1 |

⊗Q(l)TQ(l))c
= 0

(50)
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A.5 Over-correlation

Proof of Theorem 6.1

Theorem. (The rank collapses.) Let Qi = span(Id ⊗Vi) for any matrix Vi ∈
Rn×j with j ≤ n. Then,

∀ vec(X) ∈ Qi : rank(X) ≤ j (51)

Proof. We rewrite vec(X) = (Id ⊗vi)c as a linear combination c of the basis
vectors:

X = vec−1((Id ⊗Vi)c) = Vi vec
−1(cT )Id = Vi vec

−1(cT ) (52)

using the inverse vectorize operation vec−1. The statement holds given rank(vec−1(cT )) ≤
min(j, d) ≤ j, rank(Vi) ≤ j and Sylvester’s rank inequality.

A.6 Sum of Kronecker products

A.7 Proof of Theorem 7.1

Theorem. (Any subspace can get amplified.) Let ei ∈ Rd be the canonical basis
with a single 1 at position i. For any columns s1, . . . , sd ∈ Rn and the induced
subspace S =

[
e1 ⊗ s1 . . . ed ⊗ sd

]
∈ Rnd×d, there exists an T =

∑d
1(Wi ⊗ Ãi)

such that for all orthogonal bases S′ =
[
e1 ⊗ s′1 . . . ed ⊗ s′d

]
∈ Rnd×d

∥TS∥F
∥TS′∥F

>
∥S∥F
∥S′∥F

. (53)

Proof. We choose each Ãi = V(i)ΛV(i)T to be symmetric with dominant
eigenvectors v

(i)
1 = si and shared eigenvalues |λ1| > |λÃ

2 | > |λÃ
d | > 0. Further,

Wi = diag(ei) where the diag operation creates a matrix with the entries of
its arguments along the diagonal. Thus, all columns are independent and T is
a block-diagonal matrix with eigenvectors being ei ⊗ v(j) with corresponding
eigenvalue λÃ

j . The eigenspace corresponding to λÃ
1 are all ei ⊗ si for all i, i.e.,

span(S). Any orthogonal column s′i =
∑d

k=2 v
(k)
2 c

(k)
2 can be written as a linear

combination of the other eigenvectors. Thus,

∥TS∥F
∥TS′∥F

≥ |λ1|
|λ2|

∥S∥F
∥S′∥F

>
∥S∥F
∥S′∥F

(54)
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B Experimental details

B.1 Convergence to a Constant State

For this experiment, we consider the Cora dataset provided by Pytorch-Geometric [52],
consisting of 2708 nodes and 5429. For initialize 128 layers of GAT, GCN, and
GraphSAGE using their default initialization and no bias. After each layer, we
use a ReLU activation. After each ReLU activation, we track both the squared
norm ||X||2F and the Dirichlet energy E(X) = tr(XT∆rwX) using the random
walk Laplacian ∆rw = In −D−1A, as the constant vector is in its nullspace, as
suggested by Rusch et al. [11].

B.2 Empirical Validation

Here, we describe the details of our considered task for our empirical validation
in Section 8. We randomly generate an Erdos–Rény (ER) graph, that consists of
20 nodes and an edge probability of 0.2. We then select four its nodes at random,
denoted by V = (v1, v2, v3, v4). The 3-class classification task consists of three
tasks for each node, where all pairs of nodes belong to the same class exactly

once. Precisely, the target for all nodes is Y =



1 1 1
1 0 0
0 1 0
0 0 1
0 0 0
...

. . .
...

0 0 0


.

For loss, optimization, and accuracy calculation, we only consider the labels
of the four nodes and ignore all remaining outputs.

If each feature is constant across nodes, all nodes are classified the same,
resulting in a 50% accuracy. If the representations have rank one and all feature
vectors are on a line, representations need to be adjacent in order to be classified
correctly, which cannot be fulfilled for all pairs simultaneously. Since our GNNs
are finite-depth, representations are not normalized, and the maximum eigen-
value may have geometric multiplicity larger than one, the models can achieve
higher accuracy.

Training details Node representations X(0) ∈ R4×6 are randomly initialized
from a normal distribution xij ∼ N(0, 1) with 0 mean and standard devia-
tion of 1. Aggregations and feature transformation are randomly initialized such
that the norm of resulting node representations is typically not close to zero
or to infinity so that the gradients do not vanish or explode. Precisely, for
Ã

(k)
1 ∈ R20×20, Ã(k)

2 ∈ R20×20 the weight of each generated edge (i, j) is sam-
pled from a normal distribution ãij ∼ N ( 1

|Nj | , 0.05) with mean as one over the
number of incoming nodes and standard deviation 0.05. Similarly, the feature
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transformations W
(k)
1 ∈ R6×6, W(k)

2 ∈ R6×6 are sampled from a normal dis-
tribution w̃ij ∼ N ( 13 , 0.05) with mean as one over the number of features and
standard deviation 0.05. Using T(k) as one of the considered graph convolutions,
the update function is vec(X(k+1)) = ϕ(T(k) vec(X(k)) with ϕ as the ReLU ac-
tivation function. After l iterations, we use these node representations for our
three classification tasks using the affine transformation

Ŷ = σ(X(l)Wc + b) (55)

with σ as sigmoid activation, a feature transformation Wc ∈ R6×3 and a feature-
wise bias term b ∈ R3. We evaluated all three described update functions for
l ∈ [1, 2, 4, 8, 16, 32, 64, 128] layers. For each method and each number of layers,
variables are randomly initialized and optimized with binary cross-entropy using
the Adam optimizer until the loss does not decrease for 500 steps. Each experi-
ment is executed three times for each graph, of which the best achieved accuracy
is considered. We then repeat this process for 50 random graphs and report the
mean accuracy and its standard deviation. The reproducible experiments are
added as supplementary material.

We additionally run the same experimental setting for a linearized version (ϕ
as identity function) and a version that also reuses the same aggregation across
all layers Ã

(1)
1 = · · · = Ã

(k)
1 , Ã(1)

2 = · · · = Ã
(k)
2 . All configurations were run

sequentially on a single CPU. The entire runtime was around 30 hours.

# of layers 1 2 4 8 16 32 64 128

GATHL 100± 0 100± 0 82± 19 71± 6 72± 6 70± 6 67± 7 63± 8
GATL 100± 0 100± 0 100± 0 70± 4 71± 6 70± 7 68± 8 65± 8
GAT 100± 0 100± 0 100± 0 70± 4 71± 6 70± 7 68± 8 65± 8

FAGCNHL 100± 0 100± 0 83± 0 83± 0 83± 0 83± 0 83± 0 82± 4
FAGCNL 100± 0 100± 0 83± 0 83± 0 83± 0 83± 0 83± 0 82± 4
FAGCN 100± 0 98± 5 88± 4 85± 3 84± 2 84± 2 85± 3 82± 4
SKPHL 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 94± 12
SKPL 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 100± 0 96± 10
SKP 100± 0 99± 3 98± 5 100± 0 100± 0 100± 0 100± 1 95± 10

Table 1: Maximum and mean±standard deviations accuracies for all considered
scenarios. Subscript L denotes the linearized version, subscript HL denotes the
version that additionally uses homogeneous aggregation matrices.

Detailed results We provide additional numerical results in Table 1, including
the standard deviation of all settings. If the representations were constant, only
a 50% accuracy could be achieved, so there is slightly more relevant information
in all features, even for the GAT-like model. However, the representations are
quickly converging to a low-rank state, so both GAT and FAGCN do not solve
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this task a single time for eight or more layers. All models are slightly more
unstable with increased depth, which is mainly a vanishing or exploding gradient
issue. As this was historically an issue in other domains, similar methods can be
used to solve this, e.g., normalization layers.
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