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Abstract. Over-squashing and over-smoothing are two critical issues,
that limit the capabilities of graph neural networks (GNNs). While over-
smoothing eliminates the differences between nodes making them indis-
tinguishable, over-squashing refers to the inability of GNNs to propagate
information over long distances, as exponentially many node states are
squashed into fixed-size representations. Both phenomena share similar
causes, as both are largely induced by the graph topology. To mitigate
these problems in graph classification tasks, we propose CurvPool, a
novel pooling method. CurvPool exploits the notion of curvature of a
graph to adaptively identify structures responsible for both over-smoothing
and over-squashing. By clustering nodes based on the Balanced Forman
curvature, CurvPool constructs a graph with a more suitable structure,
allowing deeper models and the combination of distant information. We
compare it to other state-of-the-art pooling approaches and establish its
competitiveness in terms of classification accuracy, computational com-
plexity, and flexibility. CurvPool outperforms several comparable meth-
ods across all considered tasks. The most consistent results are achieved
by pooling densely connected clusters using the sum aggregation, as this
allows additional information about the size of each pool.

Keywords: Graph Neural Networks · Pooling · Over-squashing · Over-
smoothing.

1 Introduction

Graph neural networks (GNNs) [17] combine the computational power of neural
networks with the structure of graphs to exploit both the topology of graphs
and the available graph signal. Their applications are manifold, as they are
used to classify single nodes within a graph (node classification) [17,33], classify
entire graphs (graph classification) [45], and predict missing edges within the
graph (link prediction) [31]. They are inhibited by several problems that impact
the achieved results negatively. We propose a method to mitigate two of these
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problems for the graph classification task, namely over-smoothing [27,30,8] and
over-squashing [1,36].

Over-smoothing describes a phenomenon that results in node representations
becoming overly similar when increasing the depth of the GNN. This leads to
a loss of relevant information and leads to worse empirical results across many
tasks [17,21,30]. Various theoretical investigations confirmed that this problem
is greatly enhanced by the underlying structure of the graph[21,30,7]. Densely
connected areas of the graph tend to over-smooth faster than sparsely connected
areas [41].

Similarly, over-squashing also leads to loss of information albeit in a differ-
ent way. It describes the inability of GNNs to propagate information over long
distances in a graph. A recent theoretical investigation traced this back to bot-
tlenecks in the graph [1], which describe edges connecting denser regions of the
graph. With an increased number of layers, exponentially much information has
to get passed through these edges, but the feature vectors are of limited constant
size. Since bottlenecks are an inherent attribute of the underlying graph, this
problem is also amplified by the graph topology [1,36].

While various directions addressing over-smoothing have been proposed [36,34,41],
specifically for the graph classification task, pooling methods are a promising di-
rection [43,23], which cluster sets of nodes in the graph into a single node. This
can improve the data flow and change the underlying graph topology to one more
suited for the respective task. The difficulty in applying pooling methods is the
selection of these groups of nodes. Existing methods provide different criteria by
which these nodes can be selected. Yet these are often prohibitively rigid and
also not designed with over-smoothing and over-squashing in mind.

Our work addresses these crucial points. The curvature of a graph has been
identified to be a meaningful metric for locating structures responsible for over-
squashing and over-smoothing [36]. The curvature between two nodes describes
the geodesic dispersion of edges starting at these nodes. Based on this metric,
we design CurvPool, a novel pooling method that clusters nodes based on a
flexible property of the graph topology. By design, the resulting graph has a
suitable structure that alleviates the detrimental effects of over-squashing and
over-smoothing. Our empirical results on several benchmark datasets for graph
classification confirm the effectiveness of our approach. In addition, CurvPool is
theoretically and practically efficient to execute.

2 Preliminaries

Notation We consider graphs of the form G = (V, E) consisting of a set of
n = |V| nodes V = {v1, . . . , vn} and edges indicating whether pairs of nodes are
connected. For each node vi, the set of neighboring nodes is denoted by Ni and
its degree by di = |Ni|. The graph signal X ∈ Rn×d consists of d features at each
node. We consider the task of graph classification, which aims to find a suitable
mapping fθ(X, G) = c predicting class likelihoods c for the entire graph using
some parameters θ.
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2.1 Graph Neural Networks

Graph neural networks operate on graph-structured data and are designed to ex-
tract meaningful node representations. These are structured as layer-wise func-
tions to update the node representation

hk+1
i = ψ(hk

i , ϕ({hk
j | j ∈ Ni})) (1)

in each layer k using some neighbor aggregation function ϕ and some combination
function ψ. The graph signal is used for the initial node representations h0

i = x0
i .

Many options for realizing the update functions have been proposed [17].
However, most methods suffer from two phenomena known as over-smoothing [8]

and over-squashing [1,36]. Over-smoothing refers to the case that node represen-
tations become too similar to carry meaningful information after a few iterations.
Over-squashing occurs when exponentially much information is compressed into
the representation of a few nodes, preventing information from flowing between
distant nodes. This is induced by the structure of the graph as so-called bot-
tlenecks cause over-squashing, which means that two parts of the graph are
connected by relatively few edges.

2.2 Pooling within GNNs

A pooling operation reduces the spatial size of the data by aggregating nodes
and their representations using some criterion. It results in a new graph G′ =
(V ′, E ′) and new node representations H′ with |V ′| ≤ |V|. Pooling methods offer
various advantages which frequently include an increased memory efficiency and
improved expressivity regarding the graph isomorphism problem [3].

Formally, each pool pi ⊂ V contains a subset of nodes, and our goal is to find
a suitable complete pooling

P = {pi ⊂ V | p1 ∪ . . . ∪ pn = V } (2)

so that every node of the graph is contained in at least one of the pools. This
guarantees that no information that was contained in the initial graph is disre-
garded. The new set of nodes V ′ is given by turning each pool pi into a new node
v′i. The new set of edges E ′ differs between pooling methods. The main challenge
towards successful pooling operations within GNNs is finding a suitable pooling
criterion P.

2.3 The Curvature of a Graph

Motivated by the Ricci curvature in Riemannian geometry, a recent investiga-
tion defined the curvature of a graph determines as the geodesic dispersion of
edges starting at two adjacent nodes [36]. Two edges starting at adjacent nodes
can meet at a third node, remain parallel, or increase the distance between the
endpoints of the edges. Corresponding to these three cases and based on insights
from previous edge-based curvatures [13,28,29], they propose the Balanced For-
man curvature:
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Definition 1. (Balanced Forman curvature [36].) For any edge (i, j) in a sim-
ple, unweighted graph G, we let BFC(i,j) = 0 if min{di, dj} = 1 and otherwise

BFC(i, j) =
2

di
+

2

dj
−2+2

|△(i, j)|
max{di, dj}

+
|△(i, j)|

min{di, dj}
+

γ−1
max(i, j)

max{di, dj}
(|□i|+ |□j |)

(3)
where △(i, j) are the 3-cycles containing edge (i, j), □i(i, j) are the neighbors
of i forming 4-cycles containing (i, j) without containing a 3-cycle. γmax(i, j) is
the maximal number of 4-cycles containing (i, j) traversing a common node.

We refer to Topping et al. [36] for a comprehensive definition. This formulation
satisfies the desired properties of the geodesic dispersion. The curvature is neg-
ative when (i, j) are sparsely connected and positive curvature when redundant
paths are available. We provide visualized examples in Figure 1.

The important relationship to over-squashing is that edges with a negative
curvature are considered to be the bottlenecks of the graph [36].

3 Related Work

Various methods for pooling within graph neural networks based on clusters
of nodes have been proposed [44,46,32,18,37,14,9,20,25,47,10,19,48]. Some are
based on the topology of the graph, while others are based on the node repre-
sentations themselves.

DiffPool [43] is one of the most frequently employed strategies for pooling
based on representations. For each node, it predicts a soft assignment within
a fixed number of clusters allowing the pooling to be optimized with gradient
descent. Several other methods similarly learn a mapping from node representa-
tions to pools [26,2,16,22]. However, there are two main concerns with this family
of strategies. First, the number of clusters is predefined and fixed for all graphs
in the considered task. Second, the structure of the graph is only taken into ac-
count using node representations, which do not capture all structural properties,
as given by their limitations regarding the Weisfeiler-Leman test [24].

To address this, pooling strategies based on the graph topology were pro-
posed. Fey et al. [12] predefine a fixed set of graph structures and pool only
these into single nodes. CliquePool [23] combines each clique in the graph. How-
ever, these methods rely on fixed structures in the graph and are unable to
provide any pooling when the graph structure does not perfectly align. As an
example, a graph could consist of densely connected communities, but these are
only pooled when they constitute complete cliques. For comparison throughout
this work, we will use one of both categories, namely DiffPool and CliquePool.

4 CurvPool

We aim to construct an adaptive pooling method that can combine arbitrary
structures in the graph without explicitly needing the knowledge of which struc-
tures we are interested in. In addition, the structure of the pooled graph should
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also be more resilient to over-smoothing and over-squashing, which then allows
for a better flow of information. Using the curvature of the graph as the foun-
dation for our pooling method allows us to achieve these properties.

4.1 Pooling based on the Curvature of a Graph

Since we base our new pooling approach on the Balanced Forman curvature
BFC(·), we initially calculate the curvature for every edge (i, j) ∈ E. We then
need to convert curvature values of edges to sets of nodes we want to pool
together. These values are used to decide if nodes i and j will be assigned to
the same pool or not. There are different approaches for making this decision
that lead to variations of CurvPool. In the general case, we use some criterion
f(BFC(i, j)) on the curvature of each edge to decide whether two nodes are
combined. For the initial candidates for pools, this results in a set

P ′ = {{i, j} | (i, j) ∈ E ∧ f(BFC(i, j))} ∪ {{i} ∈ V} (4)

that we augment by each node as additional pool candidates to fulfill our re-
quirements for a complete pooling. We describe our choices for the criterion f
in the next section. The main challenge arises when combining subsets of P ′.
Nodes may be contained in multiple pools, as multiple edges of a node may sat-
isfy our criterion for combination. This does not contradict our definition of a
pooling but still should be considered since it significantly impacts the resulting
graph. Intuitively, we want groups of nodes that are connected by edges of similar
curvatures to be combined together. In this way, clusters of densely connected
structures can be aggregated into a single node, and sparsely connected regions
will be closer connected afterward. The authors of CliquePool chose a different
approach and removed duplicate nodes from every non-largest pool they were
contained in [23]. This approach doesn’t really suit CurvPool since all resulting
pools after the initial selection are of the same size. Instead, we merge all pools
whose intersections are non-empty, resulting in the final pooling

P = {
⋃
pi∈S

pi | S ⊆ P ′,∀T ⊂ S :

 ⋃
pi∈T

pi

 ∩

 ⋃
pj∈S\T

pj

 ̸= ∅,

∀pk ∈ P ′ : ∃pi ∈ S : pi ∩ pk ̸= ∅ ⇒ pk ∈ S}. (5)

Each element in P is then mapped to a new node in the pooled graph. Based on
the previous node representations H ∈ Rn×g of V and an aggregation function
ω, we construct new node representations

h′
j = ω({hi|i ∈ pj}) (6)

for each pool pj ∈ P. Any aggregation scheme ω can be used to calculate the
node features of the resulting pools. We consider the mean (AVG), the sum
(SUM), and the maximum (MAX) operators.
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This still leaves us with one final question. How is the new set of edges
calculated? Since we strive to retain as much of the initial graph structure as
possible, we simply remap the old edges from their respective nodes to the new
pools they are contained in, resulting in

E ′ = {(m,n) | ∃ pi, pj ∈ P : pi ̸= pj ∧m ∈ pi ∧ n ∈ pj} . (7)

This same method is used for all considered variations of CurvPool, leaving only
the strategy for which curvatures to use for pooling open.

4.2 Curvature-based Strategies for Pooling

We now present our considered strategies for choosing pairs of nodes for our
initial pools. Each of the three strategies has slightly differing motivations and
carries its own set of advantages and disadvantages.

HighCurvPool The fundamental idea of HighCurvPool is to aggregate nodes
that are adjacent to edges with high curvature. This strategy combines all nodes
that are connected by an edge with a curvature above a fixed threshold thigh.
Our initial set of pools

P ′
highCurv = {{i, j} | ∀i, j ∈ V : BFC(i, j) > thigh} ∪ {{i} ∈ V} (8)

considers exactly these, for which overlapping sets will be merged as described
in Section 4.1. Nodes are combined along the nodes in dense communities of the
graph. As over-smoothing was shown to occur faster in dense communities [41],
these sets of nodes already contain similar representations, thereby being re-
dundant when kept as separate nodes. HighCurvPool should alleviate this effect
since the most strongly smoothed representations are aggregated, and the new
graph contains more diverse neighboring states from each community. The effects
of over-squashing should also reduce as the average path lengths become smaller
and information from fewer nodes needs to be compressed for connecting edges.
While HighCurvPool typically leads to an increase in curvature in bottlenecks,
these are not directly removed.

LowCurvPool Analogous to HighCurvPool, LowCurvPool pools nodes that
are connected by an edge with low curvature since these directly represent bot-
tlenecks within the graph. Using a different threshold tlow, this results in an
initial pooling of the form

P ′
lowCurv = {{i, j} | (i, j) ∈ E ∧ BFC(i, j) < tlow} ∪ {{i} ∈ V}. (9)

LowCurvPool leads to the removal of exactly those edges that are marked as
problematic through the curvature. The aggregation of the two adjacent nodes
lets the two separated subgraphs move closer while guaranteeing that all paths
through the graph are retained, and no new bottlenecks are created. As a result,
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the average curvature of the graph rises. Since we assume that the curvature
is a good indicator of the over-squashing problem, information will be prop-
agated better through the graph, and over-squashing gets reduced. However,
over-smoothing may still be an issue as separate communities of nodes become
more closely connected, leading to faster smoothing [41].

MixedCurvPool Finally, MixedCurvPool combines the other approaches. It
utilizes both thresholds thigh and tlow. While one functions as an upper bound,
the other works as the lower bound for our initial pooling

P ′
mixedCurv = {{i, j} | ∀i, j ∈ V : BFC(i, j) < tlow ∨BFC(i, j) > thigh}. (10)

Two nodes are combined along their edge either if the connecting edge represents
a bottleneck or they are within the same densely connected community. The
idea is that MixedCurvPooll combines the advantages of both approaches to
be as effective as possible against over-squashing and over-smoothing. Selecting
adequate hyperparameters becomes more important as this approach carries a
great risk of simplifying the graph too much and thus losing all the information
hidden inside the graph topology that we want to extract in the first place.

4.3 Runtime Complexity

The runtime complexity of CurvPool is mainly given by the complexity of the
Balanced Forman curvature. This complexity is O(|E|d2max), with dmax being the
maximum node degree of the graph [36]. The calculation of the pools themselves
only has a complexity of O(|E|) while the complexity of merging overlapping
pools is O(2|E|). All further operations don’t differ between the pooling ap-
proaches and thus are not considered further for this comparison. As CurvPool
only depends on the graph structure, this step is only executed once before
optimization and reused in all settings.

CliquePools complexity is given through the calculation of the cliques via the
Bron-Kerbosch algorithm [6] and is O(3n/3) in the worst case for a graph with
n nodes [35]. This can frequently be reduced in a practical setting [11].
Since DiffPool requires the calculation of a complete additional GCN its com-
plexity is given by O(LN2F + LNF 2) with L being the amount of layers, N
being the amount of nodes and F being the amount of features [4].

5 Experiments

To evaluate the effectiveness of our new pooling method, we compare its perfor-
mance on different benchmark datasets on graph classification to well-established
baselines. Our implementation is available online*. We consider datasets that
cover diverse graph structures and tasks from different domains. HIV [39] and

* https://gitlab.com/Cedric_Sanders/masterarbeit

https://gitlab.com/Cedric_Sanders/masterarbeit
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Example graphs with edges colored according to their curvature from low (red)
to high (green). Leftmost are the original graphs while the graphs in the middle rep-
resent one step of LowCurvPool and the rightmost graphs represent a step of High-
CurvPool.

Proteins [5] are common benchmark datasets that are rooted within biology.
They consist of structures of chemical substances that are used to classify the
nature or specific properties of these substances. IMDB-BINARY [42] is a com-
mon benchmark dataset that contains information about actors and movies. A
graph indicates for a specific genre if actors, represented by nodes, have played
together in the same movie, represented by edges. The classification task is to
predict this genre. In addition, we extend our experiments to a custom dataset
containing artificially generated graphs. These are generated using the approach
for caveman graphs [38] resulting in multiple dense clique-like areas connected
with a small number of edges that represent bottlenecks between these sub-
graphs. This dataset is referred to as Artificial. This setup allows us to compare
different CurvPool variations effectively as the distribution of high and low cur-
vature areas within the graph is smooth. The used features are equivalent to the
node degrees.
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Table 1. Test accuracies for the best setting for each dataset and method according
to the validation scores. The best score for each dataset is marked in bold, and the
second-best score is underlined.

Dataset GCN DiffPool CliquePool CurvPool

Mixed Low High

HIV 75.83 76.66 78.33 76.31 78.61 80.06
Proteins 65.99 77.81 74.54 75.27 75.09 77.81
IMDB-BINARY 63.80 69.60 68.39 70.80 69.40 70.80
Artificial 73.20 73.80 73.40 73.30 74.10 74.00

5.1 Experimental setup

The classification loss is calculated via the log-likelihood loss, while the used
optimizer is the Adam-Optimizer using a learning rate of 0.001 and a batch size
of 32. We employ a 10-fold cross-validation and choose the best setting based on
validation accuracy. The best run across all hyperparameters is used to calculate
the accuracy for held-out test data for each of the folds. All splits are consistent
across models.

At each scale, our models utilize three convolutional layers, each followed by
a ReLU activation and batch normalization [15]. The complete model consists of
three of these blocks with the corresponding pooling layers in between. Since we
focus on graph classification, a global mean pooling layer and two linear layers
are used to calculate the final classification. To keep them as comparable as
possible, the pooling approaches only differ in the used pooling operation.

5.2 Results

Table 1 presents the overall results for the experiments. It shows the best param-
eter constellation per dataset and method. The different variations of CurvPool
outperform the established methods on almost all of the datasets, albeit usu-
ally by only a few percentage points. Only on the Proteins dataset DiffPool can
keep up with CurvPool. Especially HighCurvPool outperforms all other consid-
ered methods consistently, with the second-best result typically also going to a
variation of CurvPool.

5.3 Ablation Study

The next step is to take a closer look at how some of the parameters impact the
results of CurvPool. First up are the thresholds. Figure 2 represents the accuracy
scores for the different sets of thresholds, including the different CurvPool vari-
ations. To better understand the impact of the thresholds the given histogram
represents the distribution of curvature values in the corresponding dataset. This
kind of visualization also allows for a good comparison of LowCurvPool, High-
CurvPool, and MixedCurvPool.
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(a) HIV (b) Proteins

(c) IMDB-BINARY (d) Artificial

Fig. 2. Accuracy on the datasets for different thresholds. The histogram represents the
distribution of curvature values in the dataset. MixedCurv pools all data points not
within the range given via the purple line. LowCurv pools all data points to the left of
the red triangle. HighCurv pools all data points to the right of the green triangle.

The thresholds aligned with the center of the histogram seem to achieve
the highest scores. This implies that aggregating too many nodes and too few
nodes both have detrimental effects on the achieved results. Selecting the correct
threshold is a balancing act. For new datasets, we would recommend starting
with thresholds that split the dataset into two halves since those seem to present
a very good baseline for initial experiments.

In terms of the different CurvPool variations, there is no clear winner. While
HighCurvPool tends to achieve the highest scores across the board, it seems
to be more sensitive to the choices of the threshold. MixedCurvPool is more
consistent with fewer outliers in both directions. MixedCurvPool probably does
best on datasets where the curvature values are distributed over a larger area.
This explains its weak performance on the HIV dataset. Generally speaking, all
three variations seem to be competitive, with differing strengths and weaknesses
corresponding to individual datasets and thresholds.

A comparison of the different aggregation schemes is presented in Table 2.
For CurvPool, summing all node representations in a pool is clearly on top for all
the different datasets. Meanwhile, CliquePool tends to achieve the best results
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Table 2. A comparison of different aggregation schemes for CliquePool and the best
performing 1.

Accuracy CliquePool CurvPool

Sum Avg Max Sum Avg Max

HIV 75.76 78.33 73.05 80.06 79.44 78.26
Proteins 74.36 74.54 72.72 77.81 75.45 76.54
IMDB-BINARY 67.40 68.39 63.59 70.80 69.20 60.20
Artificial 72.80 73.40 73.60 74.10 69.70 63.70

Table 3. Runtime per method and dataset. Pre represents the duration for the pre-
computation of the poolings. Epoch is the training time per epoch. All times are in
seconds.

Runtime (s) HIV Proteins IMDB-BINARY Artificial

Epoch Pre Epoch Pre Epoch Pre Epoch Pre

GCN 1.6 - 2.0 - 0.7 - 1.0 -
DiffPool 9.5 - 47.7 - 2.0 - 4.0 -

CliquePool 2.4 19 4.0 15 0.5 3 1.0 114
CurvPool 3.0 29 5.0 28 0.5 9 1.0 100

when averaging. Especially notable are the differences between summing and av-
eraging on the Artificial dataset. We explain the success of the sum aggregation
by its similarity to more expressive message-passing schemes with respect to the
Weisefeiler-Leman test. As pools of different sizes typically occur, the sum pro-
vides information about the number of nodes utilized in each pool. In contrast,
the mean is unable to determine the number of nodes utilized for pooling, similar
to its inability to determine the number of neighbors in message-passing opera-
tions [40]. Thus, the sum aggregation provides important additional structural
features and offers increased expressivity.

5.4 Runtime

The runtimes presented in Table 3 largely align with the established considera-
tions of Section 4.3. CliquePool and CurvPool can utilize the precalculation of
the poolings to drastically reduce the runtime per epoch and outperform Diff-
Pool. Between CliquePool and CurvPool, runtimes are very close and in some
cases even faster than the basic GCN. This can be explained through the larger
number of aggregated nodes and the resulting smaller adjacency matrices. Es-
pecially meaningful is the amount of edges since it impacts the calculation of
the Balanced Forman curvature negatively. Though this effect should be largely
limited to the precalculation and not affect the time per epoch.
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6 Conclusion and Future Work

We introduced CurvPool, a novel pooling approach for graph neural networks
that are designed to be effective against over-smoothing and over-squashing. It
is based on the Balanced Forman curvature, which represents the connectivity
between nodes. A high curvature value occurs for densely connected areas of the
graph, which are prone to over-smoothing. Bottlenecks are located at edges with
a low curvature value, leading to over-squashing. Our proposed methods High-
CurvPool and LowCurvPool directly reduce these critical areas by combining
exactly these nodes, resulting in a coarser graph and more effective message-
passing. Simultaneously reducing both of these areas is done using our proposed
MixedCurvPool. The first outstanding quality of CurvPool is its flexibility. The
curvature can be calculated for any graph and always leads to a meaningful
pooling metric while still being an inherent attribute of the graph itself. Other
approaches like CliquePool on the other hand are servery limited through the
need for the existence of specific structures within the graph. A graph without
cliques of appropriate size will not lead to a suitable pooling. Meanwhile pooling
via DiffPool is almost completely independent of the graph structure itself since
it uses an external pooling metric in the form of a clustering. This approach
also requires additional knowledge about the graph or extensive hyperparameter
tuning to select the fitting clique sizes.

Another important factor is the low theoretical and practical runtime com-
plexity of CurvPool which is linear in the number of edges. As the curvature
and thus the pooling can be precomputed, the additional time during training
is almost negligible.

Our empirical results on several graph classification tasks show the effec-
tiveness of our approach. CurvPool comes out slightly ahead while comparing
classification accuracy for a bunch of different datasets. The experiments have
also shown the viability of the different CurvPool variations in highlighting their
strengths and weaknesses on specific datasets and parameter combinations. We
found HighCurvPool using the sum aggregation to accomplish the strongest re-
sults consistently. We explain this as sets of nodes connected by edges with high
curvature are prone to over-smoothing. These carry redundant features which
HighCurvPool then reduces to a single node. The sum aggregation allows our
method to utilize structural properties of the graph as the resulting state is in-
fluenced by the number of nodes in each pool. In summary, this flexibility, its
slightly improved classification accuracy, and its low runtime complexity make
CurvPool a valuable alternative to the established pooling methods.

Limitations Limitations of CurvPool directly stem from limitations in the
Balanced Forman curvature itself. While this strategy is very flexible, it may
not perfectly align with the nodes that should be pooled in the optimal scenario.
However, in case other strategies for ranking pairs of nodes emerge, these can
be directly integrated into our method. CurvPool also does not consider node
features, which might further enhance its effectiveness, albeit reducing its ability
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to precompute clusters. Additionally, while our empirical results already cover
diverse datasets, CurvPool can be evaluated for additional tasks and against
other methods to ensure its generalizability.

Future work Our work opens up several directions for future work. While
this paper focused on graph classification, it could be extended to node clas-
sification tasks in order to combine distant information. During our work, we
noticed that the current theory on over-smoothing and over-squashing is unfit
for pooled graphs. Metrics like the Dirichlet energy are not designed for pooling
operations, making it challenging to quantify whether a pooling step can reduce
over-smoothing. Thus, novel metrics and theoretical investigations are needed.
Similarly, the effect of pooling methods in general on the curvature needs to be
better understood from a theoretical perspective.
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